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Abstract. The purpose of this paper is to use the framework of hidden Markov chains for
the modelling of the failure and debugging process of software, and the prediction of software
reliability. The model parameters are estimated using the forward-backward EM algorithm and
model selection is done with the BIC criterion. The advantages and drawbacks of this approach
with respect to usual modelling are analyzed. Comparison is also done on real software failure
data. The main contribution of hidden Markov chain modelling is that it highlights the existence
of homogeneous periods in the debugging process, which allow one to identify major corrections
or version updates. In terms of reliability predictions, the hidden Markov chain model performs
well on average with respect to usual models, especially when the reliability is not regularly

growing.
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1 Introduction: software reliability modelling

Let X;,7 > 1, be the times between successive failures of an item of software. After each failure,
the software is corrected or not, and restarted. Debugging times are negligible or not taken into
account. Let N; be the number of failures between 0 and ¢t. The failure process is equivalently
one of the random processes X = {X;};>1 or N = {N;}s>0. It is completely defined by the
failure intensity:
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where 7y = 0 ({Ns}o<s<t) is the internal filtration of the failure process. Equation (1.1) can be
interpreted as follows: the future behaviour of the failure process is potentially dependent on its

past.

A huge number of models for the failure process have been proposed in the last 30 years.

These models are based on more or less sophisticated assumptions, and their goal is to estimate



present and future software reliability, based on the observation of past failures and corrections.
For recent reviews, see Lyu (1996) and Pham (2000).

The most popular class of models is that of Non Homogeneous Poisson Processes (NHPP), for
which the failure intensity is a continuous function of time. Among them, the most usual are the
Power-Law Process (PLP - Duane, 1964), the Goel-Okumoto (GO, 1979) and the S-shaped (S -
Yamada et al., 1983) models. The main reason for the wide use of NHPP in software reliability
is the simplicity of their use. However, the assumption of a continuous failure intensity is not
realistic because debugging should induce a discontinuity.

Moreover, an important feature of software, and a major difference with hardware, is that
items of software do not wear-out: if a piece of software is not modified, its ability to fail does
not change, so the failure intensity between two debuggings should be constant. Here, the
failure intensity is a step function. More sophisticated models are built following Littlewood’s
(1989) statement, according to which two sources of uncertainty exist in the failure behavior of
software undergoing debugging. The first source of uncertainty is in the inputs: software inputs
are chosen randomly in the input space according to the operational profile. The second source
of uncertainty is the effect of debugging. It is logical to assume that the debugging of a fault at
a given time depends only on the software state at this time, and not on its past states. This
results in a Markovian modelling of the debugging process. All these assumptions lead to another
class of models, sometimes called Markov Failure Rate (MFR) models (Soler 1988, Gaudoin
1990). For these models, there exists a Markov process A = {A;};>1 such that, conditional
on {A; = A;}i>1, the times between failures X; are independent and exponentially distributed
(due to the no wear-out property) with respective parameters \;. A; can be understood as the
software failure rate after the (i — l)th debugging. A software reliability model in this framework
is given by a model for the process {A;};>1.

The following assumptions have been made concerning the distribution of the process A:

e The A; are deterministic. Thus, the times between failures X; are independent and ex-
ponentially distributed. The most famous of these models are the Jelinski-Moranda (JM,
1972) and Moranda geometric (MG, 1979) models.

e The A; are independent and not identically distributed. This is for instance the case of

the Littlewood-Verral (LV, 1973) model.

e Vi, A;is a function of A;,_; and of random variables representing the efficiency of (i — l)th
debugging. This is the case of the models proposed in Gaudoin et al. (1994) and Gaudoin
(1999).



The parameters of all these models can be estimated by maximum likelihood or other tech-
niques. Then, it is possible to estimate present and future reliability. These models have been
more or less successfully used on real software failure data.

However, all these models assume that there is a correction for each failure, and that the
debugging efficiency is homogeneous in time. In practice, after software failures, computers are
often rebooted without any correction. Debugging happens when a sufficiently large number of
failures has occurred. When a software is in its operational life, there is a version update or
introduction of a new release instead of debugging, but both concepts can be handled in the
same way. Even if a correction is done after each failure, most of them are minor and there are
sometimes major corrections, which can be considered as equivalent to version updates.

Software reliability data generally consist of a list of successive times between failures, and
the information on whether a correction has been performed or not, or whether corrections are
minor or major, is not available. Thus, it would be interesting to build software reliability
models which could take this fact into account. This is the case of the hidden Markov chain
(HMC) modelling.

Section 2 presents the modelling of the software failure and debugging process with hidden
Markov chains. In section 3, model parameters are estimated using the forward-backward Fz-
pectation Mazimization (EM) algorithm. Section 4 deals with the hidden state restoration using
the Viterbi algorithm. Section 5 presents the choice of the number of hidden states and tran-
sition probability matrix with the BIC criterion. In section 6, the model predictive validity is
assessed with the U-plot method. Finally, the HMC approach is applied to real software failure
data and compared with usual software reliability growth models, from the points of view of

knowledge of the debugging process and reliability prediction.

2 Modelling the software failure process with hidden Markov
chains

In order to use the framework of hidden Markov chains, it is necessary to assume that the failure
rate process A = {A;};> takes values in a finite set. Let K be the cardinal number of this set
and {2 ... A} be the set of possible values for the A;. Then, A is a discrete-valued Markov

chain. The assumptions on X = {Xi}iZI and A are as follows:
1. A is a discrete-valued Markov chain;

2. conditional on {A; = A;};>1, the times between failures {X;};>; are independent;



3. conditional on {A; = )\(j)}, X; has an exponential distribution with parameter AU,

Any process satisfying the three assumptions above is a hidden Markov chain. This name is
due to the unknown values {A;};>1, which are not directly observable, hence hidden.

Each trajectory of process X can be split into homogeneous zones, each zone corresponding
to one value AU of the failure rate process. In a given zone, the failure rate remains constant.
Discrete jumps appear in the failure process when there is a transition of the failure rate process
at i failure, from A; = A\ to AN = A where j #1.

In the software test period, the homogeneous zones can be interpreted as periods where no
correction has occurred after failures, or where the corrections introduced were minor and did
not improve significantly the failure rate. The jumps correspond to corrections in the first case
and major corrections in the second. In the software operational life, the transitions between
zones can be interpreted as introductions of version updates or new releases. Consequently, this
model fulfills the requirements stated in section 1.

The advantage of the HMC model with regard to NHPP models is that it takes into account
the discontinuities in failure intensity caused by the debugging and the no wear-out property of
software. The advantage with regard to MR models is that there is not necessarily a correction
after each failure, which leads to the existence of homogeneous periods.

The study of transitions between these homogeneous zones is similar to the classical change-
point detection problem. In this framework, the HMC model appears as a particular case of
a state-space model, described in Basseville and Nikiforov (1993) as a usual approach for the
detection of abrupt changes. In reliability, change-point methods are generally used to detect
a modification in the behavior of a system, for instance the beginning of ageing (Zhao, 1993).
To our knowledge, the problem of detecting homogeneous zones in software reliability has never

been addressed before.

A hidden Markov chain is defined by the following parameters:

1. The distribution of the initial state Aq, given by 7; = P(A; = AU, 1< < K.

2. The transition probabilities P(A;1; = AD|A; = A\0)) = pg?, 1> 1,1<j <K, 1<I<K.
In what follows, we assume that the Markov chain A is homogeneous, i.e. the transition
probabilities do not depend on 2. Thus the transition parameters amount to the matrix P

defined by the pj;.

3. The values (A, ... AU of the failure rates.



In sections 3 and 4 as well as in the current section, the number K of possible failure rates
is considered as known. Let 1 be the set of all parameters of a HMC model. In order to assess
and predict software reliability, n has to be estimated. Sections 3, 4 and 5 present the used
estimation method and related features such as the restoration of the hidden states and the

choice of K.

3 Parameter estimation

For any sequence {z;};>1 and any couple of integers (7,j) such that i < j, let zf denote
(Ziy...,2;). We use the general notation P() to denote either a probability mass function
or a probability density function, the true nature of P() being obvious from the context. This
convention makes the notation simpler, when dealing with mixed distributions.

We assume that the n first interfailure times 7 of a software are observed. We want to use
the HMC model in order to assess present and future reliability at the last failure time. The
first step is the estimation of the HMC parameters.

The HMC model is a typical case where the complete data y7 can be split into the observed
data 27 and the missing data A} with y7 = (27, A). The presence of incomplete data often
complicates the estimation of the parameters i by likelihood maximization. Thus, we resort to
the EM algorithm, dedicated to the likelihood maximization in the context of missing values
(McLachlan and Krishnan, 1997). This iterative algorithm starts from an initial value 5(® of
the parameters and creates a sequence {n(m)}mgo resulting in non-decreasing likelihoods. At

each iteration m, it proceeds as follows:

e FKrpectation (F) step - determination of the @ function defined by
Qm,n"™)) = E o [log Py (A}, X7 = 2})| X7 = 27]; (3.1)
o Mazimization (M) step - maximization of Q(n,7("™)) with respect to 5. Then
0" = argmax Q(n, n'™). (32)

The EM algorithm has the following properties: the sequence {n(m)}mzo converges to the
consistent solution of the likelihood equations when 5(® is close to the optimal solution. How-
ever, when the mixture components {)\(1), e )\(K)} are poorly separated, the estimates obtained
strongly depend on the initial value n(®) and the convergence rate can be crippling. To cope
with this drawback, we start from several initial values and run a few iterations, the final value

maximizing the likelihood being kept as a starting value for one further KM run. More precisely,



we consider three initial values determined at random and we run 50 iterations for each value.
Thus we obtain three estimates. The one which has maximal likelihood is used as starting po-
sition for the EM algorithm. We stop the algorithm when 1,000 iterations have been done, or
when the relative increase of the log-likelihood is below a threshold e, for instance ¢ = 1078,
For 80 % of the sequences in the data set and for any value of K, this threshold was reached
before 800 iterations.

The M stepis given by the following re-estimation formulae (see Ephraim and Merhav, 2002):
7 = m0) (33)

&5, 10)
Pjii = m (3.4)
> 7:i()

B - i
e eI (3.5)

where
¥i(G) = Epem [(Tamaon] XT =271 = Pyom (A = AV XT = 27) (3.6)
52(-]7 l) = E‘r]('”) [H{Aizx\(l) ,Ai_lz/\(J)}|X§L = m?]
= Ppow (A= A0 A = XD XT = 2. (3.7)

These conditional distributions can be computed by inductive algorithms running along the
chain, first from the origin time forward to the future and second from the final time backward
to the past. This caused the EM algorithm for the hidden Markov chain model to be called the
forward-backward algorithm.

In what follows, the parameters (") are fixed and we write P = P, (m) to make the notation
simpler. The forward recursion is based on the so-called forward quantities a;(j) = P(X¢ =

2!, Ay = A\ initialized at i =1 by ay(j) = 7; fr) (21) and computed inductively by
aip () =Y pjai(f) fro (2ip)- (3.8)
J

As a byproduct of this recursion, the likelihood is given by fy(2}) = > a,(j).
J

The backward recursion is based on the backward quantities 3;(j) = P(X7,, = @7 |A; =

AG)), initialized at i =n — 1 by B,_1(j) = 3. pjifao (z,) and computed inductively by
l

Bi(j) = ijlﬂiﬂ () frw (zigr)- (3.9)



Finally, the conditional probabilities required by the EM algorithm are given by

o aalg)Bild)
o B (Opifo (@isn)ai())
fﬁ(],l) = Zan(]/) :

(3.11)

It is well-known that the forward-backward algorithm above is subject to underflow when n
is moderately large. This is why we use the so-called forward-backward algorithm for posterior
probabilities of Devijver (1985), which basically computes P(A; = AU)| X% = %) instead of
P(X% =2, A; = A1) and is thus immune to underflow.

The EM algorithm has the following interpretation, in the present context. First, the max-

imum likelihood estimates in the case of complete data, obtained by maximization of the com-

pleted likelihood Py, (A} = AT, X7 = 27), are as follows:

T = T a0y (3.12)
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The estimates of the transition probabilities can be interpreted as counts of the transition
numbers. The estimates of A are the classical estimates for an exponential distribution, where
the mean is computed only on the variables X; with A; = A9, i.e. the data in j*" state. Now,
we can see that in the re-estimation formulae (3.3) to (3.5) of the EM algorithm, the unknown
random quantities involved through the indicator functions are replaced by their expectations,
conditional on {X7 = 27}, with respect to the distribution P, ).

In fact, we consider a slightly simplified model. On the one hand, it can be shown that the
maximum likelihood estimate of 7 is a Dirac distribution H{A:A(l)} if only one sequence is used
to estimate the parameters, which is the case in this paper. On the other hand, the distribution
Py, remains invariant to any permutation of the parameters n - corresponding to a relabelling of
the hidden states - as usual in mixture models. As a consequence, we can make the assumption
that m; = H{A:A(l)}()\(j)). This means that the failure rate at i = 1is Ay = A1) with probability
one. In practice, we estimate the parameters without taking this constraint into consideration.

Then we relabel the states in such a way that m; = ﬂ{/\zx(l)}(A(j))-



4 Restoration of the hidden states

It has been emphasized in section 2 that one main contribution of the hidden Markov chain
modelling in software reliability lies in the possibility of interpreting the sequences of successive
equal states as homogeneous zones in the failure process.

We explain in this section how the unknown failure rates can be restored in the context of
hidden Markov chain models. One wants to use a model specified by parameter n, considered
as known (for example estimated by maximum likelihood as described in section 3), to give
a value to the unknown state sequence AY. A natural way to restore the hidden states is to
compute their most likely value, conditional on 7. The resulting algorithm is called a MAP
algorithm (maximum a posteriori). It consists in computing arg rr;‘%x Py(AT = AT|XT = 2}),
or equivalently arg max Pp(AT = AT, XT = 7). This can be done by the so-called Viterbi
algorithm, based on iiynamic programming (see Ephraim and Merhav, 2002). The Viterbi

algorithm is similar to the forward recursion of section 3 but the summing procedure is replaced

by a maximization. This recursion is based on the quantities §;(j) = max P,,(Ai_1 = /\i_l, A=
1

AU), Xt = &%), initialized at i = 1 by & (j) = 7; fai) (z1) and computed inductively by

Siv1(l) = m]aijl(Si (7)) Hw(@izr)- (4.1)

The maximal value of the completed likelihood is given at i = n by P* = max4d,(j), and the
restored final state is A} = argmaxd, (7). To retrieve the optimal sequence ofjfailure rates, it is
necessary to store for each time ijand each state j the optimal failure rate corresponding to the
immediate past 7 — 1. Thus, the failure rate sequence is determined recursively by a backward
procedure from the optimal final state towards the initial state.

Another strategy for the hidden state restoration consists in computing

A\ = arg mjax P(A; = A9 xn = x?). (4.2)
It leads to the maximization of the expected number of correct failure rates. This local method,
however, does not take into account the whole sequence of failure rates. We will consider in
section 5 some models with forbidden transitions (i.e. some transition probabilities equal to 0).
A major drawback of restoring the failure rate sequence without using the Viterbi algorithm
appears when we obtain a forbidden sequence as a result. Furthermore, the outputs of both
algorithms do not generally coincide. Generally, using the Viterbi algorithm tends to give longer
homogeneous zones, thus favouring the interpretation of the hidden states.

The comparison between original data and restored hidden states is easy since the expected

interfailure time when A; = AU) is 1/A00),
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Figure 1: Comparison of two methods for the hidden state restoration: the Viterbi algorithm
favours homogeneous zones.

Figure 1(a) shows the times between failures for a real software failure data set (C3 in
Gaudoin, 1990) superimposed on the optimal state sequence restored by the Viterbi algorithm,
using a three-state model with parameters 7 estimated by maximum likelihood. Figure 1(b)
shows the same real data set superimposed on the optimal state sequence restored using the
probabilities P(A; = AU)|X? = %) and the same parameters #. In this case, when the Viterbi
algorithm is used, the resulting sequence has longer plateaux than that obtained by local state
restoration, since the dependencies between the states are fully taken into account.

Figure 2(a) shows the times between failures for another real data set (M1 in Musa, 1979)
superimposed on the optimal state sequence restored by the Viterbi algorithm, using a seven-
state model having a tridiagonal transition matrix with parameters estimated by maximum
likelihood. Figure 2(b) shows the same real data set superimposed on the optimal state sequence
restored using the probabilities P(A; = AU)| X" = 27) and the same parameters. The model
assumes that any transition from state 5 (characterized by a failure rate of A(®) ~ 950~1) to
state 7 (characterized by a failure rate of A(") & 480~") is forbidden. See section 5 for more
details about assumptions on forbidden transitions. We can see in figure 2 that whereas this
constraint is satisfied by the global restoration (or Viterbi) algorithm, it is not satisfied by the
local restoration algorithm which allows a transition from state 5 to state 7, at ¢+ = 108.

Thus, we choose the Viterbi algorithm for the restoration of the hidden states.

40
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Figure 2: Comparison of two methods for the hidden state restoration: the Viterbi algorithm
respects the constraints induced by the transition probability matrix

5 Choice of the hidden state number and transition matrix

In the sections above, the number of possible failure rates K has been considered as known.
Clearly, K is not known in practice and has to be estimated. This quantity plays a peculiar role
in the model, since the dimension of parameter 1 depends on K.
For the choice of K, we use the BIC criterion (Bayesian Information Criterion - Kass and
Raftery, 1995):
BIC(K) = log(Py,. (})) %bg(n) (5.1)

where log(F;,.(27)) is the maximum log-likelihood for the hidden Markov chain with K hidden

states and where vi is the number of independent parameters in 1. vi is the sum of:

e the number K of parameters A() for the exponential conditional distributions;

e the number K (K —1) of transition probabilities, since each row of the transition probability

matrix sums to one.

The BIC criterion is composed of a term measuring the fit between the data and the model
(namely, the log-likelihood) and of a term penalizing complex models. Thus, maximizing this
criterion hopefully leads to selecting models offering a compromise between fit and complexity.
Furthermore, from Gassiat (2002), criteria based on the marginal log-likelihood with the same
penalization as that of BIC are proved to be consistent. On the contrary, the AIC criterion tends
to overestimate the number of hidden states in the case of mixtures, as stated in Cutler and

Windham (1993). In a Bayesian framework, model selection can be performed using reversible
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jump MCMC methods (see Robert et al., 2000). The comparison of likelihood and Bayesian
analysis of mixtures has been addressed by Aitkin (2001).

In practice, we set a maximal value K,,,, for K, as well as a minimal value K,,;,. Then we
estimate the parameters by the EM algorithm (see section 3) for each value K between Ky,
and K,,; and we keep the model maximizing BIC(K).

The second issue on model selection concerns the transcription of assumptions on the debug-
ging process into the transition probability matrix P. As shown in section 2, the hidden states
can be interpreted as steps in the software debugging process, since the states correspond to dis-
crete values of the failure rate. Until now, the assumption that all kinds of software corrections
can occur has been made implicitly. This is the case when no particular assumption is made
regarding the transition probability matrix, which means that any improvement or deterioration
of the software failure rate is possible.

Another possibility is to consider a debugging process where each homogeneous zone is visited
only once. This is the case of pure reliability growth models, where each debugging reduces
the software failure rate. Consequently, any transition from a hidden state to a previously
visited hidden state must be forbidden. This assumption implies an upper diagonal transition
probability matrix. Under this assumption the failure rates are ordered in accordance to the
transition probability matrix.

Moreover, it is important in practice to take into account the possibility of imperfect debug-
ging. This means that the return to a previously visited state must be allowed. The easiest way
to do so is to allow two transitions for each state (except the initial and final ones): one to the
last previously visited state, and one to the next new visited state. This assumption implies a
tridiagonal transition probability matrix. As for upper diagonal transition probability matrices,
tridiagonal transition matrices induce an order on the failure rates.

Figure 3 illustrates the effect of different types of transition probability matrix on model
interpretation. T'hese essentially lead to different models. The differences appear in the parame-
ters, but they also translate into the restoration of the hidden sequence by the Viterbi algorithm.
Figure 3(a) shows the times between failures for a real data set (C1 in Gaudoin, 1990) superim-
posed on the optimal state sequence restored by the Viterbi algorithm, using a three-state model
with an unconstrained transition matrix with parameters estimated by maximum likelihood. In
Figure 3(b), a model with an upper diagonal transition matrix has been used, thus leading to
new estimates for the parameters (still by maximum likelihood) and a new restored sequence of
failure rates. In Figure 3(c), a model with a tridiagonal transition matrix has been used. Figure

3(b) illustrates the fact that a model with an upper diagonal transition probability matrix for-
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Figure 3: Comparison of the three types of transition probability matrix.

bids any return to a previously visited state. This makes the model interpretation easier, as far
as the research of the homogeneous periods is concerned, since transitions between failure rates
are accepted less easily and in an irreversible way. It can also be seen from figures 3(a) and (c)
that adding milder constraints than an upper diagonal transition probability matrix results in
the suppression of some spurious transitions.

In conclusion, we are now facing a new model selection problem where each competing model
is characterized by the structure of its transition probability matrix. Once again we can resort
to the BIC criterion to select a model, when the difference of complexity is taken into account
for each candidate model. The number vg of independent parameters to consider for model

selection is:

12
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e in absence of any assumption on the transition probability matrix P, vk = K+ K(K-1) =

K*
e for an upper diagonal transition probability matrix, vk = K + (K — 1) = 2K — 1;

e for a tridiagonal transition probability matrix, vk = K 4+ (2K — 2) = 3K — 2.

6 Predictive validity and model comparison

The quality of reliability predictions provided by the hidden Markov chain model has to be
assessed and compared with those given by the usual software reliability growth models presented
in section 1. The usual method for comparing software reliability predictions is the so-called
U-plot method (Keiller et al. 1983; Abdel-Ghali et al. 1986).

For any model with parameter 6, let P (X; < 2| X" = 2'7") be the predicted Cumulative
Distribution Function (CDF) of the next time to failure X; given the first 7 — 1 interfailure
times, where @; is an estimator of @ based on mi_l. The idea of the method is to compute the
ui = Py (X; < 2;|X1™" = 2'7"). If the model is appropriate and the estimation is of good
quality, then the u; should be close to a sample of the uniform distribution over [0,1]. This
closeness or predictive validity is measured by the Kolmogorov-Smirnov distance KS between
the empirical CDF of the u; and the true uniform CDF, which is F'(z) = 2 on [0, 1]. The U-plot
is the plot of the empirical CDF of the u;. If several models are competing, the “best model” is
the one for which K5 is the smallest.

For the hidden Markov chain model, it is easy to prove that:

_ 2B (z) Ef“ a1 (k)pr
Py, (277"

P(X; <a|X7 =2

(6.1)

where F,) denotes the CDF of the exponential distribution with parameter A(V).
Figure 4 shows the U-plot for data set M40 in Musa (1979), using a three-state model with

upper diagonal transition probability matrix. In this example, K.S = 1.375.

7 Application and conclusion

The hidden Markov chain model has been used on two groups of real software failure data sets.
The first group consists of times between failures of nine pieces of American control-command

software (denoted M1, M2, M3, M4, M6, M14, M17, M27 and M40) in the test period and
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Figure 4: U-plot for the HMC model

operational life (Musa, 1979)'. The second group consists of times between failures of four
pieces of complex French software (denoted C1, C2, C3, C4) in the test period (Gaudoin, 1990).
In both cases, calendar time is used. The identification and selection of hidden Markov chains
have been performed with novel MATLAB routines?.

First of all, we present a complete treatment of one of these data sets, M40, for which
n = 101. The first step is the choice of the number of hidden states and transition probability
matrix type. The minimal and maximal values of K are set to Kpin = 1 and Kz = 7.

Figure 5 shows that the BIC criterion is maximum for a model with three hidden states and

an upper diagonal transition probability matrix. For this model, the parameter estimates are:

[ A X A®) ] = 107"« [ 0.5035 0.0908 0.0175 | (7.1)

0.9809 0.0191 0
P = 0 0.9502 0.0498 (7.2)
0 0 1.0000

Figure 5 presents the restoration of the hidden states. Three homogeneous periods clearly
appear in this figure.

Finally, the HMC model is compared with some of the most usual software reliability models,
using the U-plot method. The MG model has the best predictive validity, followed by PLP and
the HMC model. The HMC model performs much better than GO, S and JM models for this
data set (see table 1).

!data set available at http://www.dacs.dtic.mil/databases/sled/swrel.shtml
2routines available at http://www.inrialpes.fr/is2/people/jdurand/Html/Logiciels/logiciel.html
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Figure 5: Model selection with BIC and restoration of the hidden states for M40

Table 1: K S distances for all data sets

Data | M1 M2 M3 M4 M6 MI14 M17 M27 M40 C1 C2 C3 (4
set
matrix| u f u u f f u u u f t f u |Mean
K 3 2 2 2 2 2 2 2 3 2 3 1 4 | rank
HMC [1.82 1.74 1.68 0.75 0.77 0.67 0.74 0.90 1.38 0.91 2.07 1.46 3.39| 2.85
PLP |1.40 1.31 1.51 0.66 1.60 1.50 0.93 1.32 1.32 1.70 1.67 1.22 2.98| 2.77
GO [1.59 1.16 1.15 0.85 1.67 1.70 0.75 1.00 2.42 1.11 4.28 0.64 2.16| 3.08
S 4.43 2.49 2.60 1.96 2.56 0.99 0.99 2.43 3.34 2.93 7.64 1.58 3.28| 5.00
JM [5.86 3.60 NC NC 3.11 0.89 0.57 2.60 4.78 6.29 7.37 0.71 NC | 4.92
MG |1.21 0.81 0.77 0.76 1.66 1.47 0.75 0.88 1.22 1.29 1.95 0.75 1.92]| 2.15

A similar study has been done on the thirteen data sets. Table 1 gives, for all data sets, the

type of transition probability matrix (‘f” for full, ‘u’ for upper diagonal, ‘t’ for tridiagonal) and

number of hidden states K selected by the BIC criterion, and the K'S distances computed in the

U-plot method for the selected HMC and 5 usual software reliability models. In the table, NC

means that the algorithm which computes the K'S distance did not converge. This happened

three times, only for the JM model. The table also gives the mean rank of each model for all

data sets. The details of the study, with plots of the restoration of the hidden states in HMC

models for all data sets, can be found in Durand and Gaudoin (2003).

The main results of this study are the following ones.

e Lor all data sets, the selected number of hidden states is very small, from 1 to 4. This

result was unexpected because we thought we would find more homogeneous periods in

the data. Maybe the BIC criterion favours too small values of K. However, if K is set
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to a rather large number such as 5, it happens that a lot of failure rates are estimated by
very close values. This is illustrated in figure 6 for the data set C4: the first two states
are poorly separated, and the values of BIC(k) for k& = 2 and 3 are hardly lower than
BIC(4), so that models with fewer hidden states also fit the data properly. For most of
the data sets, models with more than 4 states result in spurious transitions, so a model
with fewer states is preferable. This means that for the considered pieces of software, very

few major corrections seem to have occurred during the debugging process.

The choice of initial values for the EM algorithm has a slight effect on the maximum BIC
value. In some situations, it can lead to a change of the selected model but it does not

affect significantly either the KS distance or the restoration of the hidden states.

From the BIC point of view, there are some significant differences between all kinds of
transition probability matrices. Logically, the upper diagonal matrix gives the best result
for data sets exhibiting almost pure reliability growth. For data sets for which reliability is
sometimes decreasing (probably due to imperfect debugging), full or tridiagonal matrices
are better (M2, M6, M14, C1, C2). This fact is confirmed on simulated data sets: when
data are simulated according to a pure reliability growth model, the upper diagonal matrix

is always chosen by the BIC criterion.

The HMC model has the best predictive validity for 3 data sets among 13 (M6, M14,
C1). For the ten others, the HMC performs well on average: it is often close to the best
model, and in most cases largely better than the worse of them. The mean ranks in table
1 indicate that model MG clearly provides the best reliability predictions for these data
sets. PLLP, HMC and GO have a similar performance. JM and S have a poor predictive
validity, except for a small number of data sets. In fact, usual models perform better than
HMC when there is a regular reliability growth, and HMC is the best when there are some

significant imperfect debuggings.

Long homogeneous periods are detected by the restoration of hidden states for almost all
data sets, leading to a clear interpretation in terms of identification of major corrections.
For some data sets (M6, M14, C3), such periods are not detected, so the conclusion is
that no significant corrections have occurred. In case of returns to previous states due
to imperfect debugging (C2) or existence of long and very distinct homogeneous periods
(C4, see figure 6), the HMC model is more appropriate than usual models. However, the
predictive validity of HMC in these cases can be very poor. This is due to the fact that

in the U-plot method, the estimates are computed sequentially. At each step, the nature
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Figure 6: Restoration of the hidden states for C4

of the hidden states changes, which makes prediction of the future time to failure much
more difficult than it seems. In this case the goodness-of-fit and predictive validity are not

necessarily correlated for the HMC model.

Finally, the hidden Markov chain approach provides a new way of modelling software relia-
bility which can take into account some features that are ignored by usual models, such as the
existence of homogeneous periods and the possibility of imperfect debugging. Not surprisingly,
the HMC model performs best for data exhibiting these features. For other kinds of data, usual
models can be more appropriate. Even for these data, the HMC approach is still interesting
since it clearly identifies the location of major corrections in the debugging process.

A possible extension of this approach is to consider that inside the homogeneous periods,
the times between failures do not necessarily have a constant failure rate, but can be distributed
according to a certain kind of reliability growth model. Such an extension leads to mixtures of
usual models with Markovian transitions. For example, a “hidden Markov Moranda geometric
model” corresponds to the assumption that conditional on {A; = /\(j)}7 X; has an exponential

distribution with parameter )\(j)cé-_l.
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