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Abstract. This article addresses the optimal choice of the waiting period (or time-

out) that a device should respect before entering sleep mode, so as to optimize
a trade-off between power consumption and user impact. The optimal timeout is
inferred by appropriate statistical modeling of the times between user requests.
In a first approach, these times are assumed to be independent, and a constant
optimal timeout is inferred accordingly. In a second approach, some dependency
is introduced through a hidden Markov chain, which also models specific activ-
ity states, like business hours or night periods. This model leads to a statistical
framework for computing adaptive optimal timeout values. Different strategies
are assessed using real datasets, on the basis of power consumption and user
impact.
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1. Introduction

The goal of this study is to determine a statistical method, based on the analysis
of user behavior, achieving a compromise between low power consumption of
devices and limited user impact. We describe this primarily with respect to
the behavior of printers, however similar policies could also be applied to other
devices such as disk drives and displays. Currently, in most printers the time
period to wait before entering sleep mode is either set by the administrator or
predefined by the device manufacturer according to Energy Star (http://www.
energystar.gov) environmental standards. Current Energy Star criteria do
not take into account observed printer usage patterns. Those criteria instead
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set power consumption requirements depending on the device features (e.g.
functionalities, estimated volume) and marking technology type (e.g. laser,
solid ink, inkjet). In this paper, observed printer usage patterns are taken
into account through the sequence of print job submissions (referred to as the
print process). We model a device having several modes with different power
consumptions. For a printer, these correspond to:

• Print mode: The device activates its marking engine, print path and con-
troller and completes any print requests. Power consumption is typically
the highest in this mode.

• Idle mode: The device is ready to print immediately and therefore a cer-
tain power consumption is required to maintain the device in a state of
readiness.

• Sleep (or standby, or power-save) modes: The device is not ready to print
immediately, which induces a delay between the user request and the
actual beginning of the print job. Depending on the printer, one or several
such modes are available.

In the sequel, transitions from sleep to idle modes are referred to as wake-up,
while the reverse transitions are referred to as shutdown. Power consumption
is typically the lowest in one of the sleep modes, and the difference in power
consumption between idle mode and sleep modes is often as large as 40%. From
the consumption point of view, the device features are summarized by the power
consumption in each of these modes as well as the energy required to switch
between these modes.

The goal of this study is to infer the optimal inactivity interval (or timeout
period) before entering into sleep modes, given both the device power consump-
tion model and observed usage patterns.

1.1. Consumption model and notations
Our approach relies on the following assumptions. Firstly, assuming that each
print request is processed as soon as possible, the power consumption during
print jobs cannot be reduced in any way, and the request queue must be emptied
before power-saving can occur. Therefore, these consumptions and queues are
ignored in our analysis, and the times between requests can be assumed positive.
Secondly, power consumptions during idle and sleep modes are assumed to be
constant. Finally, printing, shutdown and wake-up transitions are assumed to
be instantaneous. Therefore, the optimization focuses on the power consump-
tion in idle and sleep modes and on the energy consumption of the associated
transitions.
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Let m denote the number of sleep modes, a the power consumption (Watts)
in idle mode, bj the power consumption (Watts) in sleep mode j, cj the energy
(Joules) required to switch from sleep mode j − 1 to sleep mode j and dj the
wake-up energy (Joules) required to switch from sleep mode j to print mode,
with j = 1, . . . ,m. In this notation, sleep mode 0 corresponds to idle mode, and
thus one can define b0 = a. From the consumption point of view, the device
features are summarized by the above quantities.

We limit ourselves to timeout strategies consisting of waiting a duration
τ (j) from the latest print onward, before switching into mode j. Since each
print request must be processed immediately, the actual switch only occurs if
the time between latest print job completion and the following print request is
larger than τ (j). This requires that the sequence (τ (1), . . . , τ (m)) is increasing.
It is also assumed that the sequence (b0, . . . , bm) is decreasing, and that the only
possible modes accessible from mode j are modes j + 1 and 0. The transition
graph between modes is illustrated in Figure 1.
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Figure 1. Possible transitions between idle and sleep modes.

1.2. Related work
The issue of power saving strategies has already been addressed in several stud-
ies. Although most of them present a very general framework for power manage-
ment, their applications mainly focus on hardware devices (e.g. CPU, monitors,
hard disk drives). A wide range of approaches are compared in Lu et al. (2000),
using the following typology of methods:
Timeout: A timeout period is fixed either using a quantile of the residual time
before next request, or using a parametric function of times between the last
two requests and / or request and timeout (see Douglis et al., 1995; Golding
et al., 1995; Lu et al., 2000; Cai and Lu, 2005).
L-shape: This is a variant of timeout approaches dedicated to request patterns
where short busy periods tend to be followed by a long idle period (Srivastava
et al., 1996).
Exponential average: This approach relies on a prediction of next idle period,
based on an average of the previous idle periods with exponential weights (Hwang
and Wu, 2000).
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Stochastic model: These methods aim at finding an optimal probability dis-
tribution for the different actions to perform, given the past actions, states of
the system and the expected power consumption for each action. The differ-
ent levels of consumption are related to the notion of state. These approaches
mainly rely on the theory of Markov decision processes (or MDPs – see Sutton
and Barto, 1998) or their different variants (continuous time, semi-Markov or
piecewise homogeneous Markov processes).
Competitive algorithm: A c-competitive power saving algorithm is such that the
power consumption is less than c times that of an oracle algorithm (Karlin et al.,
1994). An oracle algorithm considers all random variables, including future ob-
servations, as known, and achieves the minimal possible power consumption.
Learning tree: Adaptive learning trees transform sequences of idle periods into
discrete events and store them in tree nodes. They predict idle periods using
finite-state machines and select a path which resembles previous idle periods. At
the beginning of an idle period, a learning tree determines an appropriate sleep-
ing state; this algorithm is capable of controlling multiple sleeping states (Chung
et al., 1999).

Our method belongs to the category of stochastic models, and combines the
principles of continuous time modeling, piecewise identically distributed times
between requests and MDPs (the exact connection of our approach with MDPs
is discussed in the supplementary material). In Benini et al. (1999), a function
of a homogeneous Markov process with discrete time and discrete state space
is used to model the sequences of requests. The states represent different rates
of requests to the device per time unit. Markov processes are directly used to
model completion of those requests and the decision process.

An extension of this work was proposed in Chung et al. (2002) to take into
account possible violation of the homogeneity assumption. This is addressed by
a piecewise homogeneous Markov request process. This work was further ex-
tended in Šimunić (2002) and Bogliolo et al. (2004) using semi-Markov processes
for modeling the dynamics of the states and events (typically the requests).
These extensions are still discrete-time approaches. Continuous-time models
were proposed in Qiu and Pedram (1999) to represent the requests process (by
a homogeneous Poisson process), the service process and its queue (by Markov
processes with discrete state space). In Ren et al. (2005), the requests process
is modeled by a Markov-modulated Poisson process.

In Theocharous et al. (2006), the decision is based on machine learning (logis-
tic regression, k-nearest-neighbors or classification trees). Learning is achieved
from examples of actions to perform (turn the device on or off) and vectors
(used as predictors) composed of characteristics that reflect the state of activity
of the user, and the time since last request. These approaches mainly try to
optimize system performance under constraints on power consumption.
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In the context of power management for printers, the duration of a CPU cycle
is negligible compared to the time between requests. Therefore, a continuous-
time model is a natural way to model the request process. The contribution
of this paper to power management algorithms is threefold: firstly, it consid-
ers the issue of modeling the sequence of requests from a statistical viewpoint,
using continuous-time request processes (under the weak assumption of point
processes). Secondly, it allows for a characterization of the optimal timeouts in
multiple sleep mode devices, as the solutions of separate nonlinear equations.
Explicit solutions of these equations are provided in the case of particular re-
newal process assumptions on the print process. For the sake of conciseness,
we focus on the framework of one single sleep mode, and leave to supplemen-
tary material extensions to multiple sleep modes. Lastly, user impact can be
accounted for in the optimization of the target function associated with this
model, using a tractable extension of the basic framework, so that the corre-
sponding optimal timeouts follow straightforwardly.

A general model for the request process is presented in Section 2, together
with an assessment of user impact and the associated optimal timeouts. Several
request processes are investigated in Section 3. Particular attention is given
to parametric models, which allow fast update of the timeout. In Section 4,
various power management strategies are compared based on experiments. The
comparison criteria rely on out-of-sample prediction of power consumption and
on the numbers of shutdowns. Possible extensions to our approach are provided
in Section 5.

2. Stochastic model

The print process model is a particular case of a point process, similar to some
reliability models, see for instance Rausand and Høyland (2004), Chapter 7. In
our framework, the failure sequence is replaced by the print request sequence
{Ti}i≥1, with the convention T0 = 0 and where i denotes the index of the print
request. Equivalently, the print process can be described by {Xi}i≥1, where
Xi = Ti − Ti−1 is the time between the (i − 1)th and the ith print request. As
a consequence of the previous assumptions, the print process is simple: there
cannot be more than one print request at a time with probability 1. The print
process is depicted in the supplementary material, Figure 1.

Recall that we consider a framework with one sleep mode, so that m = 1.
Consequently, the dependence of all quantities on the sleep mode j will be omit-
ted in the notation used in this section. The timeout period may be updated
after each print request i and thus will be denoted by τi. Given a probabilistic
model for the print process {Xi}i≥1, we aim at optimizing over τi the expec-
tation of the energy consumption (denoted by h(Xi, τi)) given the past of the
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print process X1:i−1 := (X1, . . . , Xi−1), between two successive print jobs i− 1
and i.

Let us denote by fi the probability density function (pdf) of Xi given
X1:i−1, let F̄i be its survival distribution function, and zi = fi/F̄i be its haz-
ard rate function. This is referred to as the failure rate function in reliabil-
ity theory (Barlow and Proschan (1981), Chapter 2). In our case, it can be
interpreted as a printing rate function. In the sequel, zi is assumed to be
monotonic. Under this assumption, one can define the asymptotic hazard rate
ℓi = limx→+∞ zi(x) ∈ [0,+∞]. Formally, an optimal timeout period is de-
fined by τ̂i ∈ argminτ E(h(Xi, τ)|X1:i−1). To compute the energy consumption
h(Xi, τ), two cases arise:

a) Either the time Xi between two successive printings is larger than τi.
Then the printer stays in idle mode for τi before switching into sleep mode.
After a delay Xi − τi, the print job is processed and the printer returns to idle
mode. Consequently, the energy consumption in this case is aτi+c+b(Xi−τi)+d.

b) Or Xi is smaller than or equal to τi. Then the printer stays in idle mode
for Xi before processing the job. Consequently, the energy consumption in this
case is aXi.
These two cases are illustrated in the supplementary material, Figure 2. Let us
define ∆t = (c+d)/(a−b). In a static analysis of the printer energy consumption,
∆t is the time after which switching into sleep mode is less expensive than
staying in idle mode (see the supplementary material, Figure 3). If the times
of the print requests were known, the optimal strategy would be to enter into
sleep mode if Xi > ∆t. For this reason, ∆t is frequently called the break-even
time.

The expected consumption between two successive printings E(h(Xi, τ)|X1:i−1)
is derived in Lemma 1 of the supplementary material. The optimal timeout can
then be computed based on the following result (see the supplementary material
for a proof):

Proposition 1. Two situations are examined:
a) Supposing that the hazard rate function zi(x) is strictly decreasing in x, three
cases occur:

• If 1/∆t < ℓi, then τ̂i = +∞.

• If ℓi ≤ 1/∆t ≤ zi(0), then τ̂i is the unique root of the equation zi(τ̂i) =
1/∆t.

• If zi(0) < 1/∆t, then τ̂i = 0.

b) Supposing that zi is strictly increasing or constant, four cases occur:
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• If 1/∆t < zi(0), then τ̂i = +∞.

• If zi(0) ≤ 1/∆t ≤ min (ℓi, 1/E(Xi|X1:i−1)), then τ̂i = +∞.

• If max (zi(0), 1/E(Xi|X1:i−1)) < 1/∆t ≤ ℓi, then τ̂i = 0.

• If ℓi < 1/∆t, then τ̂i = 0.

It appears that three situations are possible. Either the times between printings
are so small on average that the printer should not enter into sleep mode (τ̂i =
∞), or they are so large on average that the printer should enter into sleep
mode immediately (τ̂i = 0). The intermediate case provides non-degenerate
optimal timeouts defined by the equation zi(τ̂i) = 1/∆t. This result highlights
the separate roles of the printer characteristics (summarized by ∆t) and the
user behavior (modeled through the hazard rate function zi). The extension
of this result to multiple sleep mode printers is given in Proposition 1 of the
supplementary material.

In reality, transitions between sleep and idle modes may delay printing. The
more frequently the system switches between sleep and idle modes, the more the
user will be impacted. We thus propose to model this impact by a penalty term
in the energy consumption. We further assume that user impact is proportional
to the number of shutdown transitions. With such a model, the consumption
between two successive print requests h(Xi, τi) is replaced by the cost g(Xi, τi) =
h(Xi, τi) + δ11{Xi>τi}, where δ > 0 is the weight assigned to user impact in the
energy consumption. The expected consumption including user impact is given
in Lemma 3 of the supplementary material. It turns out that penalizing the
consumption by the number of shutdowns can be interpreted as increasing the
transition consumption c+ d by δ. As a consequence, Proposition 1 still holds
with ∆t replaced by ∆̃t = (c+d+δ)/(a−b). In particular, when the hazard rate
is a decreasing function and there is a non-degenerate optimal timeout period
such that zi(τ̂i) = 1/∆̃t, the optimal timeout period is an increasing function
of δ. Moreover, this property also allows user impact to be accounted for in
the break-even time. In practice, ∆̃t can be seen as the optimal timeout if Xi

follows a particular Pareto distribution – see Section 3.1.

3. Modeling the print process

According to the previous Section, the optimal timeout period depends on the
model for the print process through the hazard rate function. Four different
print process models are proposed hereafter. In the first three approaches,
times between printings are assumed to be independent. In the last approach,
a hidden Markov chain (HMC) is used to model dependencies between printing
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times. The HMC states can be interpreted as specific states of activity like
business hours or night periods. While we only consider a single sleep mode,
extension to multiple sleep modes is straightforward.

3.1. Renewal process
In this section, the times between print requests are assumed to be independent.
The print process is then a particular case of renewal process (see Rausand and
Høyland, 2004, Chapter 7). The random variable modeling the times between
printings is denoted by X , since its distribution does not depend on the index i
of the print job. Similarly, the optimal timeout period in sleep mode j is denoted
by τ̂ (j). In the following, the optimal timeout is studied under the assumptions
that X is Weibull, Gamma or Pareto distributed. These three distributions
were chosen either for their relevance on the particular datasets we had, or for
theoretical reasons in the case of Pareto distributions.

3.1.1. Weibull distribution

The pdf of the two-parameter Weibull distribution is parametrized as fX(x) =
αλαxα−1 exp[−(λx)α] for x > 0, where λ > 0 is a scale parameter and α > 0 is
referred to as the shape parameter. The hazard rate function zX(x) = αλαxα−1,
x ≥ 0, is strictly decreasing if α ∈ (0, 1), strictly increasing if α > 1, and
constant if α = 1 (exponential distribution). Proposition 1 yields

τ̂ =

∣

∣

∣

∣

∣

∣

(αλα∆t)
1

1−α if α ∈ (0, 1)
0 if α ≥ 1 and ∆t < Γ(1 + 1/α)/λ
+∞ if α ≥ 1 and ∆t > Γ(1 + 1/α)/λ.

In practical situations, the parameters α and λ are replaced by their maximum
likelihood estimates, see Johnson et al. (1995), Chapter 21 for their computation
and Section 4 for examples.

3.1.2. Gamma distribution

The pdf of the two-parameter Gamma distribution is parametrized as fX(x) =
β−αΓ(α)−1xα−1 exp(−x/β) for x > 0, where β > 0 is a scale parameter and
α > 0 is the shape parameter. In this case, no closed-form expression is generally
available for the hazard rate function. Nevertheless, it can be shown (Barlow
and Proschan, 1981) that, similarly to the Weibull case, the hazard rate function
is strictly decreasing if α ∈ (0, 1), strictly increasing if α > 1 and constant if
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α = 1 (exponential distribution). Thus from Proposition 1,

τ̂ =

∣

∣

∣

∣

∣

∣

z−1
X (1/∆t) if α ∈ (0, 1)
0 if α ≥ 1 and ∆t < αβ
+∞ if α ≥ 1 and ∆t > αβ,

where the hazard rate function zX(x) has to be evaluated numerically through
the use of the incomplete gamma function. The maximum likelihood estimates
of α and β are computed following Johnson et al. (1995), Chapter 17 and the
computation of τ̂ is achieved with a dichotomy procedure.

3.1.3. Pareto distribution

The pdf of the two-parameter Pareto distribution is parametrized as fX(x) =
αβαx−α−1 for x ≥ β, where β and α are two positive parameters. The associ-
ated hazard rate function is zX(x) = α/x, which yields τ̂ = α∆t if ∆t ≥ β/α
(and τ̂ = 0 otherwise). This result is consistent with that in Cai and Lu (2005).
As a consequence, the break-even time can be seen as the optimal timeout for
a Pareto distribution with α = 1. The maximum likelihood estimators of the
parameters are given in Johnson et al. (1995), Chapter 20.

3.2. Hidden Markov model
The assumption of a constant hazard rate throughout day and night does not
seem realistic a priori. It can be expected that during given periods, users
will tend to print more often or less often than average. Such periods can be
interpreted in terms of activity levels, which yield different levels of hazard rates.
Denoting Si the activity level at ith print request, and assuming a Markovian
dependence between the (Si)i≥1, leads to an HMC model for the print process.

This corresponds to a heterogeneous distribution of the times between print-
ings, such that there exist some homogeneous periods (i, . . . , i + k) where (Xi,
. . . , Xi+k) have the same distribution. These can be interpreted as activity pe-
riods, defined by non-visible factors, such as the amount of users at a given time
in the printer network (which is related to working hours and can vary with the
company), the type of users, country or even site specificities.

Formally (see Ephraim and Merhav, 2002), an HMC is defined by two pro-
cesses X1:n = (X1, . . . , Xn) (observed process) and S1:n = (S1, . . . , Sn) (hidden
process), such that:

a) S1:n is a homogeneous Markov chain with finite state space {1, . . . ,K},
with transition matrix A and a distribution π = (π1, ..., πK) for the initial state
S1. Here, S1:n is assumed stationary and ergodic. Thus, π also corresponds
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to the marginal distribution of Si. In our case, Si represents the state of the
process at ith printing request, which is not directly observed.

b) Given S1:n = s1:n, the Xi are mutually independent, and independent
on the (Si′)i′ 6=i, with conditional pdf fθsi (called emission distributions), where
(fθ)θ∈Θ is a parametric family of pdf.

In HMC modeling, the non-visible factors underlying the state definition are
related to the print requests by the emission distributions, so that the unknown
states S1:n can be accessed indirectly, through the print process.

The HMC process aims at modeling both dependence and heterogeneity in
the print process. Indeed, although (Xi)i≥1 is a stationary process, Xi has
conditional pdf fθsi given S1:n = s1:n. Since this distribution depends on i, the
conditional distribution of the print process given a state sequence containing
transitions is non-stationary.

As an alternative, non-stationarity can be modeled by a sliding window
approach inspired by Chung et al. (2002). The model parameters of the re-
newal process in Section 3.1 are reestimated after each request i, using dataset
Xi−L+1:i, where L is called the window length.

The parameters of the HMC model, which consist in π, A and (θ1, . . . , θK)
are estimated by maximum likelihood, using the EM algorithm (see a detailed
description in Ephraim and Merhav (2002)).

Adaptive timeout period using HMCs: In the sequel, different strategies are
proposed to derive adaptive timeout periods τ̂i (updated after each printing job
i), taking advantage of the dependence in the print process. Those strategies
basically consist of predicting the time to the next print request Xi, from the
past observed values X1:i−1. Firstly, we propose two approaches based on a
prediction Ŝi of the next state value from the past of the process X1:i−1 (using
two variants for the prediction). The predicted distribution for Xi is then
fθ

Ŝi

. Our third approach considers all possible values of Si, and thus takes into
account the uncertainty about its value.
Viterbi-based approach: In this approach the next state value Ŝi is predicted as

argmax
k

(max
s1:i−1

P(S1:i−1 = s1:i−1, Si = k|X1:i−1)).

This value is deduced from the Viterbi algorithm (Ephraim and Merhav, 2002).

Filtering-based approach: This approach consists in predicting the next state
value Ŝi as

S̃i = argmax
k

βi(k),

where βi(k) = P(Si = k|X1:i−1) is the filtered probability. This quantity is
deduced from P(Si−1 = j|X1:i−1) (forward recursion in Ephraim and Merhav,
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2002).
Approach based on full conditional distribution: This approach consists in com-
puting the hazard rate function of Xi given X1:i−1. The pdf fi (respectively
the survival distribution function F̄i) of this distribution is a mixture of the pdf
(fθk)1≤k≤K (respectively (F̄θk)1≤k≤K) with weights (βi(k))1≤k≤K . The hazard
rate function follows immediately.

Each of the three approaches results into an estimated pdf for the predictive
distribution of Xi, namely fθ

Ŝi

in the first two cases and fi in the third one. Each
pdf is associated with a hazard rate function zi. The optimal timeout period τ̂i is
given by Proposition 1. In the approach based on full conditional distributions,
even in the case of Weibull, Gamma or Pareto observation distribution families
(fθ)θ∈Θ, we could not derive general conditions on the parameters (θk)k=1,...,K ,
under which equation zi(τ̂i) = 1/∆t has a unique solution. Thus, numerical
methods have to be used, to determine whether the optimal timeout period is
null, positive or infinite.

4. Experiments

Our methodology is illustrated, in the sequel, by experiments on two real
datasets. The efficiencies of the timeout strategies introduced in Section 3 are
compared in terms of energy consumption. These strategies are also compared
with four alternatives called Energy star method, oracle method, c-competitive
algorithm and exhaustive search method. In the Energy star method, the time-
out period is fixed so as to comply with the Energy Star standard, depending
on the printer features. In the oracle method, the future of the print process is
assumed to be known. The printer switches into sleep mode j before print job i
if Xi > ∆tj . Let us highlight that this reference method provides a lower bound
on the consumption but cannot be used in practice. The strategy consisting of
setting the timeout at ∆tj is referred to in Lu et al. (2000) and Cai and Lu (2005)
as a c-competitive algorithm (in the sense of Karlin et al., 1994). Since this is
a deterministic algorithm, here c = 2. Finally, the exhaustive search method
consists of finding the timeout that minimizes the actual consumption on the
dataset at hand, without parametric assumption. This approach assumes a con-
stant timeout. To determine this timeout, a grid of possible values is considered.
The actual consumption is computed for each possible timeout, the optimal one
being retained. Moreover, the method mentioned in Section 3.1 will be called
static method, while the HMC-based method described in Section 3.2 and re-
sorting to the Viterbi algorithm for state restoration will be referred to as the
Viterbi method. The results provided by the two variants for HMCs, referred
to as filtering method and conditional method, were very close to those of the
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Viterbi method; thus their detailed results are given in supplementary material
only (Table 2). The sliding window method, described in Section 3.2, is also
considered in the experiments.

In both datasets, times between printings were deduced from the print logs,
recorded during the whole of the year 2006 on XRCE print infrastructure, which
is composed of 14 printers and involves 155 users. The first printer is a Xerox
WorkCentre 238 model with two sleep modes (a1 = 270W , b1 = 150W , b2 =
50W , c1 = c2 = 0, d1 = 40kJ and d2 = 200kJ) and the second printer is a
Phaser 4500 model with one single sleep mode (a1 = 80W , b1 = 16W , c1 = 0
and d1 = 25.3kJ).

Static, Viterbi and sliding window methods require the selection of a fam-
ily of distributions for the times between print requests. Given the histograms
and statistics (skewness and kurtosis), available in supplementary material (Fig-
ures 4, 5 and Table 1), parametric families with fat tails that contain either de-
creasing pdf, or unimodal pdf with positive skewness were considered: Gamma,
Weibull, Lognormal and Pareto. We also included the two classical Gaussian
and Cauchy families. The final choice was based on the Bayesian Integrated
Criterion BIC (Schwarz, 1978), whose values are summerized in Table 1. The
selected model has a maximal BIC value.

Table 1. Values of BIC for selection of a distribution
for the times between printings. The values of the
selected models are indicated in bold.

Distribution BIC

WorkCentre 238 Phaser 4500

Weibull 13,324 7,065

Gamma 13,253 7,069

Lognormal 13,253 6,976

Pareto 10,989 5,806

Cauchy 9,821 4,569

Normal 8,226 3,984

It appears that Weibull is the most appropriate distribution for the first
dataset, and that Gamma and Weibull are both appropriate for the second
dataset. In the following, a Weibull distribution is adopted in both cases to
model the distribution of the times between printings, when those are assumed
to be independent. Its advantage over Gamma distributions is the derivation
of an explicit timeout (see paragraph 3.1.2). The considered HMC model also
has Weibull emission distributions, and three states, which can be interpreted
as rush, normal and calm periods, from the point of view of the print requests.
Note that the number of states or the family of emission distributions could
also be selected using penalized likelihood criteria (Gassiat, 2002) or cross-
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validation (Celeux and Durand, 2008). The M step for parameter estimation
by the EM algorithm is given in the supplementary material.

4.1. Cross-validated assessment of the strategies
The goal of this experiment is to investigate the methods’ performance on fu-
ture data, and thus to assess their generalization capacities. We focus on the
Xerox WorkCentre 238 dataset (n = 3910 print jobs) and user impact is not
considered. Its predefined timeouts according to Energy Star environmental
standards are 900 s for the first sleep mode and 1, 800 s for the second. The test
procedure is multi-fold cross-validation (Zhang, 1993), as follows: the dataset is
divided into L contiguous sub-samples of equal size. Then for each sub-sample
ℓ ≤ L − 1, the method parameters are estimated on this sub-sample while the
consumption is computed on sub-sample ℓ + 1. The length of the sliding win-
dow Lℓ is one of the parameters; this is also estimated on sub-sample ℓ only,
by minimizing the consumption over Lℓ. Three cases are considered: L = 10
sub-samples of size 361, L = 30 sub-samples of size 121 and L = 60 sub-samples
of size 61. Results are summarized in Tables 2 and 3. The computation times
include the computation of the actual consumption for the dataset.

It appears on Table 2 that exhaustive search, static and sliding window
methods are the most efficient in terms of consumption. The consumption
associated with these methods is about 12% larger than the lower bound given
by the Oracle method. This slight increase of the optimal consumption confirms
that the Weibull distribution achieves a proper fit to the sample. Besides,
exhaustive search, static and sliding window methods are quite robust since
they yield a constant consumption, whatever the subdivision. Moreover, the
standard deviation of the consumption represents less than 2% of the total
consumption. Among these four methods, the static one is at least one thousand
time faster than the other ones. Experiments were conducted in Matlab on an
Intel Pentium Dual Core running at 2.5 GHz.

The 3-state HMC model provides a better fit to the data than an independent
3-state mixture model, which itself fits the data better than an independent
Weibull model (with the following values of BIC, respectively: 13,696; 13,503
and 13,324). This highlights that the times between requests are dependent,
and that changes in the hazard rate occur. However, the above results show
that the better fit of the HMC model does not directly translate into a better
consumption.

Focusing on Table 3, it appears that the timeout periods provided by the
static and exhaustive search methods are approximately independent of the sub-
division of the sample, for both methods. Let us emphasize that static timeouts
benefit from small standard deviation whereas exhaustive search timeouts suffer
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Table 2. Energy consumption and mean computation time associated to the different
strategies.

Total consumption Standard deviation Mean computation time
(kWh ) of consumption by sample (ms )

Sample size 361 121 61 361 121 61 361 121 61

Energy Star 500 500 500 7.99 4.73 3.04 1.2e+00 1.0e+00 2.0e+00

τ
(1) = τ

(2) = 0 498 498 498 6.77 3.76 2.55 2.0e+00 1.0e+00 1.0e+00

Exhaustive search 446 446 447 6.86 4.17 2.76 6.6e+04 1.5e+05 2.7e+05

Oracle 399 399 399 7.13 4.11 2.72 2.0e+00 2.0e+00 2.0e+00

c-competitive 471 471 471 7.66 4.54 2.94 5.0e-01 1.0e+00 2.0e+00

Static 446 446 446 7.02 4.13 2.77 2.0e+01 5.0e+01 9.0e+01

Sliding window 445 445 444 7.02 4.18 2.77 5.2e+05 1.5e+05 6.6e+04

Viterbi 471 464 462 8.07 3.97 2.64 1.0e+04 4.3e+03 2.8e+03

from a high variability. As a conclusion, static method seems to be an accurate,
reliable and fast method to select the optimal timeouts. A decrease of about
12% of power consumption can be achieved with regard to the Energy Star
method. The gain with regard to the competitive algorithm is about 6%.

Table 3. Timeout associated to the different strategies.
Mean timeouts Standard deviation

(s ) of timeouts

Sample size 361 121 61 361 121 61

Exhaustive τ
(1) 26 25 24 13 17 21

search τ
(2) 203 208 218 55 108 121

Static
τ
(1) 11 12 12 2 5 7

τ
(2) 179 188 192 33 64 84

4.2. Assessment of user impact
In what follows, the behavior of the methods is compared when taking user
impact into account on the Phaser 4500 printer. Our test procedure is the
following: The dataset (n = 2, 320) is divided into 2 sub-samples with the same
size. Parameters of each method are estimated on the first sub-sample, while
the total consumption is computed on the second one as the penalty δ varies.

The variations of the number of shutdowns (or equivalently wake-ups) as a
function of the penalty δ are depicted in Figure 2. Given a delay of 8 s caused
by each transition on this printer model, the y-axis in Figure 2 also corresponds
to an upper bound of the total delay, from the users’ point of view. Even
though, for a fixed penalty δ, the different methods yield different numbers of
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shutdowns and different consumptions, it appears on Figure 3 that, for a fixed
number of shutdowns, there exists some value of the penalty (that depends on
each method) such that the consumption is identical for every method. This
shows that the different methods are globally equivalent from the point of view
of user impact, up to a rescaling of the penalty. Keeping in mind the conclusions
of the previous paragraph, it seems that the static methods should be preferred
since they are the simplest and most robust ones.
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Figure 2. Number of shutdown transitions (left vertical axis) and total delay for users
(right vertical axis) as the penalty δ increases.

4.3. Real-world implementation
In power saving issues, it is important to consider the consumption induced by
the power management infrastructure itself (hardware and software). Indeed,
there is a risk that the power savings may be eroded by the extra consumption
caused by our algorithm. In the case of printing infrastructures, large device
fleets are usually managed by dedicated servers in charge of several tasks. One
can propose to extend their capabilities of device management software by per-
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Figure 3. Consumption as a function of the number of shutdown transitions obtained
with the different methods.

forming the timeout optimization. In the case of Xerox, the static method was
implemented in the production prototype in .NET, using a high performance
mathematical library. The execution time of the .NET implemented prototype
with respect to Matlab is on average 10 times slower. One run of the static
method on a 400 W server represents 400 ms of CPU time, i.e. 4.4e− 5 kWh,
which is negligible with respect to the energy consumption of a printer.

A real-world experiment was conducted on 100 Xerox Phaser 4500 printers
where 47,000 print jobs were collected. On this basis, a predictive model was
built, based on the renewal process approach. Using this model, the probability
of shutdown of the printer was computed, as well the associated consumption
and timeout, for any value of the penalty. Figure 4 shows the expected decrease
of the consumption as a function of the expected increase of the number of
transitions. The reference model is a renewal process without penalty (using
the estimated optimal timeout for δ = 0). To illustrate the variability of these
gains, their values is represented on a histogram (Figure 5), corresponding to
the gain on each of the 100 printers. Consequently, the users can now specify
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which increase (in %) in the number of shutdowns they are ready to accept
(or equivalently which increase of an upper bound of the time they are ready
to wait). Then the model deduces the corresponding penalty, timeout and
consumption.
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Figure 4. Expected decrease (in %) of the consumption as a function of the expected
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5. Conclusion and discussion

In this paper, we have proposed a statistical cost-based analysis to determine
optimal timeout period for devices. The theoretical formulation of power con-
sumption in terms of a print process can be considered as a stepping stone for
more complex models (e.g. incorporating covariates) that will allow the model
to progressively gain completeness in the consideration of other several cost fac-
tors, as for example device aging due to increased transitions from power saving
mode due to a more dynamic power saving policy. We have also established
the foundations to develop in the future a power saving strategy capable of per-
forming accurate prediction of power saving entry as described in this article,
but also of optimal power saving exit.

A further extension of this work is the challenging issue of optimal redirection
of print jobs and power saving policy within a network of printers managed
by a server. Given a printing request, this consists in determining on which
printer the job has to be processed, and after what delay each printer has to be
turned into sleep mode, so as to minimize the global consumption. Modeling
this problem should take into account constraints due to user impact, that are
partially related to network connectivity.

Finally, our approach deals separately with model identification (parame-
ter estimation from trajectories of user requests) and computation of the op-
timal timeout periods (in a framework with fixed parameters). As an alterna-
tive, a unified model for handling both model identification and decision taking
would be provided by the Bayesian Partially-Observed Markov Decision Pro-
cesses (POMDPs) in Poupart and Vlassis (2008). Here the non-observed part
of the MDP would consist in, firstly, the unknown parameters, considered as
stochastic in a Bayesian framework, and secondly, potential unknown states
as in the HMC models. The benefit of Bayesian POMDPs to our application
would come from taking into account simultaneously the different sources of
uncertainty: states of the printer and of the user, value of the parameter and
of the reward.

References

Barlow, R. and Proschan, F. (1981) Statistical theory of reliability and life test-
ing; Probability models. To Begin With, Silver Spring.

Benini, L., Bogliolo, A., Paleologo, G. and Micheli, G. D. (1999) Policy Opti-
mization for Dynamic Power Management. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6), 813–833.

Bogliolo, A., Benini, L., Lattanzi, E. and Micheli, G. D. (2004) Specification



Optimal timeout estimation 19

and Analysis of Power–Managed systems. Proceedings of the IEEE, 92(8),
1308–1346.

Cai, L. and Lu, Y.-H. (2005) Joint power management of memory and disk. In
DATE ’05: Proceedings of the conference on Design, automation and test in
Europe, pp. 86–91. Washington, DC, USA: IEEE Computer Society.

Celeux, G. and Durand, J.-B. (2008) Selecting Hidden Markov Model State
Number with Cross-Validated Likelihood. Computational Statistics, 23, 541–
564.

Chung, E.-Y., Benini, L., Bogliolo, A., Lu, Y.-H. and Micheli, G. D. (2002) Dy-
namic Power Management for Nonstationary Service Requests. IEEE Trans-
actions on Computers, 11(51), 1345–1361.

Chung, E.-Y., Benini, L. and Micheli, G. D. (1999) Dynamic Power Management
Using Adaptive Learning Tree. In International Conference on Computer-
Aided Design (ICCAD ’99), pp. 274–279.

Douglis, F., Krishnan, P. and Bershad, B. (1995) Adaptive disk spin-down
policies for mobile computers. In Proc. 2nd USENIX Symp. on Mobile and
Location-Independent Computing.

Ephraim, Y. and Merhav, N. (2002) Hidden Markov processes. IEEE Transac-
tions on Information Theory, 48, 1518–1569.

Gassiat, E. (2002) Likelihood ratio inequalities with application to various mix-
tures. Annales de l’Institut Henri Poincaré, 38, 897–906.

Golding, R., Bosch, P., Staelin, C., Sullivan, T. and Wilkes, J. (1995) Idleness
is not sloth. In TCON’95: Proceedings of the USENIX 1995 Technical Con-
ference Proceedings, pp. 17–17. Berkeley, CA, USA: USENIX Association.

Hwang, C.-H. and Wu, A. C. (2000) A predictive system shutdown method
for energy saving of event-driven computation. ACM Trans. Des. Autom.
Electron. Syst., 5, pages 226–241.

Johnson, N., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Dis-
tributions, 2nd edition, vol.1. Wiley Series in Probability and Statistics.

Karlin, A. R., Manasse, M. S., McGeoch, L. A. and Owicki, S. (1994) Com-
petitive randomized algorithms for nonuniform problems. Algorithmica, 11,
542–571.



20 Jean-Baptiste Durand, Stéphane Girard, Victor Ciriza and Laurent Donini

Lu, Y.-H., Chung, E.-Y., Šimunić, T., Benini, L. and Micheli, G. D. (2000)
Quantitative Comparison of Power Management Algorithms. In DATE ’00:
Proceedings of the conference on Design, automation and test in Europe, pp.
20–26. IEEE Computer Society.

Poupart, P. and Vlassis, N. (2008) Model-based Bayesian Reinforcement Learn-
ing in Partially Observable Domains. In International Symposium on Artifi-
cial Intelligence and Mathematics (ISAIM), Fort Lauderdale, Florida, USA.

Qiu, Q. and Pedram, M. (1999) Dynamic Power Management Based on
Continuous-Time Markov Decision Processes. In DAC ’99: Proceedings of the
36th ACM/IEEE conference on Design Automation, New Orleans, Louisiana
(USA), pp. 555–561. New York, NY, USA: ACM.

Rausand, M. and Høyland, A. (2004) System Reliability Theory: Models, Sta-
tistical Methods, and Applications, 2nd Edition. Wiley–Interscience.

Ren, Z., Krogh, B. and Marculescu, R. (2005) Hierarchical adaptive dynamic
power management. IEEE Transactions on Computers, 54(4), 409–420.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statis-
tics, 6, 461–464.

Šimunić, T. (2002) Dynamic management of power consumption, pp. 102–125.
Graybill, R., Melhem, R., eds.: Power Aware Computing. Kluwer Academic.

Srivastava, M. B., Chandrakasan, A. P. and Brodersen, R. W. (1996) Predictive
system shutdown and other architectural techniques for energy efficient pro-
grammable computation. IEEE Trans. Very Large Scale Integr. Syst., 4(1),
42–55.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: An Introduction.
MIT Press, Cambridge, Massachusetts.

Theocharous, G., Mannor, S., Shah, N., Gandhi, P., Kveton, B., Siddiqi, S. and
Yu, C.-H. (2006) Machine Learning for Adaptive Power Management. Intel
Technology Journal, 10(4), 298–311.

Zhang, P. (1993) Model selection via multifold cross validation. The Annals of
Statistics, 21(1), 299–313.


