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Abstract. In this paper, we propose a new descriptor of texture im-
ages based on the characterization of the spatial patterns of image key-
points. Regarding the set of visual keypoints of a given texture sample
as the realization of marked point process, we define texture features
from multivariate spatial statistics. Our approach initially relies on the
construction of a codebook of the visual signatures of the keypoints.
Here these visual signatures are given by SIFT feature vectors and the
codebooks are issued from a hierarchical clustering algorithm suitable
for processing large high-dimensional dataset. The texture descriptor is
formed by cooccurrence statistics of neighboring keypoint pairs for differ-
ent neighborhood radii. The proposed descriptor inherits the invariance
properties of the SIFT w.r.t. contrast change and geometric image trans-
formation (rotation, scaling). An application to texture recognition using
the discriminative classifiers, namely: k-NN, SVM and random forest, is
considered and a quantitative evaluation is reported for two case-studies:
UIUC texture database and real sonar textures. The proposed approach
favourably compares to previous work. We further discuss the properties
of the proposed descriptor, including dimensionality aspects.

1 Introduction

The analysis of the texture content of images is among the critical issues for
numerous application domains ranging from multimedia applications including
content-based image and video indexing [1], automated scene analysis, archae-
ology [2] to more environment-oriented domains such as geosciences and remote
sensing [3]. From the early 1970s, numerous advances have been reported in
the definition of efficient while compact descriptors of visual textures. In the
literature, the analysis of image textures initially mostly relied on a statistical
analysis. Visual textures were regarded as the realization of random fields which
could be characterized from relevant statistics such as covariance statistics [4,
5], co-occurrence statistics [6–9] or statistics of the response to scale-space filters
such as Gabor and wavelet analysis [10].

More recently, a renewed interest in texture analysis emerged from the devel-
opment of texture descriptors invariant to geometric and photometric transfor-
mations of the images. Visual keypoints initially proposed for object recognition
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Fig. 1. Examples of difference spatial distributions of two marked-points.

were shown to be particularly efficient for texture analysis [11, 12]. The result-
ing texture characterization inherits the robustness of visual keypoints in terms
of invariance to geometric image distortions and contrast change. Among the
most popular descriptors is the SIFT descriptor based on the characterization
of gradient orientations in scale invariant regions [13]. The application to tex-
ture recognition generally consists in learning classification models from these
signatures of the visual keypoints [11, 12].

Fig. 2. Relevance of the combination of visual signatures of the keypoints to descriptors
of their spatial organization: correct classification rate as a function of the number
of training images for the UIUC texture database using only spatial statistics of the
keypoint set (magenta), only statistics of the visual signatures of the keypoints (green),
second-order ccoccurrence statistics of the visual keypoint set (black) jointly describing
the visual content and the spatial organization.

This typical approach however generally ignores the spatial organization of
the visual signatures. As sketched by Fig.1, for similar relative occurrences of
visual signatures, different spatial patterns revealing differences in visual content
of the textures may be observed. In this work, we aim at jointly characterizing
the local visual signatures of the textures and their spatial layout. Formally, we
exploit spatial statistics to propose novel texture descriptors. Here, a texture
is regarded as the realization of 2d marked point process referring to the set
of the visual keypoints along with the associated visual descriptors, e.g., SIFT
feature vectors. Texture descriptors are extracted as second-order co-occurrence
statistics of the multivariate 2d point process. Applied to supervised texture
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recognition for two different texture databases, UIUC textures and real sonar
textures, these descriptors favorably compare to previous work [7–11]. As illus-
trated by Fig.2, we show the relevance of the combination of statistics of the
visual signatures to statistics of the spatial layout of the keypoints.

This paper is organised as follows. In Section 2, an overview of the proposed
approach is described. We present in Section 3 the proposed textural features
based on spatial statistics of visual keypoints. Section 4 discusses the applica-
tion to texture recognition. In Section 5, texture recognition performances are
reported for two texture databases. The main contributions of proposed approach
with respect to previous work are further discussed in Section 6.

2 Overview of proposed method

The sketch of the proposed approach is reported in Fig.3. A texture is regarded
as the realization of a marked point process of visual keypoints. Descriptive
statistics of this marked point process will form a set of texture descriptors.

Fig. 3. Principal steps of our method for the extraction of a texture descriptor jointly
characterizing the spatial layout of visual keypoints and their visual signatures.

The initial step consists in detecting and characterizing visual keypoints. Var-
ious local descriptors have been proposed for object and texture recognition. The
SIFT descriptor achieves a good and stable performance in the domain of texture
classification [14]. SIFT keypoints [13] correspond to local extrema of difference-
of-Gaussian (DoG) filters at different scales. Each pixel in the DoG images is
compared to its 26 neighbors in a 3x3x3 neighborhood that spans adjacent DoG
images. Each keypoint is characterized by the distribution of the orientations
of the gradient of the intensity in the sixteen 4x4 windows around the consid-
ered point. This description ensures contrast invariance and partial invariance
to affine transform. Orientation being quantized over eight values, the resulting
SIFT feature vector is 128-dimensional, denoted by X(si) = {xi1, ..., xi128}. As
an output of this first step, a texture sample can be regarded as the realization
of a marked point process, corresponding to the extracted keypoints with marks
given by the SIFT feature vectors.
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Our goal is to characterize the spatial patterns formed by the visual keypoints
for a given texture image. To this end, we consider the joint density that pairs
of neighboring keypoints s1 and s2 occur with given visual signatures x and y

p (X(s1) = x, X(s2) = y, s2 ∈ V (s1)) , (1)

where V (s1) specifies the neighborhood of point s1. This density is parame-
terized by the visual signatures and the neighborhood structure. Considering
different neighborhood sizes, this density conveys second-order information on
the relations between the visual signatures and their spatial layout.

The dimensionality of the visual signatures, i.e. the 128-dimensional SIFT
vectors, makes untractable the non-parametric computation of the above second-
order co-occurrence density. Rather than investigating parametric models such as
Poisson point processes [15], a non-parametric approach based on an initial adap-
tive quantization of the SIFT feature space is proposed. We first build a codebook
of visual keypoints from their feature vetors using a k-means-like method. Any
visual keypoint is then associated with a discrete mark corresponding to the
assigned category of visual signatures, denoted by msi = p where p = {1, ..., k}.
We then resort to a discrete approximation of the continuous density (Eq.1) for
cooccurrences of visual words. The resulting second-order cooccurrence statistics
are exploited for texture recognition.

The different steps of this approach are detailed in the subsequent.

3 Co-occurrence statistics of visual keypoints

Modeling and characterizing spatial point patterns is an active area of research,
especially in environment-related sciences [16]. The general goal is to reveal un-
derlying phenomena from the statistical analysis of some spatially-referenced
observations or measures. In our case, a set of spatial points with some associ-
ated discrete signatures is regarded as the realization of a multivariate 2D point
process, for which relevant descriptive statistics should be defined.

3.1 Spatial point process

A spatial point process S is defined as a locally finite random subset of a given
bounded region B ⊂ R2, and a realization of such a process is a spatial point
pattern s = {s1, ..., sn} of n points contained in B. Considering a realization of
a point process, the moments of the random variable are meaningful descriptive
quantities, such as the expected number µ(B) of points falling in region B [17].
This first-order moment is associated with the intensity measure ρ of S:

µ(B) = E{#B} =
∫

B

ρ(s)ds (2)

where E{.} denotes the number of expected points falling in B, ρ(s)ds is the
probability that one point falls in an infinitesimally small area ds around s. The
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normalized first-order moment K() = µ(B)/|B|, where |B| is the area of region
B, is a popular descriptive spatial statistics, known as Ripley’s K-function [16].

Actually, the organization of spatially stationary point process is only pro-
vided by the higher-order moments. The covariance structure of the count vari-
ables is measured by the second-order factorial moment µ(2) of S:

µ(2)(B1 ×B2) = E{
#∑

s1,s2∈S

IB1(s1)IB2(s2)} =
∫

B1×B2

ρ(2)(s1, s2)ds1ds2 (3)

where
∑# is the sum runs only over pairs of points, I[.] is an indicator func-

tion that takes the value 1 when si falls in the region Bi. Second-order density
ρ(2)(s1, s2)ds1ds2 is interpreted as the density of the pair of points s1 and s2 in
infinitesimally small areas ds1 and ds2. Density function ρ(2) states the corre-
lation of pairs of points [5] . Considering a stationary and translation-invariant
point process, density ρ(2)(s1, s2) only depends on distance ‖s1 − s2‖.

3.2 Descriptive statistics of the spatial patterns of visual keypoints

The above second-order moment of spatial point process can be extended to
multivariate spatial point patterns. In our case, each visual keypoint is associated
with a discrete mark msi . Let Ψ = {si; mi} be a multivariate marked point
process. Extending (Eq.3), the second-order characteristics of Ψ are characterized
by the factorial moment measure µ

(2)
f (B1 ×B2) for regions B1 and B2:

µ
(2)
f (B1 ×B2) = E{

#∑

[s1;m1],[s2;m2]∈Ψ

f(m1,m2)IB1(s1)IB2(s2)} (4)

where f is an arbitrary measurable non-negative function. Following [17], con-
sidering a translation-invariant and stationary point process, spatial sets B1×B2

are parameterized as {s1 ∈ B} × {s2 ∈ D(s1, r)} where D(s1, r) is the disk of
center s1 and radius r. Focusing on cooccurrence statistics, i.e. function f set as
δi().δj() with i, j mark indices and δ the Kronecker function, we resort to the
following second-order cooccurrence moment:

µ
(2)
ij (., r) = E{

#∑

[s1;m1],[s2;m2]∈Ψ

δi(m1).δj(m2)I(‖s1 − s2‖ ≤ r)} (5)

Function µ
(2)
ij (., r) states the number of points of type j in a disk of radius r

centered at a point of the spatial pattern of type i. These statistics express the
covariance structure of the spatial pattern for points of type i and j (Fig.4a).

In practice, to exploit the above second-order descriptive statistics of key-
points in image, edge effects have to be dealt with. The area of the analysis
region affects the accurate counting-based estimation of the spatial statistics.
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(a) (b)

Fig. 4. Second-order spatial statistics for multivariate point process: (a) spatial statis-
tics for any pair of keypoints within a circular region centered at a point of the pattern,
(b) cooccurrence statistics for pairs of keypoints associated with given visual categories
within a circular region centered at a point of the pattern.

Several corrections for edge effects for points located near the boundary of the
image have been proposed in the literature[16, 18].

We then consider a normalized version of the second-order cooccurrence
statistics (Eq.5) denoted by Γ I

ij(r) whose estimate is given by:

Γ I
ij(r) =

1
N

N∑
p=1

1
A(sp)

N∑

j=1,j 6=i

δi(mp)δj(mq)I[‖sp − sq‖ ≤ r] (6)

where A(sp) is the actual area of the circular study region of radius r for keypoint
sp with p, q mark indices, N is the total number of keypoints in the image.

3.3 Scaling effects

The radius value in the computation of the proposed second-order cooccurrence
statistics can be viewed as a scale-space parameter for the analysis of the spatial
patterns of visual keypoints. The effects of image scaling should then be further
analyzed to reach invariance to such image transformations.

Considering two images of a given texture sample at two different scales α1

and α2, the first-order moments of the point process in these two images are
related as follows:

µ1(r1) ≈ µ2(r2) (7)

π(α1r)2.K1(α1r) ≈ π(α2r)2.K2(α2r) (8)

with r1 = α1r and r2 = α2r and r the reference radius at a reference scale set
to 1. As the detection of the visual keypoints in the images is scale-invariant,
this property should be held in practice in our case. Interestingly, for an infi-
nite circular region, the first-order moments of the two texture samples refer to
the average point densities per surface unit and they only differ up to a factor
depending on the rate α1/α2. This property then provides the mean for scale
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adaption. We proceed as follows. We first set a reference scale, i.e. α1 = 1 cor-
responding to expected mean point density per surface unit K1(∞). For any
texture sample, we estimate the associated scale factor α2 with respect to the
reference scaling from relation (Eq.8). The texture descriptor is then formed
by the normalized second-order cooccurrence statistics for radius values {α2ri},
where the ri’s are predefined radius values at the reference scale. In practice,
the ri’s are set according to a logarithmic sampling. Fig.5 clearly illustrates the
benefit for the scale adaption in the computation of the cooccurrence statistics
when comparing two texture samples differing by their scale factor.

I1: α1 = 1(a)

I2: α2 = 2(b) (c)

Fig. 5. Scaling effect on second-order cooccurrence statistics: images of the same tex-
ture at two scale factors (left), comparison of cooccurrence statistics without (blue vs.
green) and with (orange vs. blue) scale adaption for the computation of the second-
order cooccurrence statistics (right). The plot depicts the value of Γij(r) as a function
of an index assigned to the pair of discrete marks (i, j).

3.4 Dimensionality of the feature space

Given a codebook of keypoints with k visual words, the feature vector issued
from the cooccurrence statistics in Eq.6 is Nrk

2-dimensional, where Nr is the
number of radius r of circular study region. For instance, considering a codebook
of 40 visual words and Nr = 20, the feature space is 32000-dimensional. Such a
high-dimensional description may affect recognition performance.

To address this issue, we suggest determining categories of pairs of visual
keypoints to reduce the dimension of the second-order cooccurrence statistics.
The codebook of keypoint pairs is issued from the application of a classical k-
means method to the set of pairs of categorized keypoints within the training
images. The size k∗ of this codebook of pairs of visual keypoints is chosen to
be typically in the order of k, the size of the codebook of visual words. Let us
denote by M(si, sj) = {1, ..k∗} the category assigned to the pair of keypoints si

and sj . The second-order cooccurrence statistics (Eq.6) are then computed as:

Γ I
u (r) =

1

N

NX
p=1

1

A(sp)

NX

j=1,j 6=i

δu(M(si, sj))I[‖sp − sq‖ ≤ r] (9)
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for a given category u of the codebook of pairs of visual keypoints. This proce-
dure can be regarded as an adapted quantization of the normalied cooccurrence
statistics defined by Eq.(1)

4 Texture classification

Given the textural features defined in the previous section, supervised texture
classification is addressed using k nearest-neighbor (k-NN), support vector ma-
chines (SVM) and random forest (RF) classifiers:

• Nonparametric k-NN classifier is considered in this work because of its
simplicity and its computational efficiency.

• Regarding SVM classifiers[19], a one-versus-all strategy is exploited to
train a multi-class SVM with a Gaussian kernel.

• RF classifier relies on the construction of an ensemble of classification trees
using some form of randomization. A texture sample is classified by sending it
down every tree and aggregating the reached leaf distributions. RF classifier uses
a voting rule to assign a class to an unknown texture sample[20].

SVM and k-NN classifiers here require the definition of a similarity mea-
sure in the considered feature space. Three different distances reported in Tab.1
accounting for the characteristics of the cooccurrence statistics are investigated.

Euclidean distance χ2 distance Jeffrey divergence

d(H, K) =
P
i

|hi − ki|2 d(H, K) =
P
i

(hi−mi)
2

mi
d(H, K) =

P
i

“
hilog

hi
mi

+ kilog
ki
mi

”

Table 1. Three different similarity measures, where mi = hi+ki
2

.

Randomization-based learning strategy: Randomization-based machine
learning procedures are particularly appealing for classification from very large
training dataset and high-dimensional feature space [19, 20]. In our case, a huge
dataset of keypoints is used as input for the construction of the codebook of key-
point signatures from their SIFT feature vectors. For instance, a typical texture
image involves 4.000 keypoints and 100 640x480 UIUC texture images leads to
over 4.105 samples points in the 128-dimensional feature space defined by the
SIFT descriptors. Adapted clustering techniques are required to perform the
initial determination of the categories of visual keypoints. We suggest using a
hierarchical clustering algorithm [21]. It relies on an agglomerative algorithm
to generate a clustering solution. A hierarchical subtree is first built for each
cluster. It then re-agglomerates these clusters to build a final hierarchical tree.

The initial clustering of visual keypoints might be regarded as a critical step
in the proposed procedure. We can turn it into an advantage to build a random-
ized set of classifiers and improve the robustness to this initial clustering step. We
proceed as follows. First, we carry out a random subsampling of visual keypoints
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within the training dataset to select a subset tractable for the clustering scheme.
Typically, 105 sample keypoints and up to 150 clusters can be considered. Given
extracted categories of visual keypoints, second-order cooccurrence statistics are
computed for a predefined set of radius values for each texture sample in the
training set and a classifier is trained in the resulting feature space. From re-
peated initial random subsampling steps, a randomized ensemble of classifiers
is built. Regarding the recognition step with a trained classifier ensemble, the
classification of an unknown texture results from a simple voting rule.

5 Experiments

5.1 UIUC texture classification

The first experiment relies on 1000 640x480 texture images of UIUC database.
This database involves 25 texture classes and each class contains 40 images
with strongly varying viewpoint, scale and illumination conditions. Examples
are reported in Fig.5a. The evaluation involves the computation of classification
performances for model learning with Nt training texture samples per class.
Training images are randomly selected among the 40 samples per class. The
remaining 40−Nt images per class are used as test images. The random selection
of training samples is repeated 200 times to evaluate the mean and the standard
deviation of the correct classification rate.

For comparison purposes, a set of texture descriptors such as Gabor fil-
ter [10], co-occurrence matrix [9], spatial statistics of the keypoints [15], bag-of-
keypoints(BoK) [22], Zhang’s method [11], Xu’s method [7] and Varma’s method
[8] were selected to evaluate the relevance of our contribution compared to the
state-of-the-art techniques. The results on UIUC database of Varma’s method
was reported in [8]. For the other methods, we report the performance with
the best parameter setting. BoK was tested with k = {60, 120, 150} classes. For
cooccurrence matrices, the following neighborhood types were considered: [0,1],
[1,1]. Gabor features were computed for the frequencies f = {0, 4, 8} and the ori-
entation θ = {0, π

3 , π
2 , 3π

4 }. We also tested different parameter settings for Xu’s
method: density level ind = {1, 8}, dimension of MFS f = {26, 64} and iteration
level ite = {8, 10}. SVM classifiers and Jeffrey divergence are used.

The parameter setting for our approach is as follows. A set of 105 random
sampling keypoints is exploited for each hierarchical clustering step. The num-
bers of categories of visual keypoints k and of visual keypoint pairs k∗ are re-
spectively set to k = 150 and k∗ = 60. Nrref

= 10 circular study regions with
reference radius values rref = {10, 20, 40, 60, 80, 120, 150, 190, 220, 240} are con-
sidered for the computation of the second-order cooccurrence statistics. In Tab.2,
we report the following results for our approach: cooccurrence statistics Γ I

ij(r) in
Eq.6, cooccurrence statistics with dimensional feature reduction Γ I

u (r) in Eq.9.
Mean classification rates and standard deviations over 200 random selec-

tions are reported in Tab.2 as a function of the number of training images. The
proposed descriptor favourably compares to the other approaches. Observing
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Nt 1 5 10 15 20

Gabor filter 31.22± 3.14 45.14± 2.54 57.37± 1.93 61.25± 1.52 67.78± 1.28

Cooccurrence matrix 44.17± 2.93 62.25± 2.34 70.33± 1.75 73.67± 1.53 79.17± 1.37

Spatial statistic 48.69± 2.85 69.25± 2.45 75.42± 1.66 82.66± 1.28 87.34± 1.34

BoK 67.25± 2.75 76.38± 2.15 81.12± 1.45 86.35± 1.20 91.28± 1.15

Xu[7] 61.14± 2.90 83.33± 2.07. 89.68± 1.65 91.34± 1.45 93.85± 1.31

Varma[8] – 85.35± 1.69 91.64± 1.18 94.09± 0.98 95.40± 0.92

Zhang[11] 72.53± 2.45 88.62± 1.33 93.17± 1.15 95.33± 0.98 96.67± 0.93

Γ I
ij(r) 75.43± 2.65 89.22± 1.47 93.48± 0.98 96.21± 0.66 97.17± 0.42

Γ I
u (r) 75.66± 1.65 91.67± 0.93 94.33± 0.78 96.54± 0.53 97.34± 0.25

Table 2. Classification rates and standard deviations over 200 random selections on
UIUC texture database.

the result in the case of 20 training samples, our proposed method reaches up
to 97.34% of correct classification. Our descriptor gets a gain greater than 6%
compared with BoK and than 3% compared with local fractal feature extrac-
tion methods. Our descriptor is shown to be slightly more robust and stable
than Zhang’s method , 97.34 ± 0.25 w.r.t. 96.67 ± 0.93. Greater gain in perfor-
mances are observed when only few training images are used. From 5 training
images per class, the proposed approach gets a correct classification greater than
91.67% whereas all the other methods are below 88.62%. Besides, while reducing
the computational complexity, the dimension reduction technique also leads to
a more robust texture recognition when few training samples are available.

5.2 Real sonar textures

Sonar imaging provides a remote sensing tool to observe and characterize the
physical properties of the seafloor and is increasingly used for a variety of applica-
tions such as environmental monitoring, marine geosciences and ecology, as well
as oil industry or defense [3, 23]. Sonar images are issued from the measurements
of the backscattered echo of the seabed for successive sonar swaths correspond-
ing to various incidence angles. In Fig.6a, an example of sidescan sonar images
with incident angles from -85◦ to +85◦ was obtained from a DF1000 sonar.
The different seabeds here correspond to different textural features. For a given
seabed type, the mean backscatter clearly depends on the incidence angle [3, 23].
Especially, for vertical incidences, poor discrimination among seabed types can
be expected. Besides, textural patterns may also vary depending on incidence
angles as shown in Fig.6(b,c), where in the specular domain [5◦, 40◦] a loss in
contrast is observed for sand ripples compared with the sector [80◦, 85◦].

We used a database of 180 sonar texture images involving 6 different seabed
classes which are extracted from sidescan sonar images, e.g. Fig.6. Each class
comprises 30 texture images. Sonar texture samples are 256 x 256 images with
strong variations of incidence angles, scale and illumination conditions. We ran-
domly choose N = {1, 5} samples of each class to build a training dataset, the
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(a)

[5◦,40◦](b)

[80◦,85◦](c)

Fig. 6. A sidescan sonar image(a) and textures of a seabed type sample of sand ripples
for two angular sectors(b,c) (Rebent, IFREMER).

other images being used as the query images. For these experiments, the follow-
ing parameter setting is used: k=50, r = {10, 20, 40, 80, 120} and k∗ = 35. For
comparison purposes, except for Varma’s method, we used all methods similarly
to the experiment conducted with the UIUC texture database.

k-NN SVM RF
Euclidean χ2 Jeffrey Euclidean χ2 Jeffrey default

3 samples 89.2% 88.9% 91.3% 88.7% 89.4% 91.6% 91.8%

5 samples 94.2% 93.6% 95.1% 93.8% 94.7% 96.4% 96.4%

Table 3. Correct classification rate for the sonar texture database using second-order
cooccurrence statistics (Eq.10) with different classifiers (k-NN, SVM, RF) and similar-
ity measures (Euclidean,χ2,Jeffrey divergence).

We first compare the performances of the different classifiers and similarity
measures. Jeffrey divergence improves the classification performance with an
approximate gain greater than 2% compared to χ2 and Euclidean distance when
3 (or 5) training images are considered in Tab.3. Differences in the performance
among the classifiers, k-NN, SVM and RF, are not obvious for this dataset.
However, RF may be slightly more robust and stable than k-NN or SVM.

Regarding the comparison of the proposed descriptor to previous work, the
mean correct classification rate is reported for each approach as a function of the
number of training samples (Fig.7). The proposed method reaches up to 96.4%
of correct classification when 5 training images are considered. It favourably
compares to previous work for which the best score is 93.5%(Zhang’s method).
More than 6% of correct classification is gained when one image per class is used
for training. These results demonstrate the robustness of the proposed descriptor
to geometric and photometric image distortions.
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Fig. 7. Average classification rate on sonar images database

6 Discussion and future developments

We have proposed a novel texture descriptor based on the statistical character-
ization of the spatial patterns of visual keypoints in texture images. The key
feature of our approach is its joint description of the visual signatures of the
texture and of their spatial organization. We further discuss these contributions
with respect to previous work.

• Spatial information for texture recognition: Numerous previous studies
have investigated the use of spatial information for texture description [7–9].
The focus is generally given to the characterization of local texture patterns
in a neighbourhood of a point. As an example Varma et al.[8] and Xu et al.
[7] proposed a local fractal feature based on the analysis of the distribution
of intensities as a function of the distance to a center point. In contrast, our
approach encodes spatial information not at a local scale but at some object-
related scale. The proposed descriptors aim at describing the spatial patterns
formed by the set of visual keypoints, not the spatial variations of the intensity
in a neighboorhood of each keypoint.

These two aspects should be regarded as complementary. In the reported
results, key points extracted as local DOG extrema and visual signatures pro-
vided by the SIFT descriptor were considered. It should be noted that any other
local visual signature, including for instance the local fractal feature, could be
considered in a similar manner. In future work, the evaluation of the robustness
and the distinctiveness of other texture descriptors may be investigated such as
GLOH[14], SURF[24], DAISY[25], CS-LBP (see [14, 26] for a review).

• Image modelling from spatial point processes: It might be noted that spa-
tial point process were previously investigated for texture analysis. For instance,
Linnett et al.[15] modeled the spatial distribution of the grey-levels by a 2d
Poisson process. More recently, cooccurrence statistics of visual keypoints were
investigated for different applications, namely scene categorization [27, 28], robot
navigation [29]. However, those methods are again aimed at characterizing the
variations of image intensities in local neighbourhoods. It should be noted that
the link to spatial statistics also provide an unbiased estimation of the cooccur-
rence statistics based on a correction of edge effects.
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Recently Gibbs point process models have also been applied to extract geo-
metric objects in texture images by Lafarge et al. [30]. The Gibbs model provide
an a priori model for the spatial organization of elementary geometric objects.
Such a model cannot be applied to texture recognition. In contrast, our approach
aims at deriving a feature vector for texture recognition based on spatial statis-
tics. It should be noted that considered spatial statistics can be regarded as the
sufficient statistics defining a multivariate log-Gaussian Cox process [5].

• Invariance and dimensionality issues: Local descriptors have emerged as a
powerful tool for invariant texture characterization and classification compared
to the early feature developed for texture analysis such as Gabor features and
cooccurrence matrices. Approaches based on descriptive statistics of a set of
visual keypoints may benefit from the robustness of their visual signatures in
terms of invariance to photometric and geometric image transformations while
providing a more compact representation of the information. In that case, each
texture image is associated with a feature vector such that the size of the training
database equals the number of training images. The BoK method, i.e. the distri-
bution of the occurrences of the visual words in each texture sample, are a first
example. As reported here, the associated recognition performances are however
degraded compared to the classical keypoint classifier. The method described
here also falls in this category. In contrast to BoK, both the visual signatures
and the spatial patterns are characterized from second-order cooccurrence statis-
tics. These statistics could convey scale-invariance. Improved texture recognition
performances were initially obtained at the expense of the dimensionality of the
feature space compared to BoK, i.e. Nrk

2 vs. k where Nr is the number of circu-
lar analysis region and k and the number of visual words. We have shown that
dimensionality could be downsized up to the range of Nrk simultaneously to a
more robust recognition of texture sample.

In future work, other lower-dimensional representation could be investigated,
especially from parametric and semi-parametric models of the covariance func-
tions underlying the considered second-order cooccurrence statistics [5].
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