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1. Introduction 
For many years, plant architecture has been viewed as the result of repetitions (Barlow, 1994), 

which occur at different levels of organisation (metamers, growth units, axes and branching 
systems) (Barthélémy, 1991), through growth and branching processes. In addition, the plant 
components have been shown to be distributed within individuals according to precise gradients 
(Barthélémy et al., 1997). The changes which occur during plant ontogeny have been described 
along axes for successive entities and according to their position for the lateral ones. These changes 
reflect the impact of the plant topology on the entities. They occur in various plant species in which, 
on the one hand, the nature of the botanical entities and that of their successors tends to be 
equivalent, and on the other hand, branching tends to induce marked qualitative changes between 
the bearing entity and the borne branching system. The differences between the entities reflect 
different stages of differentiation in the meristems, which are ordered in time and correspond to the 
notion of physiological age (Barthélémy et al., 1997). In the present study, we assume that the 
physiological age of meristems can be assessed indirectly, i.e. deduced from the biological 
characteristics of the plant. We aim at characterising these changes by diverse quantitative or 
qualitative variables attached to a given entity, such as the number of nodes, the length, the 
diameter and the presence/absence of flowering. These variables are called the entity attributes. 
Connected entities which have similar attributes can be interpreted as homogeneous zones, as 
opposed to ruptures or transitions between zones. For example, flowering is a factor of rupture in 
the plant architecture when the meristem differentiation leads to sympodial branching. The 
discrimination between dominant and dominated axes in plants with different degrees of hierarchy 
can be formulated as the research of ruptures and continuities. More generally, it makes sense to 
identify zones when the entities at a given scale can be clearly classified into a small number of 
classes, defined by different morphological and functional characters. 

A statistical approach is relevant for the analysis of architectural data, both for the exploratory 
analysis and for inferring some embedded structures not directly apparent in the data. Statistical 
models are intended to make explicit some regularity, patterns or levels of organisations from the 
attributes, for instance tree-structured zones. The statistical analysis of sequential data from plant 
architecture, illustrated in Guédon et al. (2001), is mainly based on Markovian models, for instance 
hidden semi-Markov chains for modelling homogeneous zones. These models, though accurately 
accounting for the structure contained along remarkable paths in the plant (e.g. a tree trunk), are not 
relevant for identifying tree-structured zones, since the dependencies between entities of disjoint 
sequences are eluded. The complete topology has to be somehow included into the model for the 
existence of multiple dependent successors (or descendants) to be considered in the zone 
distribution.  

We propose to use the statistical framework of hidden Markov trees (HMTs), introduced by 
Crouse et al. (1998) in the signal processing context to efficiently model homogeneous zones within 
a tree-structured process whose topology, fixed by the data, is thus non-random. These models are 
based on hidden states whose persistence, leading to homogenous zones, is obtained by defining 
local dependencies between them. The HMT modelling is complementary with the plant 



comparison method of Ferraro and Godin (2000, 2003), based on tree alignment. This alignment 
relies on a distance between trees integrating the comparison of topology and a distance on the 
attributes. Instead, our method determines zones with common attribute distribution, the plant 
topology being locally taken into account by the dependencies between one entity and the adjacent 
ones. The Markovian models for sequences and trees and the tree alignment have been integrated in 
the AMAPmod software (Godin et al., 1997). Following a presentation of tree-structured 
representations of plants, this paper develops the statistical modelling of architectural data by 
HMTs, relying on the above botanical concepts and hypotheses. Then some practical aspects and 
variants of the HMTs are presented, leading to refined botanical hypotheses and analysis methods, 
more relevant for given applications. Finally, several perspectives of concrete applications in 
agronomy and ecology are outlined.  

2. Tree-structured representation of plants 
As discussed in Godin et al. (1997) plants can be formally described through rooted 

multiscale tree graphs whose vertices correspond to their constituting botanical entities and whose 
edges represent the physical connections between them. Each scale corresponds to a more or less 
macroscopic viewpoint on the plant. Since only single-scaled tree graphs can be analysed by HMTs, 
it is necessary to choose a scale for the plant description. Some topological information at a higher 
scale can nevertheless be taken into account in attributes, for example by counting the number of 
short shoots borne by a given axe. Such balance between topological information within the tree-
structured data and its representation at the attribute level results in modelling cho ices. For 
example, the representation of topology as an attribute may be required when analysing the 
development of some subparts of the plant. This is why the plant is typically represented at a rather 
macroscopic level, lower than the internode scale (growth unit, annual shoot or axis). 

For each vertex u of the tree graph, the attribute vector is denoted by uX and can mix 
qualitative and quantitative variables. The parent of u is denoted by )(uρ (except if u is the root 
vertex) and the set of children of u is denoted byc(u) . If this set is empty, u is called a leaf vertex. 
The different connection modes of plants entities are represented by typed edges: “<” for succession 
and “+” for branching. These notations are illustrated in figure 1.  

3. Modelling zones in plants with hidden Markov trees 
The plant architecture organisation is modelled by affecting one state to each entity. The 

states are ordered and take a small number of values. Since each entity corresponds to a vertex u of 
the tree graph, this amounts to associate the tree representation of the plant with a state tree. The 
states determine the distribution of the morphological and functional characteristics of the entities 
measured by the attributes uX . A set of connected vertices affected to a given state defines a 
homogeneous zone, whereas connected vertices affected to different states induce ruptures in the 
plant architecture. The propagation of the states within the plant is related to its topological 
organisation. This can be modelled in a probabilistic framework by the HMT models. 

The HMTs have been introduced by Crouse et al. (1998) for modelling the dependencies in 
wavelet coefficient trees in the context of signal processing. The principle is to associate each 
vertex u with a hidden state uS taking values in a finite set, such that the distribution of the 
attributes uX depends on the value of uS only. The dependencies between the states uuS )( ensure 
their propagation from one vertex to its children. They determine how the states, hence the zones 
are distributed. The notion of order induced by the physiological age (see section 1) mostly applies 
at the state level. This is ensured by particular structures of the transition probability 
matrix jiijpP ,)(= , where )( )( iSjSPp uuij === ρ . The dependencies between hidden states are 



essentially local; in the basic HMT model proposed by Crouse et al. (1998), each state in 
independent from all his non-descendant given the parent state. This local dependency assumption 
gives its name to the Markov property for trees. The HMT model is quite close to the hidden 
Markov chains: both have the same parameter set and are based on local dependency assumptions 
between hidden states. These dependencies reproduce the structure of the observed process at the 
state level.  

 

4. Practical issues with hidden Markov trees and variants of this model 
The interpretation of the hidden states relies before all on the state tree restoration, as 

discussed in Durand et al. (2003). This method consists in finding the most likely state tree 
corresponding to the observed tree. The restoration makes the underlying zones directly apparent. 
Their actual meaning depends on the application and particularly on the nature of the attributes. For 
example, when searching for dominating paths in plants, these can be identified by extracting the 
sequences of consecutive states in the tree associated with large values of the entity length and 
number of internodes. Generally, different zones in a same state have equivalent attribute 
distributions, by definition of the HMT model. Thus, the plant is automatically segmented into 
comparable parts, whereas state changes highlight where the ruptures are. 

The HMT model of Crouse et al. (1998) has also the following remarkable properties, 
deduced from the assumptions above: 

• The privileged orientation is from the root to the leaf vertices. Thus the propagation of 
one hidden state uS to its children c(u) can be seen as state splitting.  

• The children states are independent given uS . Consequently their conditional 
distribution is deduced from the transition probability matrix P. 

u10 u9 

u1 

u2 

u3 

u4 

u14 

u5 

u12 

u11 

u8 

u13 u6 

u7 

u9 
u10 

u2

u5

u1

u3
u8

u14

u10

u4

u9

u7

u6

u11 u13

u12

+ +

<

+

<

<

< +

<+

+

<
+

u2

u5

u1

u3
u8

u14

u10

u4

u9

u7

u6

u11 u13

u12

+ +

<

+

<

<

< +

<+

+

<
+

 

A plant represented at the growth unit 
scale. 

 Tree-structured formal representation of the 
plant. Part of the topological information is 
represented at the attribute level (e.g. the 

three short shoots borne by u1).  

Figure 1. Tree-structured representation of a plant. 



We call this model the independent hidden Markov out -tree (independent HMOT). As a 
consequence from the above properties, the children conditional distribution has the following 
permutation property: let assume that vertex 1 has children set { }3;2 . 
Then ),(),( 123123 iSkSjSPppiSjSkSP ijik ======== , which seems unrealistic when 
ruptures caused by branching (opposed to succession) are expected.  

To overcome this drawback, we propose a model where the conditional independence 
assumption is relaxed. We obtain the general hidden Markov out-tree, also oriented from the root to 
the leaf vertices but with dependent children states given the parent state. This model is 
parameterised by transition probabilities from the parent state to the set of the children states 

),( 133 iSjSkSP === , different from ).,( 133 iSkSjSP ===  

For some applications it seems more relevant to orient the tree from the leaf vertices to the 
root, particularly when the attributes cannot be observed (due to cambial growth and self-pruning) 
on the most inner part of the plant. This leads to the hidden Markov in-tree (HMIT) model, 
parameterised by transition probabilities from the children states to the parent state. Thus, the 
propagation of the children states to the parent state can be seen as state merging. The three HMT 
models are illustrated in figure 2.  

The transition matrices of the general HMOT and HMIT are quite similar to that of the high-
order Markov chains. A way to reduce their number of parameters is to use the information on the 
edge types (“<” and “+”) to partially order the children. In this case, the transition probabilities are 
assumed invariant by permutation of the non-successor entities. Other practical aspects of the HMT 
methodology include selection of the number of hidden states and exploratory analysis. The latter 
requires specific methods compared to the sequence framework, due to the combinatorial issues 
occurring when the notion of unique descendant is lost.  

5. Perspectives of application 
The following main applications are considered, both in a forestry/ecological and an 

agronomic/genetic context. In fruit trees, one objective is to describe the intra-species diversity of 
tree forms which interacts with both its productivity and regularity, and its training easiness in the 
orchard. Previous studies described the early stages of development of a set of cultivars of apple 
tree (Malus domestica Borkh, Rosaceae), exploring branching pattern along one-year-old trunk 
(Costes and Guédon, 2002). Further exploration was carried on the architectural development over 
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Figure 2. Classes of HMTs and their parameters.
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six-years, for two genotypes, using basic statistical methods (Costes et al., 2003). The method 
presented herein could thus improve the modelling and characterisation of the plant structure. 
Furthermore, the periodicity of flowering occurrence could be analysed at a local scale as well as 
globally, using the tree segmentation obtained by state restoration.  

A widely applicable use of HMTs is zone identification within a plant for its automatic 
segmentation into several parts of similar nature or for the extraction of remarkable paths. This is 
especially useful when the amount of available entities per plant is large, which is typically the case 
in the context of forest trees, which crown is usually huge and complex. The homogeneous datasets 
obtained by such a sampling method could be analysed independently using other statistical models. 
A second general application of our approach is the determination of reiterated complexes by 
identifying branching locations where the bearing and the borne entities are affected to the same 
state. This is expected to occur when the borne axis is qualitatively similar to the bearing one.  

More generally, the segmentation of the plants into a small number of states expectedly offers 
new possibilities for quantifying the physiological age. As a perspective, this should lead to a 
methodology for the validation of this notion. 
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