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Fig. S1. Schematic representation of observations performed on 6 years old trees on the 

trunk, Long Sylleptic Axillary Shoot (LSAS), Long Proleptic Axillary Shoot (LSAS) and 

Sort Axillary Shoot (SAS). Annual shoots are delimited by “=” and death of the shoot apical 

meristem is represented by “x”. (A) Example of a 5 years long sequence bearing no flower, 

(B) biennial sequence and (C) regular sequence bearing only flowers. 
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Fig. S2. Absolute difference between consecutive yields |Yt -Yt-1|as a function of Yt. Points 

with Yt = 0 or Yt-1 = 0 have been removed. The correlation is 0.67, with 95% confidence 

interval (0.63;0.70), which shows that the implicit hypothesis underlying BBI, i.e. the 

alternation amplitudes given by the residuals are roughly proportional to the corresponding 

trend level, is roughly satisfied. Observations associated with regular genotypes are in red, 

biennial genotypes in green and irregular genotypes in blue. Two main directions are of 

particular significance: Yt  0 (|Yt-Yt-1| Yt-1 in this case) and Yt-1  0 (|Yt-Yt-1| Yt in this case), 

which both are typical cases of alternation (most points aligned on these directions are from 

biennial or irregular genotypes). 
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Fig. S3. Empirical and predicted residuals of yields as a function of time for regular bearing 

genotype g=85. 
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Fig. S4. Empirical and predicted residuals of yields as a function of time for biennial bearing 

genotype g=107. 
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Fig. S5. Empirical and predicted residuals of yields as a function of time for irregular bearing 

genotype g=108.  
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Fig. S6a. Measurements and predicted yield values in 2010 (year number 5) for regular 

bearing genotype g=85 (a). Circles are the measured values; triangles are the predicted 

values, located in the middle of prediction intervals (dotted segments).  
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Fig. S6b. Measurements and predicted yield values in 2010 (year number 5) for irregular 

bearing genotype g=108 (b). Circles are the measured values; triangles are the predicted 

values, located in the middle of prediction intervals (dotted segments).  
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Fig. S7. Plot of genotypes in the first FDA plane, based on mean entropy and local indices 

Bloc and local genotype AR coefficient  loc. The three colours indicate to which cluster each 

genotype belongs, according to the previous clustering performed with genotype AR 

coefficient and BBI_res_norm. The first FDA axis explains 99% of the variation of intra-

cluster inertia, and the second FDA axis 1%. 
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Fig. S8. Measurements and fitted values of number of inflorescences for regular bearing 

genotype g=123. The left-hand part of the figure corresponds to a model fitted using years 

2005 to 2010. The right-hand part of the figure corresponds to a model fitted using years 

2006 to 2008. 

 



11 
 

Fig. S9a. Measurements and fitted values of number of inflorescences for irregular bearing 

genotype g=5. The model was fitted using years 2005 to 2010. 

 



12 
 

 Fig. S9b. Measurements and fitted values of number of inflorescences for irregular bearing 

genotype g=5. The model was fitted using years 2008 to 2010, which led this genotype to be 

assessed as alternate bearing. 
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Fig. S10. Measurements and fitted values of fruit mass for regular genotype g=85, which led 

this genotype to be assessed as alternate bearing. The model was fitted using years 2005 to 

2010. 
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Fig. S11a. Measurements and fitted values of number of inflorescences for regular genotype 

g=62. The model was fitted using years 2005 to 2010. 
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Fig. S11b. Measurements and fitted values of fruit mass for regular genotype g=62, which 

led this genotype to be assessed as alternate bearing. The model was fitted using years 2006 

to 2008. 
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Fig. S12a. Measurements and fitted values of number of inflorescences for regular genotype 

g=64. The model was fitted using years 2005 to 2010. 
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Fig. S12b. Measurements and fitted values of fruit mass for regular genotype g=64, which 

led this genotype to be assessed as alternate bearing. The model was fitted using years 2008 

to 2010. 
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Tables 
 
Table T1. Computation of entropies to quantify synchronism in flowering for three 

genotypes g: regular bearing (g=85), biennial bearing (g=107) and irregular bearing (g=108). 

For each year, the frequency of flowering Fg,r,t and the contribution Entg,r to the average 

entropy are given. 

 

Genotypes  Year  
Entropy  

2005  2006  2007  2008  2009  

g=85  Number of 

GUs  
2  6  10  14  18  Total  

50  
Fg,r,t  0.00  0.00  0.20  0.64  0.72  

Entg,r  0.00  0.00  0.50  0.65  0.59  0.50  

g=107  Number of 

GUs  
2  5  9  11  11  Total  

38  
Fg,r,t  0.00  0.60  0.0  1.0  0.0  

Entg,r  0.00  0.67  0.00  0.00  0.00  0.09  

g=108  Number of 

GUs  
5  9  13  15  12  Total  

54  
Fg,r,t  0.00  0.22  0.15  0.53  0.00  

Entg,r  0.00  0.53  0.43  0.69  0.00  0.38  
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Table T2. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using a Gaussian mixture model, based on years 2005-2010 (reference clusters 

to compute an error rate). Clusters in columns correspond to those obtained using years 2005-

2009. The clusters are R(egular), A(lternate) and I(rregular) bearing. The numbers in 

parentheses indicate non-significant switches for genotypes at the boundary between clusters. 

 

  Cluster based on years 2005-
2009  

  R  A  I 

Cluster based on years 
2005-2010  

R 28  1 5(2)  

A  0  25  6 

I  3 (2)  5  44  



20 
 

Table T3. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate). Clusters in columns correspond to those obtained using the number of 

inflorescences for years 2006-2008. The clusters are R(egular), A(lternate) and I(rregular) 

bearing. 

 

  Cluster based on years 2006-
2008 and the number of 
inflorescences 

  R A I 

Cluster based on years 
2005-2010 and the 
number of inflorescences 

R  12  5  19  

A  0  21  9  

I  3  13 37  

 



21 
 

Table T4. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate). Clusters in columns correspond to those obtained using the number of 

inflorescences for years 2008-2010. The clusters are R(egular), A(lternate) and I(rregular) 

bearing. 

 

  Cluster based on years 2008-
2010 and the number of 
inflorescences 

  R A I 

Cluster based on years 
2005-2010 and the 
number of inflorescences 

R  32 4 0  

A  0 31  0  

I  11  22 22  
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Table T5. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate). Clusters in columns correspond to those obtained using fruit mass for 

years 2005-2010. The clusters are R(egular), A(lternate) and I(rregular) bearing. 

 

  Cluster based on years 2005-
2010 and fruit mass 

  R A I 

Cluster based on years 
2005-2010 and the 
number of inflorescences 

R  21 6 9  

A  3 21  7  

I  25  10 20  
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Table T6. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate). Clusters in columns correspond to those obtained using fruit mass for 

years 2006-2008. The clusters are R(egular), A(lternate) and I(rregular) bearing. 

 

  Cluster based on years 2006-
2008 and fruit mass 

  R A I 

Cluster based on years 
2005-2010 and the 
number of inflorescences 

R  20 5 10  

A  5 19  6  

I  22  12 18  
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Table T7. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate). Clusters in columns correspond to those obtained using fruit mass for 

years 2008-2010. The clusters are R(egular), A(lternate) and I(rregular) bearing. 

 

  Cluster based on years 2008-
2010 and fruit mass 

  R A I 

Cluster based on years 
2005-2010 and the 
number of inflorescences 

R  2 20 14  

A  0 27  4 

I  6  38 11  

 



25 
 

Table T8. Contingency table for the clusters of each genotype. Clusters in lines correspond to 

those obtained using the number of inflorescences for years 2005-2010 (reference clusters to 

compute an error rate) and both BBI_res_norm and the genotype AR coefficient. Clusters in 

columns correspond to those obtained using BBI. The clusters are R(egular), A(lternate) and 

I(rregular) bearing. 

 

 

  Cluster based on years 2005-
2010, the number of 
inflorescences and BBI 

  R A I 

Cluster based on years 
2005-2010, the number 
of inflorescences, 
BBI_res_norm and g 

R  2 0 34  

A  0 27  4 

I  1  9 45  
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Table T9. Correlation coefficient between indices at whole tree and AS scales, with 95% 

confidence intervals. Indices at whole tree scale are computed on the validation set (first 5 

years of yield). 

 

 
Genotype AR 
coefficient gg  

Local BBI_res_norm  
Local genotype 
AR coefficient  

Mean 
entropy  

BBI_res_norm  
-0.62  
(-0.72;-0.50)  

0.65 
(0.54;0.75)  

-0.47 
(-0.60;-0.31)  

-0.52  
(-0.65;-0.38)  

gg  1  
-0.52 
(-0.65, -0.38)  

0.55 
(0.41;0.67)  

0.34  
(0.17;0.49)  
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Table T10. Contingency table for the clusters of each genotype. Clusters in lines correspond 

to those obtained using the global indices (reference clusters to compute an error rate). 

Clusters in columns correspond to those obtained using the local indices. The clusters are 

R(egular), A(lternate) and I(rregular) bearing.  

 
 

  Cluster based on the local indices  

  R  A  I  

 
 
Cluster based on  
the global indices  

R  17  0 18 

A  1  20  8 

I  9  5  37  
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Table T11. Precision )()()( tBBIttBBI  of approximation of the BBI by  

 1/log)(  ttt  in the case of affine growth of tY , as a function of the slope a and the 

length t of the time series. 

 

t  a 

0.1  1  10  100  

5  4.19  0.48  0.07  0.03  

25  1.78  0.26  0.04  0.01  

400  0.66  0.13  0.02  0.008  
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Table T12. Precision )(__2)(__ tnormresBBItnormresBBI   of the approximation of 

BBI_res_norm by its limit 2 in the case of linear growth of alternate yield tY , as a function of 

the slope a and the length t of the time series. 

 

t  a 

0.1  1  10  100  

5  0.2  0.2  0.2  0.2  

25  0.04  0.04  0.04  0.04  

400  0.002  0.002  0.002  0.002  
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A. Analytic properties of BBI  
Let us recall that BBI is defined for a sample by:  
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where rgT , denotes the number of measurements for replication r of genotype g, and with the 
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if 0,,1,,  trgtrg YY . Compared to the usual presentation of BBI, a multiplying factor of value 

2 is introduced to make BBI comparable in scale to the indices introduced below. The 

justification is that, in this way, the elementary terms which are averaged take the form of a 

ratio between an absolute difference 1,,,,  trgtrg YY  and a mean  2/,,1,, trgtrg YY  . 

Using BBI in trended series generates confusion between alternation and trend, as developed 

in proposition P1. This proposition shows that the BBI of a series on length T with affine 

growth has order of magnitude  1/log TT . Moreover, interpreting BBI in the framework of 

linear filtering (Diggle, 1990; Chatfield, 2003) highlights a restrictive assumption underlying 

this index, related to the interpretation of BBI as the sum of the absolute values of the 

residuals obtained by first-order differencing normalized by the sum of the two successive 

values involved in the differencing (that can be interpreted as a very local trend). The 

underlying implicit hypothesis is that the alternation amplitudes given by the residuals are 

roughly proportional to the corresponding trend level (the relevance of this hypothesis for our 

dataset is highlighted in Fig. S2). In the case where the residuals are independent from the 

trend level, BBI scales the residuals as a function of the trend level. Each absolute difference 

will be weighted differently, and BBI will be irrelevant.  This should be considered its main 

shortcoming, as index for alternation. 
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P. Proofs of propositions 
P1/ BBI of a time series with affine growth 

If batYt   then the BBI is asymptotically equivalent to )1/(log tt . We assume that a > 0 

and b > 0 to ensure that 0tY , but the proof can be easily adapted to the other cases, 

replacing 1 tt YY  by 1 tt YY  in the definition of BBI. 

Proof 
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where 
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n n1

1
 is asymptotically equivalent to tlog  and where 
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n n
. Hence, the BBI is 

asymptotically equivalent to  1/log)(  ttt . The difference between the BBI and this 

equivalent increases with ratio a/b. The precision )()()( tBBIttBBI   of approximation 

)(t  is given in Table T11 for different values of a and t, in the case where b=1. This table 

shows that for large values of a, the precision of approximation )(t  is quite good even for 

small values of t. 
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P2/ BBI and BBI_norm for stationary time series with constant amplitude alternation  

Recall that BBI and BBI_norm are defined as 
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where it is assumed that these indices apply to series of non-negative values. 

For a linear trend with residuals corresponding to an alternation with amplitudes proportional 

to the trend level ( ac 0 ) 
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c/a2BBI   and c/a2BBI_norm  when t . While the ranges of possible values of 

the two indices are similar, we expected BBI_norm to be more robust to outliers. This 

illustrates the fact that these indices are only relevant when the alternation amplitudes are 

roughly proportional to the corresponding trend level, a particular case being a stationary 

series with constant alternation amplitudes. 

 

For a linear trend with residuals corresponding to an alternation with constant amplitude 

ac 0  

  ,12

,2

12

2

ctaY

ctaY

t

t




  



33 
 

we have 
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BBI takes the form of a sub-series of the harmonic series. 0BBI  , 0BBI_norm and 

0rmBBI_res_no  when t . 

 

P3/ Indices for stationary time series with constant amplitude alternation  

For a stationary series with average a and residuals corresponding to an alternation with 

constant amplitude ac 0  
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P4/ BBI_res_norm of an alternate time series with linear growth 

If )12(12  taY t  and 02 tY  (with a > 0) then the BBI_res_norm is asymptotically 

independent from a and tends towards 2. 

Proof 

From classical results in linear regression, the least square line has slope 
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The precision )(__2)(__ tnormresBBItnormresBBI   of the approximation of 

BBI_res_norm(t) by its limit 2 is given in Table T12 for different values of a and t. This table 

shows that for any value a, the precision of the approximation is good for t >25.  
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M. Supplementary description of statistical models and methods 
M1/ Clustering using Gaussian independent mixture models 

If z = zg refers to the two-dimensional vector of indices, the Gaussian mixture model is 

defined by its probability density function (pdf) 

  K

k
kkkk zfzf

1

),,;()(   

where ),;( kkk zf   denotes the pdf of the bivariate Gaussian distribution with mean k  and 

(diagonal) covariance matrix k . This pdf corresponds to the assumption that genotypes 

within cluster k follow the distribution ),;( kkk zf  . The clustering is obtained by estimating 

the model parameters  k,k and k , and by associating each genotype zg with the most likely 

cluster. The number of clusters K was selected using BIC. We used our own implementation 

of mixture models, developed with the R software. 

M2/ Model estimation, selection and validation in neural networks and SVMs 

Neural networks and SVMs depend on two kinds of parameters:  

 Parameters that can be estimated automatically from the dataset by optimizing a criterion 

(the likelihood function in the case of NNs, or a geometric criterion in the case of SVMs). 

Estimation relies on a set of genotypes, referred to as “learning sample”, which classes 

are considered as known. In practice, the classes yielded by Gaussian mixture clustering 

were considered. 

 A so-called regularisation parameter, denoted by, which controls the ability of the 

model to predict correctly either the classes of the learning set, or those of future 

genotypes not in the learning set (and even if possible, classes of both types of 

genotypes). The regularisation parameter has to be specified by the modeller.  

In the case of classes comprising reasonably comparable numbers of genotypes, the 

performance of supervised classification methods can be assessed with the classification error 
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rate (or error rate, in short), which is the frequency of genotypes which class is not correctly 

predicted. The set of genotypes used to compute the error rate is referred to as “test sample”.  

Usually, a low classification error rate (perfect classification) can be achieved through a 

particular choice of , if the whole dataset is used simultaneously as learning and test sample. 

However, this is an optimistic prediction of the actual error rate on future genotypes, since 

the same dataset is used both to estimate the parameters and to compute the error rate. A 

more reliable way to assess the possibility of classifying future genotypes accurately is the 

cross-validated error rate (Bishop, 2006, Chapter 1). One half of genotypes, chosen 

randomly, are used as learning sample and the other half as test sample. Then the roles of 

both sets are permuted, and this procedure is repeated several times (5 times in our case) to 

reduce the variability in estimating the average error rate. This variability is related to the 

random choice of both sets. This algorithm is applied to several values of the regularisation 

parameter , so as to minimise the predicted error rate with respect to . 

 
M3/ Factorial Discriminant Analysis (FDA) 

FDA is a variant of principal component analysis that aims at providing linear subspaces 

(e.g., a plane) in which the classes are optimally separated (Tabachnick & Fidell, 2007). This 

subspace is obtained by maximising the separation between the centres of the classes, in 

regard to the dispersion of the data of each class around their means. The plane obtained by 

applying the FDA to each genotype characterised by the three local indices is depicted in Fig. 

6, which shows a correct discrimination between the regular genotypes (represented with red 

diamonds) and the biennial alternating genotypes (green triangles). Note that axis 1 seems 

sufficient, essentially, to separate both classes. This justifies its use as a scoring and ranking 

method. The most regular genotypes have maximal coordinates along x-axis, and most 

alternate genotypes have minimal coordinates along this axis. The irregular genotypes (blue 
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squares) seem to be uniformly distributed on the plane. Since this is the plane where the 

classes are optimally separated, genotypes with irregular yields at tree scale cannot be 

discriminated using the local indices. 

 

E. Effect of using 3 years of yields at tree scale (number of 
inflorescence or fruit mass) on the indices, clusters and ranking  
 

The clusters and ranks obtained using the annual numbers of inflorescences at tree scale were 

used as a reference. Thus, the clusters and rankings using fewer years of measurement or fruit 

mass were compared with this reference, using contingency tables and error rates for clusters, 

and Kendall’s  for rankings. Kendall’s  coefficient is in [-1,1]; this is a measure of 

similarity between rankings, so that the maximal value represents perfect agreement between 

rankings. We give the rankings for the 3 reference genotypes: 85 (rank: 20/122), 107 (rank: 

101/122), 108 (rank: 64/122). 

 

Effect of using the number of inflorescences for years 1-3 

The confusion matrix is given in Table T3. The associated error rate was 0.41. Kendall’s  
coefficient was 0.39. Genotype 85 was assessed regular bearing with rank 1, genotype 107 

irregular (instead of alternate) bearing with rank 65 and genotype 108 irregular bearing with 

rank 24. Among the regular bearing genotypes assessed as alternate bearing was genotype 

123, which ranking increased from 19 to 101. The yields of regular genotype 123 are given in 

Figure S8 (model fitted using every year and model fitted using the first three years of 

yields). Replicate 2 of this genotype was not used to compute the indices based on three years 

on yields because this replicate did not bear flowers for the first three years. The cluster 
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switch for this genotype can be attributed to a high variability of yields over years and also 

between replicates.  

 

Effect of using the number of inflorescences for years 3-5 

The confusion matrix is given in Table T4. The associated error rate was 0.30. Kendall’s  
coefficient was 0.71. Genotype 85 was assessed regular with rank 21, genotype 107 alternate 

bearing with rank 95 and genotype 108 alternate (instead of irregular) bearing with rank 83. 

Among the irregular bearing genotypes assessed as alternate bearing was also genotype 5, 

which ranking increased from 70 to 80. The yields of regular genotype 5 are given in Figures 

S9 a) (model fitted using every year) and b) (model fitted using the last three years of yields). 

The cluster switch for this genotype can be attributed to a high variability of yields over years 

and also between replicates.  

 

Effect of using fruit mass for years 0-5 

The confusion matrix is given in Table T5. The associated error rate was 0.49. Kendall’s  
coefficient was 0.42. Genotype 85 was assessed alternate bearing with rank 56, genotype 107 

alternate bearing with rank 89 and genotype 108 alternate bearing with rank 38. The yields of 

regular genotype 85 are given in Figure S10 (to be compared with Figure 1a). When using 

fruit mass to compute the indices, this genotype is placed at the boundary between alternate 

bearing and irregular genotypes. Its BBI_res_norm value is close to 1.5, which led the 

clustering to place it with alternate bearing genotypes. 

 

Effect of using fruit mass for years 1-3 

The confusion matrix is given in Table T6. The associated error rate was 0.54. Kendall’s  
coefficient was 0.26. Genotype 85 was assessed irregular (instead of regular) bearing with 
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rank 82, genotype 107 alternate bearing with rank 81 and genotype 108 regular (instead of 

irregular) bearing with rank 39. Among the regular bearing genotypes assessed as alternate 

bearing was genotype 62, which ranking increased from 10 to 117. The yields of regular 

genotype 62 are given in Figures S11 a) (model fitted using the number of inflorescences) 

and b) (model fitted using fruit mass). The cluster switch for this genotype can be attributed 

to the fact that for replicate 1, the number of inflorescences was particularly high in year 3 

while fruit mass was particularly low.  

 

Effect of using fruit mass for years 3-5 

The confusion matrix is given in Table T7. The associated error rate was 0.67. Kendall’s  
coefficient was 0.26. Genotype 85 was assessed irregular (instead of regular) bearing with 

rank 66, genotype 107 alternate bearing with rank 68 and genotype 108 irregular bearing with 

rank 40. Among the regular bearing genotypes assessed as alternate bearing was genotype 64, 

which ranking increased from 24 to 47. The yields of regular genotype 62 are given in 

Figures S12 a) (model fitted using the number of inflorescences) and b) (model fitted using 

fruit mass). The cluster switch for this genotype can be attributed to the fact that for replicate 

1, the number of inflorescences is rather irregular (while it is regular for replicate 2). Fruit 

mass becomes alternate for both replicates in years 3-5, which can be attributed to 

environmental variations (not characterised by measurements in this study). 

 

Further remarks of the effect of using 3 years of yields at tree scale or using or fruit 

mass  

The conclusions of using fruit mass instead of the number of inflorescences, or of using three 

years of production instead of 6 years, are qualitatively the same as using the number of 

inflorescences for first five years only (see Section 2.3.5). The confusion between clusters of 
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genotypes as well as the number of rank inversions tend to increase when using the last three 

years of yields, to increase further when using the first three years of yields, and to increase 

still further when using fruit mass. The confusion involves in majority switches from or to the 

cluster of irregular genotypes. When using fruit mass, however, switches between regular and 

alternate bearing genotypes tend to occur more often. In particular, this is the case for 

switches from alternate bearing to regular genotypes, which is the error with most prejudicial 

consequences in our context. 

 

 

 

C. Correlations between fruit mass and number of inflorescences at 
successive years 
 

The correlation between the number of inflorescences Yg,r,t at replicate scale at year t and fruit 

mass Mg,r,t+1 the year after t+1 is 0.03. This is not significant at level 0.05, since the 

confidence interval is [-0.03, 0.09]. This is due to Yg,r,t and Yg,r,t+1 being positively correlated 

for regular genotypes (due to the trend) and negatively correlated for alternate bearing 

genotypes. This is highlighted by the within-cluster correlations between Yg,r,t and Mg,r,t+1, 

which is 0.33 for regular genotypes (95% confidence interval [0.23, 0.42]), -0.26 for alternate 

bearing genotypes (95% confidence interval [-0.36, -0.15]) and 0.10 for irregular bearing 

genotypes (95% confidence interval [0.02, 0.18]).  

Similarly, the correlation between Mg,r,t and Yg,r,t+1 is -0.05 (95% confidence interval    [-0.12, 

0.01]). This correlation is 0.26 for regular genotypes (95% confidence interval [0.15, 0.37]),  

-0.28 for alternate bearing genotypes (95% confidence interval [-0.39, -0.16]) and -0.02 for 

irregular bearing genotypes (95% confidence interval [-0.12, 0.07]). 
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R. Clustering and ranking based on BBI and the number of 
inflorescences 
 

A Gaussian mixture model was estimated using BBI to estimate clusters of genotypes. Three 

clusters were identified. The mean BBI within each cluster was close to the mean of the 

associated cluster using BBI_res_norm. However, the cluster sizes were different: the cluster 

of regular genotypes contained only 3 genotypes (instead of 36), the cluster of alternate 

bearing genotypes contained 36 genotypes (instead of 31) and the cluster of irregular 

genotypes contained 83 genotypes (instead of 55). The confusion matrix is given in Table T8. 

The associated error rate was 0.39. Kendall’s  coefficient was 0.63. Genotype 85 was 

assessed irregular (instead of regular) bearing with rank 65, genotype 107 alternate bearing 

with rank 96 and genotype 108 irregular bearing with rank 60 (see associated yields and BBI 

values in Section 3.1). 

The cluster switches suggest that BBI does not allow discriminating between trended yields 

(e.g. for regular genotypes) and irregular yields. This confirms that this index should not be 

used to quantify irregularity of yields in the setting of trended series. 
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