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Introduction

During the 1990s, the nonparametric regression and signal
processing literature was dominated by (nonlinear) wavelet
shrinkage and wavelet thresholding estimators.

When sampling points are not equi-spaced, Antoniadis & Fan
(2001) address the problem with some new regularization
procedures as penalized least squares regression and establish
their connexion with model selection in nonparametric
regression models.

They suggest using some nonconvex penalties (SCAD) to
increase model sparsity and accuracy. This was extended to
handle variable selection via penalized ordinary least squares
regression in general sparse linear models by Li & Fan (2001).
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Summary

Starting from the thresholding rules, we review several
thresholding procedures that have been used for wavelet
denoising and establish their connexion with penalized
ordinary least squares with separable penalties.

When dealing with nonorthogonal designs in
high-dimensional linear models sparsity can be achieved via
thresholding-based iterative selection procedures for model
selection and shrinkage.

Finally, we extend the thresholding iterative procedures to
generalized linear models with possibly nonorthogonal
designs since one may use them as features selection tools in
high-dimensional logistic regression or multinomial regression.
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Outline.

Objective: Build a model with a subset of “predictors”.

Denoising
– Wavelet thresholding
–Shrinkage and nonlinear diffusion
Relations to variational methods
– Convenient penalties
Extension to nonequispaced designs
– Connexions with LASSO
Penalized least squares and iterative thresholding
– Surrogates and the MM algorithm
Penalized likelihood and iterative thresholding for GLMs
– Appropriate surrogates
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Wavelet decompositions

Zentrum für
Technomathematik Wavelet Shrinkage in Signal and Image Processing

Fachbereich 03
Mathematik/Informatik

Wavelet bases are special orthonormal bases

A mother wavelet ψ together with its translations
and dilations

ψj,k(x) = 2j/2ψ(2jx − k)

provide the expansion

f =
∑

j,k∈Z
〈f |ψj,k〉︸ ︷︷ ︸

=:fj,k

ψj,k

With the help of the scaling function φ:

f =
∑

k∈Z
〈f |φk〉φk +

∑

k∈Z,j≥0

fj,kψj,k
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provide the orthogonal expansion

f = ∑
j,k∈Z

〈 f , ψj,k〉ψj,k
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and with the help of the scaling function φ:

f = ∑
k∈Z

〈 f , φj0,k〉φj0,k + ∑
k∈Z,j≥j0

〈 f , ψj,k〉ψj,k.
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The discrete wavelet transform

Given a vector of function values g = (g(t1), ..., g(tn))′ at
equally spaced points ti, the discrete wavelet transform of g is
given by d = Wg, where d is an n× 1 vector comprising both
discrete scaling coefficients, cj0k, and discrete wavelet
coefficients, djk, and W is an orthogonal n× n matrix associated
with the orthonormal wavelet basis chosen.
The cj0k and djk are related to their continuous counterparts
〈g, φj0,k〉 and 〈g, ψj,k〉 (with an approximation error of order
n−1) via the relationships

cj0k ≈
√

n 〈g, φj0,k〉 and djk ≈
√

n 〈g, ψj,k〉.

The factor
√

n arises because of the difference between the
continuous and discrete orthonormality conditions.
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Denoising by wavelet thresholding

Wavelet series allow a parsimonious and sparse expansion for
a wide variety of functions, including inhomogeneous cases.

Due to the orthogonality of the matrix W, the DWT of white
noise is also an array of independent N(0, 1) random variables,
so

ĉj0k = cj0k + σ εjk, k = 0, 1, . . . , 2j0 − 1,

d̂jk = djk + σ εjk, j = j0, . . . , J − 1, k = 0, . . . , 2j − 1,

where ĉj0k and d̂jk are respectively the empirical scaling and the
empirical wavelet coefficients of the the noisy data y, and εjk

are independent N(0, 1) random variables.
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Exploiting sparsity
The sparseness of the wavelet expansion makes it reasonable to
assume that essentially only a few ‘large’ djk contain
information about the underlying function g, while ‘small’ djk
can be attributed to the noise which uniformly contaminates all
wavelet coefficients.

Thus, simple denoising algorithms that use the wavelet
transform consist of three steps:

1) Calculate the wavelet transform of the noisy signal.

2) Modify the noisy wavelet coefficients according to some
rule.

3) Compute the inverse transform using the modified
coefficients.
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Thresholding rules

Mathematically wavelet coefficients are estimated using either
the hard or soft thresholding rule given respectively by

δH
λ (d̂jk) =

{
0 if |d̂jk| ≤ λ

d̂jk if |d̂jk| > λ

and

δS
λ(d̂jk) =


0 if |d̂jk| ≤ λ

d̂jk − λ if d̂jk > λ

d̂jk + λ if d̂jk < −λ.
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Avantages and disadvantages
Thresholding allows the data itself to decide which wavelet
coefficients are significant; hard thresholding (a discontinuous
function) is a ‘keep’ or ‘kill’ rule, while soft thresholding (a
continuous function) is a ‘shrink’ or ‘kill’ rule.

Bruce & Gao (1996) and Marron, Adak, Johnstone, Newmann
& Patil (1998) have shown that simple threshold values with
hard thresholding results in larger variance in the function
estimate, while the same threshold values with soft
thresholding shift the estimated coefficients by an amount of λ

even when |d̂jk| stand way out of noise level, creating
unnecessary bias when the true coefficients are large. Also, due
to its discontinuity, hard thresholding can be unstable – that is,
sensitive to small changes in the data.
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Remedies

To remedy the drawbacks of both hard and soft thresholding
rules, Gao (1998) considered the nonnegative garrote
thresholding

δG
λ (d̂jk) =

 0 if |d̂jk| ≤ λ

d̂jk − λ2

d̂jk
if |d̂jk| > λ

which also is a “shrink” or “kill” rule (a continuous function).
The resulting wavelet thresholding estimators offer, in small
samples, advantages over both hard thresholding and soft
thresholding.
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Other rules

In the same spirit to that in Gao (1998), Antoniadis & Fan
(2001) (AF for short) suggested the SCAD thresholding rule

δSCAD
λ (d̂jk) =


sign(d̂jk)max (0, |d̂jk| − λ) if |d̂jk| ≤ 2λ
(a−1)d̂jk−aλsign(d̂jk)

a−2 if 2λ < |d̂jk| ≤ aλ

d̂jk if |d̂jk| > aλ

which is a “shrink” or “kill” rule (a piecewise linear function).
It does not over penalize large values of |d̂jk| and hence does
not create excessive bias when the wavelet coefficients are
large. AF (2001), based on a Bayesian argument, have
recommended to use the value of α = 3.7.
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Standard thresholding functions δλ

Hard (1994) Soft (1994) NNG (1998) SCAD (2001)

Hard : High variance due to discontinuities at ±λ

Soft : Oversmoothing (important bias due to constant
attenuation)

NNG, SCAD : Compromise between Hard and Soft.
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Wavelet shrinkage and nonlinear diffusion

Nonlinear diffusion filtering and wavelet shrinkage are
methods that serve the same purpose, namely
discontinuity-preserving denoising.

One drawback of the DWT is that the coefficients of the
discretized signal are not circularly shift equivariant, so that
circularly shifting the observed series by some amount will not
circularly shift the discrete wavelet transform coefficients by
the same amount, which seriously degrades the quality of the
denoising achieved.
The idea of denoising via cycle spinning is to apply denoising
not only to y, but also to all possible unique circularly shifted
versions of y, and to average the results.
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Translation invariant Haar wavelet shrinkage

We can now view a general connection between translation
invariant Haar wavelet shrinkage and a discretized version of a
nonlinear diffusion. The scaling and wavelet filters h and h̃
corresponding to the Haar transform are

h =
1√
2
(. . . , 0, 1, 1, 0, . . . ) h̃ =

1√
2
(. . . , 0,−1, 1, 0, . . . ).

Given a discrete signal f = ( fk)k∈Z, we can see that a
shift-invariant soft wavelet shrinkage of f on a single level
decomposition with the Haar wavelet creates a filtered signal
u = (uk)k∈Z given by
1
4( fk−1 + 2 fk + fk+1) +

1
2
√

2

(
−δS

λ

(
fk+1− fk√

2

)
+ δS

λ

(
fk− fk−1√

2

))
,

where δS
λ denotes the soft shrinkage operator with threshold λ.
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Diffusion

Because the filters of the Haar wavelet are simple difference
filters (a finite difference approximation of derivatives) the
above rule looks a little like a discretized version of a
differential equation.

uk = fk +
fk+1 − fk

4
− fk − fk−1

4

+
1

2
√

2

(
−δS

λ

(
fk+1 − fk√

2

)
+ δS

λ

(
fk − fk−1√

2

))
= fk +

(
( fk+1 − fk)

4
− 1

2
√

2
δS

λ

(
fk+1 − fk√

2

))
−
(
( fk − fk−1)

4
− 1

2
√

2
δS

λ

(
fk − fk−1√

2

))
,
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we obtain
uk − fk

∆t
= ( fk+1 − fk)g(| fk+1 − fk|)− ( fk − fk−1)g(| fk − fk−1|),

with a function g and a time step size ∆t defined by

∆t g(|s|) = 1
4
− 1

2
√

2|s|
δS

λ

(
|s|√

2

)
.

The above appears as a first iteration of an explicit (Euler
forward) scheme for a nonlinear diffusion filter with initial
state f , time step size ∆t and spatial step size 1. Therefore the
shrinkage rule corresponds to a discretization of the differential
equation ∂tu = ∂x ((∂xu)g(|∂xu|)) , with initial condition
u(0) = f . This equation is a 1-D variant of the Perona-Malik
diffusion equation well known in image processing, and the
function g is called the diffusivity.
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Nonlinear diffusion filtering

In the 1-D case the basic idea is to obtain a family u(x, t) of
filtered versions of a continuous signal f as the solution of the
diffusion process stated in the previous equation with f as
initial condition, u(x, 0) = f (x) and reflecting boundary
conditions.

The diffusivity g controls the speed of diffusion depending on
the magnitude of the gradient.

Usually, g is chosen such that it is equal to one for small
magnitudes of the gradient and goes down to zero for large
gradients. Hence the diffusion stops at positions where the
gradient is large. These areas are considered as singularities of
the signal.
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A connection with shrinkage

A proposition which relates some properties of shrinkage
functions and diffusivities which is an easy consequence of the
relation between g and δλ.

We formulate this relation for the case ∆t = 1/4 which is a
common choice and widely used for the Perona-Malik
equation.

Let ∆t = 1/4. Then the diffusivity and the shrinkage function
are related through

g(|x|) = 1−
√

2
|x| δλ

(
|x|√

2

)
.
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Properties

The following properties hold:

1. If δλ performs shrinkage then the diffusion is always
forward, i. e.

δλ(|x|) ≤ |x| ⇔ g(x) ≥ 0.

2. If δλ is differentiable at 0 then, as x → 0,

g(x)→ 1⇔ δλ(0) = 0 and δ′λ(0) = 0.

3. If the diffusion stops for large gradients the shrinkage
function has linear growth at infinity, i. e.

g(x)→ 0, as x → ∞⇔ δλ(x)
x
→ 1, as x → ∞.
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Examples
We choose ∆t = 1/4 and derive the corresponding diffusivities
by plug in the specific shrinkage function.

Linear shrinkage A linear shrinkage rule, producing linear
wavelet denoising is given by δλ(x) = x

1+λ . The
corresponding diffusivity is constant g(|x|) = λ

(1+λ)
, and

the diffusion is linear.

Soft shrinkage The soft shrinkage function

δλ(x) = sign(x)(|x| − λ)+ gives g(|x|) =
(

1− (|x|−
√

2λ)+
|x|

)
,

which is a stabilized total variation diffusivity.

Hard shrinkage The hard shrinkage function
δλ(x) = x(1− I{|x|≤λ}(x)) leads to g(|x|) = I{|x|≤

√
2λ}(|x|)

which is a piecewise linear diffusion that degenerates for
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large gradients.

Garrote shrinkage The nonnegative garrote shrinkage

δλ(x) =
(

x− λ2

x

)
(1− I{|x|≤λ}(x)) leads to a stabilized

unbounded BFB diffusivity (Keeling and Stollberger (2002))
given by g(|x|) = I{|x|≤

√
2λ}(|x|) +

2λ2

x2 I{|x|>
√

2λ}(|x|).

Firm shrinkage Firm shrinkage defined yields a diffusivity
that degenerates to 0 for sufficiently large gradients:

g(|x|) =


1 if |x| ≤

√
2λ1

λ1
(λ2−λ1)

(√
2λ2
|x| − 1

)
if
√

2λ1 < |x| ≤
√

2λ2

0 if |x| >
√

2λ2

.

SCAD shrinkage SCAD shrinkage gives also a diffusivity that
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degenerates to 0:

g(|x|) =


1 if |x| ≤

√
2λ

√
2λ
|x| if

√
2λ < |x| ≤ 2

√
2λ

a
√

2λ
(a−2)|x| −

1
a−2 if 2

√
2λ < |x| ≤ a

√
2λ

0 if |x| > a
√

2λ

.
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Examples . . .

Shrinkage functions (top) and corresponding diffusivities (bottom). Plotted for
λ = 1, λ1 = 1, λ2 = 2 (Firm) and a = 3.7 (Scad). The dashed line is the diagonal.
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From diffusion to skrinkage

The other way round one can ask is how the shrinkage
functions for famous diffusivities look like.

The function δλ expressed in terms of g looks like

δλ(|x|) = |x|(1− g(
√

2|x|)

and the dependence of the shrinkage function on the threshold
parameter λ is naturally fulfilled because usually diffusivities
involve a parameter too.

Such a remark leads to new shrinkage functions.
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New shrinkage rules
Charbonnier diffusivity The Charbonnier diffusivity (Charbonnier et al.

(1994)) is given by g(|x|) =
(

1 + x2

λ2

)−1/2
and corresponds to the

shrinkage function δλ(x) = x
(

1−
√

λ2

λ2+2x2

)
.

Perona-Malik diffusivity The Perona-Malik diffusivity (Perona and Malik

(1990)) is defined by g(|x|) =
(

1 + x2

λ2

)−1
and lead to the shrinkage

function δλ(x) = 2x3

2x2+λ2 .

Weickert diffusivity Weickert (1998) introduced the following diffusivity

g(|x|) = I{|x|>0(x)
(

1− exp
(
− 3.31488

(|x|/λ)8

))
which leads to the shrinkage

function δλ(x) = x exp
(
− 0.20718λ8

x8

)
.
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Classical diffusivities

“Classical” diffusivites (top) and corresponding shrinkage
functions
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Motivation for shrinkage

We have developed the connection between diffusivities and
shrinkage functions.

It is well known, the shrinkage methods perform very well
(asymptotic optimality, shown by Johnstone and Donoho.)

But why do they work so well? Is there a mathematical
motivation for shrinkage methods?

They can all be interpreted as cases of a broad class of
penalized least squares estimators.

This unified treatment and the general results of AF on
penalized wavelet estimators allow a systematic derivation of
oracle inequalities and minimax properties for a large class of
wavelet estimators.



Thresholding and regularization

Penalized least-squares wavelet estimators

Traditional regularization problem can be formulated in the
wavelet domain by finding the minimum in θ of

`(θ) = ‖Wy− θ‖2
n + 2λ ∑

i>i0

p(|θi|),

where θ is the vector of the wavelet coefficients of the
unknown regression function g, p is a given penalty function,
while i0 is a given integer corresponding to penalizing wavelet
coefficients above certain resolution level j0.

Here to facilitate the presentation we changed the notation dj,k

from a double array sequence into a single array sequence θi.

We also use we will use pλ to denote the penatly function λp in
the following.
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Separable penalized least-squares
With a choice of an additive penalty ∑i>i0 p(|θi|), the minimization problem
becomes separable, i.e. it is equivalent to minimize

`(θi) = (zi − θi)
2 + 2λp(|θi|),

for each coordinate i larger than i0. Therefore the estimate of any coordinate
θi depends solely on the empirical wavelet coefficient zi.

The performance of the resulting wavelet estimator depends on the penalty
and the regularization parameter λ.
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Conditions on p
Usually, p is chosen to be symmetric and increasing on [0,+∞).

AF provide some insights into how to choose a penalty function. A good
penalty function should result in

unbiasedness ( no over-penalization of large coefficients to avoid
unnecessary modeling biases)

sparsity (insignificant coefficients should be set to zero to reduce model
complexity)

stability (continuity of the penalty to avoid instability and large
variability in model prediction).

We will now show how to derive the penalties corresponding to the
thresholding rules defined previously, and check that almost all of them
satisfy these conditions.
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Shrinkage functions and penalties
Let δλ : R→ R be a thresholding function that is increasing
antisymmetric such that 0 ≤ δλ(x) ≤ x for x ≥ 0 and
δλ(x)→ ∞ as x → ∞.

There exist a continuous positive penalty function pλ, with
pλ(x) ≤ pλ(y) whenever |x| ≤ |y|, such that δλ(z) is the unique
solution of the minimization problem minθ(z− θ)2 + 2pλ(|θ|)
for every z at which δλ is continuous.

From the proof of this result one gets an almost analytical
expression for pλ. Denoting by rλ the generalized inverse
function of δλ defined by rλ(x) = sup{z|δλ(z) ≤ x}, one gets
that, for any z > 0, pλ is defined by

pλ(z) =
∫ z

0
(rλ(u)− u)du.



Thresholding and regularization

Penalties and thresholding

We find, in particular, the well known ridge regression
L2-penalty

pλ(|θ|) = λ|θ|2

corresponding to the linear shrinkage function, the L1-penalty

pλ(|θ|) = λ|θ|

corresponding to the soft thresholding rule and the hard
thresholding penalty function

pλ(|θ|) = λ2 − (|θ| − λ)2 I{|θ|<λ}(|θ|)

that results in the hard-thresholding rule.
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Penalties

Penalties corresponding to the shrinkage and thresholding functions with the same
name
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Remarks
The quadratic penalty, while continuous is not singular at zero, and the
resulting estimator is not thresholded. All other penalties are singular at
zero, thus resulting in thresholding rules that enforce sparseness of the
solution.

The hard-thresholding penalty is not continuous at the threshold, so it may
induce the oscillation of the reconstructed signal (lack of stability).

For soft-thresholding, the resulting estimator of large coefficients is shifted
by an amount of λ (unnecessary bias when the coefficients are large). The
same for Charbonnier and Perona-Malick penalties.

All other penalties are singular at zero (encourage sparse solutions),
continuous (stable) and do not create excessive bias when the wavelet
coefficients are large.
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Properties

Most importantly all these other penalties satisfy the
conditions of Theorem 1 in AF (2001).

The implication of this fact is that it leads to a systematic
derivation of oracle inequalities and minimax properties for the
resulting wavelet estimators via Theorem 2 of AF.

In particular, the optimal hard and soft universal threshold
λ = σ

√
2 log2 n given by Donoho and Johnstone (1994) leads to

a sharp asymptotic risk upper bound and the resulting
penalized estimators are adaptively minimax within a factor of
logarithmic order over a wide range of Besov spaces.
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And the nonequispaced case?

A first possible approach: Assume that ti = ni/2J for some ni

and some resolution J.

Parameter: Let f be the underlying regression function
collected at all dyadic points {i/2J , i = 1, . . . , 2J}.
Apply the Wavelet Transform on f: θ = Wf and f = WTθ, to get
an

Overparametrized linear model:

Yn = Aθ+ ε.
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The Wavelet basis on which f is projected is chosen by fixing
the resolution J and is truncated by retaining the rows of A.
The estimate of θ and therefore of f is recovered by penalized
least-squares

2−1‖Yn − Aθ‖2 + ∑
i∈IN

pλ(|θi|)

The penalty function pλ is nonconvex and irregular at point
zero.

Computation Challenge:

– Irregular designs: The matrix A is no longer orthonormal.
This is a linear regression problem with a number p of
unknown parameters much larger than the number n of
observations.
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A linear regression model

We therefore switch to the problem of obtaining a reasonable
estimate for an unknown vector of parameters β given a vector
Y of measurements

Y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ ε︸︷︷︸
n×1

,

where X is a known predictor matrix and ε is a (Gaussian)
noise error with some variance σ2In.

Typically the number p of unknown parameters is much larger
than the number n of observations.
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Shrinkage, thresholding and complexity

Regularize the solution by minimizing a penalized loss
function:

min
β∈Rp

{
‖Y− Xβ‖2 + λT(β)

}
⇔ min

β∈Rp

{
‖Y− Xβ‖2

}
with T(β) ≤ t.

This is penalized or constrained least-squares. The penalty term is
usually chosen to encourage sparsity in the optimal β while the
regularization parameter λ (or t) is connected to the complexity
of the model that is fitted. Often need to solve for multiple
values of λ e.g. to adjust sparsity to some desired level or
perform cross-validation.
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Least absolute shrinkage and selection operator

LASSO (Tibshirani,1996 ; Chen, Donoho & Saunders, 1999
(Basis pursuit) ; Donoho et al., 2002 - 2004)

For appropriate values of λ (or t or ε) solve the following
equivalent optimisation problems:

min
β∈Rp

{
‖Y− Xβ‖2 + λ‖β‖1

}
⇔

min
β∈Rp

{
‖Y− Xβ‖2

}
with ‖β‖1 ≤ t

⇔

min ‖β‖1 with ‖Y− Xβ‖2 ≤ ε.
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Lasso and thresholding

We already have seen the simple model case with n = p and X
is orthonormal: XTX = Ip (wavelet denoising case). In this
case, the LASSO selector is given by the soft thresholding
formula

β̂
so f t
j =


Zj − λ si Zj ≥ λ,

0 if Zj < λ,

Zj + λ if Zj ≥ −λ,

with Zj = (XTY)j.

The MSE for this selector is roughly λ2 + ∑
p
i=1 min(|Zj|2, λ2),

and this is basically the best possible amongst all selectors in
this model.
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MM algorithm for optimization
We have seen that optimizing the penalized loss function:

min
β∈Rp

{
‖Y− Xβ‖2 + λT(β)

}
with T(β) = ‖β‖1 leads to the LASSO selector which can be
easily calculated by soft thresholding when X is orthogonal as
in wavelets denoising.

If we concentrate on orthogonal design matrices, `1 penalty is
far from the only choice and as seen before we have several
other penalties that lead to good denoising procedures. To
retain the separability of the optimization problem when the
penalty is separable (univariate minimization) and easy
optimization via thresholding and shrinkage in the general
case we are going to use an MM algorithm.
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A short tutorial on the class of MM algorithms

Genetics
Numerical Analysis
Applied Probability

Optimization

What is an MM algorithm?
Why is any EM algorithm an MM algorithm?

What is an MM algorithm?

Goal: Solve difficult minimization problem, like minimizing the
function shown here in black.

Choose a starting point x0

Construct a majorizing function of f (x)
at x0.
Minimize the majorizer (at x1).
Repeat.

So “MM” stands for “Majorize-Minimize”.

UCLA 2007 MM algorithms

Goal: Solve difficult minimization problem, like minimizing
the function shown here in black.



Thresholding and regularization

What is an MM algorithm?

Genetics
Numerical Analysis
Applied Probability

Optimization

What is an MM algorithm?
Why is any EM algorithm an MM algorithm?

What is an MM algorithm?
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Numerical analysis
MM is merely a new name for an old technique. The idea for
these algorithms dates back at least as far as Ortega and
Rheinboldt (1970). Statisticians have been applying it to
various problems for about 30 years.

Multidimensional scaling (de Leeuw and Heiser; Groenen)

Robust regression (Schlossmacher; Huber)

Least squares estimation (Bijleveld and de Leeuw; Kiers and
Ten Berge)

Quadratic lower bound principle (Böhning and Lindsay)

Medical imaging (Lange and Fessler; De Pierro)

There are also some surveys of the general method.
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Numerical analysis

Kenneth Lange and Draper (2000) have used the term
“optimization transfer” for a while but ultimately settled on
“MM”, which works for both minimization and maximization.

A successful MM algorithm substitutes a simple optimization
problem for a difficult optimization problem.

Iteration is the price to pay for simplifying the original
problem.
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Optimization by an MM algorithm

Let θ(m) represent a fixed value of the parameter θ, and let
Q(θ|θ(m)) denote a real-valued function of θ whose form
depends on θ(m) . The function Q(θ|θ(m)) is said to majorize a
real-valued function S(θ) at the point θ(m) provided that

Q(θ|θ(m)) ≥ S(θ), for all θ (1)

Q(θ(m)|θ(m)) ≥ S(θ(m)). (2)
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The surface θ→ Q(θ|θ(m)) lies above the surface S(θ) and is tangent to it at
the point θ = θ(m).

Ordinarily, θ(m) represents the current iterate in a search of the minimum of
the surface S(θ).

In a majorize-minimize MM algorithm, one minimizes the majorizing
function Q(θ|θ(m)) rather than the actual function S(θ).

MM algorithm ⇔ θ(m+1) = argminθQ(θ|θ(m))
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Monotonicity

If θ(m+1)) is a minimizer of Q(θ|θ(m)) then the MM algorithm
forces the actual function S(θ) downhill. Indeed, the inequality

S(θ(m+1)) = Q(θ(m+1)|θ(m)) + S(θ(m+1))−Q(θ(m+1)|θ(m))

≤ Q(θ(m)|θ(m)) + S(θ(m))−Q(θ(m)|θ(m))

= S(θ(m)).

follows directly from the fact Q(θ(m+1)|θ(m)) ≤ Q(θ(m)|θ(m))

and definitions (1) and (2).
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Return to penalized least squares
Recall that we want to minimize the penalized loss function
Rλ(β):

min
β∈Rp

{
1
2
‖Y− Xβ‖2

2 + λT(β)

}
with T(β) one of the separable penalties that are assoiated to
“nice” thresholding functions.

Denote by Sλ(β) the above penalized loss function and pick a
constant c > 0 such that λmax(XTX) ≤ c. It follows that
cIp − XTX is strictly positive definite. Since X can be rescaled
assume that c = 1. Define

Ξ(β|γ) = 1
2
‖β− γ‖2

2 −
1
2
‖X(β− γ)‖2

2, (3)

which depends on an auxiliary p-dimensional vector γ.
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Constructing a majorizing function

Since Ip − XTX is strictly positive definite, the functional Ξ
defined in (3) is strictly convex in β for any choice of γ.
Therefore, adding Ξ(β|γ) to Sλ(β) creates a majorizing
function for Sλ(β):

Ssur
λ (β|γ) =

1
2
‖Y− Xβ‖2

2 + λT(β) + Ξ(β|γ)

=
1
2
‖Y− Xβ‖2

2 + λT(β) +
1
2
〈(Ip − Σ)(β− γ), (β− γ)〉

where 〈x, w〉 = xTw and Σ = XTX.
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Apply the MM methodology

Approach the minimizer of Sλ(β) by the following iterative
process:
Starting from an arbitrary chosen β(0), determine the
minimizer of Ssur

λ (β|γ) for γ = β(0); each successive iterate β(n)

is then the minimizer of the surrogate functional Ssur
λ (β|γ)

anchored at the previous iterate, i.e. γ = β(n−1).

The iterative algorithm goes as follows:

β(0) arbitrary ; β(m) = argminβSsur
λ (β|β(m−1))

Under reasonable conditions on X and for most of the “nice”
penalties T(β) reviewed before the algorithm converges.
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Calculus with particular penalties

Suppose first that λ = 0 in Sλ(β) (no penalization). Then

Ssur
0 (β|γ) = 1

2
‖β‖2

2−〈β, (I−Σ)γ+XTy〉+ 1
2
‖y‖2

2 +
1
2
‖γ‖2

2−
1
2
‖Xγ‖2

2

Given the actual anchor γ, minimizing the above expression
with respect to β is equivalent in minimizing the following
expression 1

2‖β−
[
(I − Σ)γ + XTy

]
‖2

2, which leads, using
γ = β(n), to the solution

β(n+1) = β(n) + XT(y− Xβ(n)),

known as the Landweber iterative method.
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Ridge regression (Tikhonov regularization)

Suppose first that T(β) = ‖β‖2
2 in Sλ(β). Then, following a

calculus similar to that of the previous slide leads to the
following iterative procedure for finding the minimum:

β(n+1) =
1

λ + 1

[
β(n) + XT(y− Xβ(n))

]
,

known as a dumped Landweber iterative method.

In both cases, and with reasonable definition on X, the
sequence β(n) converges to a generalized solution of the
function to be minimized.
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Iterative shrinkage thresholding
Using same arguments but for a penalty T(β) associated to a
particular thresholding function δλ, minimizing the functional
Ssur

λ (β|γ) with anchor γ is equivalent in minimizing the
expression

1
2
‖β−

[
(I − Σ)γ + XTy

]
‖2

2 + λT(β)

and leads to

β(n+1) = δλ

[
β(n) + XT(y− Xβ(n))

]
, (4)

known to belong to the class of iterative thresholding
algorithms (when T(β) is an `p penalty, 0 < p < ∞). These
usually converge see e.g. Daubechies, Defrise, De Mol (2004),
Combettes & Wajs (2005) and Bredies, Lorenz & Maass (2005).
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For particular inverse problems such algorithms have been studied in the
recent literature by many authors, especially when considering sparse
regularization and compressed sensing. For convex penalties T(β),

• IST as expectation-maximization (Figuereido and Nowak, 2001, 2003)

• IST as majorization-minimization (De Mol, Defrise, 2002; Daubechies,
Defrise, De Mol, 2004; Figuereido, Nowak, Bioucas-Dias, 2005, 2007)

Other authors independently proposed IST-like schemes for signal/image
recovery: Starck, Nguyen and Murtagh (2003); Starck, Candès and Donoho
(2003); Bect, Blanc-Féraud, Aubert, and Chambolle (2004); Tropp, Donoho
and others (2005); Candes (2006); Elad, Matalon and Zibulevsky (2006);
Hale, Yin and Zhang (2007), . . . .
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Summary

Consider a thresholding function δλ(·) satisfying:
a) δλ(·) is an odd function,
b) δλ(·) is a shrinkage rule (0 ≤ δ+λ (t) ≤ t, ∀t ≥ 0)
c) δ+λ is not decreasing and coercive.
Most often δλ thresholds, i.e. δ+λ (t) = 0 for 0 ≤ t ≤ τ for some
τ ≥ 0.

Then (Antoniadis, 2007) a penalty can be defined with the
following 3-step procedure:
1. Define for u ≥ 0, δ−1

λ (u) = sup{t; δλ(t) ≤ u} and
δ−1

λ (−u) = −δ−1
λ (u).

2. Set rλ(u) = δ−1
λ (u)− u, ∀u

3. Put Pλ(θ) =
∫ |θ|

0 rλ(u)du.
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Summary

Then (Antoniadis, 2007) the minimization problem

min
θ

(t− θ)2/2 + Pλ(θ)

has a unique optimal solution θ̂ = δλ(t) for any t at which δλ(·)
is continuous.

And one therefore may come back to the original minimization
problem using iterative thresholding procedures with
thresholding functions such as δλ.

For example, when using soft-thresholding one obtains the
iterative thresholding algorithm of DDD (2004). If δλ is the
hard-thresholding then one uses the `0 penalty and an
algorithm by Tropp or Elad, . . . .
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Convergence

If p < n and Σ is not singular, the iterative Landweber mapping
is a contraction and the sequence of iterates β(n) converges to a
stationary point of the function we want to minimize.

But what about the case p > n and Σ singular? DDD (2004)
have shown that for soft thresholding the algorithm converges
and this is mainly due to the fact that the iterative Landweber
iterations operator is nonexpansive, i.e. ‖Tx− Ty‖ ≤ ‖x− y‖.
However, most of the thresholding rules that one may consider
are usually not nonexpansive and one needs then some
appropriate conditions on the design matrix X and the sparsity
of β (see e.g. Candès and Tao (2007), Foucart (2008), . . . ).
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The bounded curvature condition (BCC)

We will say that a penalty Pλ(β) satisfies the BCC for some
positive semi-definite matrix B, if for any η ∈ Rp one has:

Pλ(β + η) ≥ Pλ(β) + 〈η, rλ〉 −
1
2

ηTBη,

where rλ = rλ(β) is computed component-wize.

Many thresholding rules of practical interest satisfy the BCC
with some B. For example soft thresholding with B = 0
because ‖β‖1 is convex; hard thresholding with B = Ip; SCAD
thresholding with B = Ip/(a− 1), . . . .
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Convergence with BCC

Given the iterations (4), if λmax(Σ) ≤ max(1, 2− λmax(B)),
then

Rλ(β(n)) ≥ Rλ(β(n+1)). (5)

Moreover, if λmax(Σ) < max(1, 2− λmax(B)), there exists a
constant C > 0 (depending only on X and B) such that

Rλ(β(n))− Rλ(β(n+1)) ≥ C · ‖β(n) − β(n+1)‖2
2. (6)

We can therefore use the iterative thresholding in the following
form

β(n+1) = δλ/k2
0

[
β(n) +

1
k2

0
XT(y− Xβ(n))

]
wher k0 = λmax(X) = ‖X‖2.
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Some special cases

Suppose that for the iterations (4), one uses:

• Soft thresholding. If λmax(X) <
√

2 then (6) holds.

• Hard thresholding. If λmax(X) ≤ 1 then (5) holds and if
λmax(X) < 1 it is (6) that holds.

• SCAD thresholding. If λmax(X) <
√

2− 1
a−1 then (6)

holds.

So given any initial point for β, if one of these conditions hold
then the algorithm converges to a fixed point of (4).
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Optimum

Let β? a fixed point of (4) and suppose that λmax(B) ≤ 1.

If
λmax(B) ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2− λmax(B),

then β? is a global minimizer of Rλ(β).

Although this was known for nonconvex penalties in the
orthogonal case, the same conclusion holds as long as X is not
too far from orthogonality (characterized in terms of B). This is
related to the RIP condition used in sparse learning (see Candès
and Tao (2007) and Foucart (2008)) and very closely related and
inspired by the Restricted Eigenvalue Property ( Donoho, Elad
and Temlyakov (2006) and Bickel, Ritov and Tsybakov (2007).
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Estimation and risk

Assuming that the errors are Gaussian, that pn = O(nξ),
n→ ∞, for some 1 < ξ and that the number of β0 j,n 6= 0 is
independent of n and finite (S-sparsity). Then, under the
assumptions that all entries of the design matrix are uniformly
bounded and that the thresholding function used is
sandwiched between the soft and the hard thresholding (see
AF), then the estimation of β0 achieved using (4) is sparsistent
and as long as the S-sparsity remains bounded, it leads to an
optimal , up to a log p factor, squared error bound. The proof
relies upon similar results by Bunea, Tsybakov and Wegkcamp
(2007).
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Iterative shrinkage thresholding for Generalized
Linear Models

Consider now independent observations Y1, · · · , Yn where Yi

follows a distribution in the natural exponential family
f (yi; θi) = exp(yiθi − b(θi) + c(yi)), where θi is the natural
parameter.

Let Li = log f (yi, θi), L = ∑ Li. Clearly, Li = yiθi − b(θi) + c(yi),
and thus ∂Li/∂θi = yi − b′(θi), ∂2Li/∂θ2

i = −b′′(θi).

It is well known that E(∂Li/∂θi) = 0 and
E(∂Li/∂θi)

2 = −E(∂2Li/∂θ2
i ) hold in general for the

exponential family.

Therefore, µi , E(yi) = b′(θi), var(yi) = b′′(θi).
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Generalized Linear Models

Let X = [x1, x2, · · · , xn]
T be the model matrix.

We will use the canonical link function that is, the link function
xT

i β = g(µi) determined by g(µi) = θi. Obviously g = (b′)−1.

For instance, when Yi ∼ Bernoulli(πi), f (yi; θi) =

exp
{

yi log πi
1−πi

+ log(1− πi)
}
= exp

{
yiθi − log(1 + eθi)

}
, for

which θi = log πi
1−πi

, µi = πi, b(t) = log(1 + et), and

g(t) = log t
1−t (the logit link).

In the Poisson case where yi ∼ Poi(ωi), f (yi; θi) =
1

yi!
e−ωi ω

yi
i =

exp(yi log ωi −ωi − log yi!) = exp(yiθi − eθi + c(yi)) with
θi = log ωi, µi = ωi, b(t) = et, and g(t) = log t (the log link).
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A surrogate function

We consider the penalized GLM problem

min
β
−L(β) + Pλ(β)(, F(β)), (7)

where

L =
n

∑
i=1

Li,

and

Pλ(β) =
p

∑
i=1

Pλ(βi)

is a (separable) penalty with λ as the regularization parameter.

We assume again that β is sparse, and use (7) for predictive
learning.
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Optimization

Directly tackling (7) for a general penalty can be a difficult task.
Use instead

G(β, γ) = −
n

∑
i=1

Li(γ) + P(γ; λ) +
1
2
‖γ− β‖2

2

−
n

∑
i=1

(b(xT
i γ)− b(xT

i β)) +
n

∑
i=1

µi(β)(xT
i γ− xT

i β),

where µi = g−1(xT
i β) = b′(xT

i β).

Given β, minimizing G over γ is equivalent to

min
γ

1
2

∥∥∥γ−
[

β + XTy− XTµ(β)
]∥∥∥2

2
+ P(γ; λ).

This problem is an OLS problem with an orthogonal design.
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Equivalent optimization
Given γ, minimizing G over β is equivalent to

min
β

1
2
‖γ− β‖2

2 −
n

∑
i=1

[
b(xT

i γ)− b(xT
i β)− b′(xT

i β)(xT
i γ− xT

i β)
]

.

Taking its derivative with respect to β gives

(I − I(β))(β− γ) = 0,

where I(β) = XTWX with W = diag
{

b′′(xT
i β)

}
. I(β) is the

observed/expected information matrix [−∂2L(β)/∂βhβl] at β.
Intuitively, the optimal value of G is achieved at γ = β as long
as X is scaled down properly. It is easy to verify minβ G(β, β)

is equivalent to minβ F(β). The advantage of optimizing G
instead of F is that given β, the problem is orthogonal and
separable in γ, and we can adopt non convex penalties.
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Iterative shrinkage for GLMs

Now given a thresholding function δ corresponding to the
penalties already seen, use MM to get the estimates. The
iterations simplify to

β(j+1) = δλ(β(j) + XTy− XTµ(β(j)))

with X scaled down properly at each iteration with
corresponding weights diag(W(β(j))). This provides a
generalization of iterative shrinkage for any GLM.
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