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Structured sparse methods for matrix factorization

Outline

• Learning problems on matrices

• Sparse methods for matrices

– Sparse principal component analysis

– Dictionary learning

• Structured sparse PCA

– Sparsity-inducing norms and overlapping groups

– Structure on dictionary elements

– Structure on decomposition coefficients



Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• Predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.
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Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009c)



Learning on matrices - Source separation

• Single microphone (Benaroya et al., 2006; Févotte et al., 2009)



Learning on matrices - Multi-task learning

• k linear prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . ,wk) ∈ R
p×k

• Classical applications

– Transfer learning

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between tasks

– Joint variable or feature selection (Obozinski et al., 2009; Pontil

et al., 2007)



Learning on matrices - Dimension reduction

• Given data matrix X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
n×p

– Principal component analysis: xi ≈ Dαi

– K-means: xi ≈ dk ⇒ X = DA



Sparsity in machine learning

• Assumption: y = w⊤x+ ε, with w ∈ R
p sparse

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)

• Sparsity and convexity (ℓ1-norm regularization): min
w∈Rp

L(w) + ‖w‖1
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Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M



Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV⊤

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T



Structured (sparse) matrix factorizations

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros

– Low-rank + sparse (Candès et al., 2009)

– etc.

• Many applications

• Many open questions: algorithms, identifiability, evaluation



Sparse principal component analysis

• Given data X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent



Sparse principal component analysis

• Given data X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse (and/or non-negative) extensions

– Interpretability

– High-dimensional inference

– Two views are differents

– For analysis view, see d’Aspremont, Bach, and El Ghaoui (2008)



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑
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min
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∥
∥
∥
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∥
∥
∥
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∥
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∥
∥
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2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize/constrain dj by the ℓ1-norm for sparsity

– Penalize/constrain αi by the ℓ2-norm to avoid trivial solutions

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

k∑

j=1

‖dj‖1 s.t. ∀i, ‖αi‖2 6 1



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse

• Dictionary learning: xi ≈ Dαi, αi sparse



Structured matrix factorizations (Bach et al., 2008)

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

k∑

j=1

‖dj‖⋆ s.t. ∀i, ‖αi‖• 6 1

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

n∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• Optimization by alternating minimization (non-convex)

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,

2007)



Dictionary learning for image denoising

x︸︷︷︸
measurements

= y
︸︷︷︸

original image

+ ε︸︷︷︸
noise



Dictionary learning for image denoising

• Solving the denoising problem (Elad and Aharon, 2006)

– Extract all overlapping 8× 8 patches xi ∈ R
64

– Form the matrix X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
n×64

– Solve a matrix factorization problem:

min
D,A

||X−DA||2F = min
D,A

n∑

i=1

||xi −Dαi||
2

2

where A is sparse, and D is the dictionary

– Each patch is decomposed into xi = Dαi

– Average the reconstruction Dαi of each patch xi to reconstruct a

full-sized image

• The number of patches n is large (= number of pixels)



Online optimization for dictionary learning

min
A∈Rk×n,D∈D

n∑

i=1

{

||xi −Dαi||
2

2
+ λ||αi||1

}

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A.

• Good results, but very slow !



Online optimization for dictionary learning

min
D∈D

n∑

i=1

min
αi

{

||xi −Dαi||
2

2
+ λ||αi||1

}

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A.

• Good results, but very slow !

• Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can

– handle potentially infinite datasets

– adapt to dynamic training sets

– online code (http://www.di.ens.fr/willow/SPAMS/)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009c)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009c)



What does the dictionary D look like?



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph



Alternative usages of dictionary learning

Computer vision

• Use the “code” α as representation of observations for subsequent

processing (Raina et al., 2007; Yang et al., 2009)

• Adapt dictionary elements to specific tasks (Mairal, Bach, Ponce,

Sapiro, and Zisserman, 2009b)

– Discriminative training for weakly supervised pixel classification

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008)



Structured sparse methods for matrix factorization

Outline

• Learning problems on matrices

• Sparse methods for matrices

– Sparse principal component analysis

– Dictionary learning

• Structured sparse PCA

– Sparsity-inducing norms and overlapping groups

– Structure on dictionary elements

– Structure on decomposition coefficients



Sparsity-inducing norms

min
α∈Rp

data fitting term
︷ ︸︸ ︷

f(α) + λ ψ(α)
︸ ︷︷ ︸

sparsity-inducing norm

• Regularizing by a sparsity-inducing norm ψ

• Most popular choice for ψ

– ℓ1-norm: ‖α‖
1
=

∑p
j=1

|αj|

– Lasso (Tibshirani, 1996), basis pursuit (Chen et al., 2001)

– ℓ1-norm only encodes cardinality

• Structured sparsity

– Certain patterns are favored

– Improvement of interpretability and prediction performance



Sparsity-inducing norms

• Another popular choice for ψ:

– The ℓ1-ℓ2 norm,

∑

G∈F

‖αG‖2 =
∑

G∈F

(∑

j∈G

α
2

j

)1/2
, with F a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping variables

(as opposed to single variables for the ℓ1 -norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)



Sparsity-inducing norms

• Another popular choice for ψ:

– The ℓ1-ℓ2 norm,

∑

G∈F

‖αG‖2 =
∑

G∈F

(∑

j∈G

α
2

j

)1/2
, with F a partition of {1, . . . , p}

– The ℓ1-ℓ2 norm sets to zero groups of non-overlapping variables

(as opposed to single variables for the ℓ1 -norm)

– For the square loss, group Lasso (Yuan and Lin, 2006)

• However, the ℓ1-ℓ2 norm encodes fixed/static prior information,

requires to know in advance how to group the variables

• What happens if the set of groups F is not a partition anymore?



Structured Sparsity

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈F

‖αG‖2 =
∑

G∈F

(∑

j∈G

α
2

j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some αG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity



Examples of set of groups F

• Selection of contiguous patterns on a sequence, p = 6

– F is the set of blue groups

– Any union of blue groups set to zero leads to the selection of a

contiguous pattern



Structured Sparsity

(Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ1-ℓ2 norm,

∑

G∈F

‖αG‖2 =
∑

G∈F

(∑

j∈G

α
2

j

)1/2

– The ℓ1 norm induces sparsity at the group level:

∗ Some αG’s are set to zero

– Inside the groups, the ℓ2 norm does not promote sparsity

• Intuitively, the zero pattern of w is given by

{j ∈ {1, . . . , p}; αj = 0} =
⋃

G∈F′

G for some F′ ⊆ F

This intuition is actually true and can be formalized



Examples of set of groups F

• Selection of rectangles on a 2-D grids, p = 25

– F is the set of blue/green groups (with their not displayed

complements)

– Any union of blue/green groups set to zero leads to the selection

of a rectangle



Examples of set of groups F

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

– It is possible to extend such settings to 3-D space, or more complex

topologies



Relationship between F and Zero Patterns

(Jenatton, Audibert, and Bach, 2009a)

• F → Zero patterns:

– by generating the union-closure of F

• Zero patterns → F:

– Design groups F from any union-closed set of zero patterns

– Design groups F from any intersection-closed set of non-zero

patterns



Related work on structured sparsity

• Specific hierarchical structure (Zhao et al., 2009; Bach, 2008)

• Union-closed (as opposed to intersection-closed) family of nonzero

patterns (Jacob, Obozinski, and Vert, 2009)

• Nonconvex penalties based on information-theoretic criteria with

greedy optimization (Baraniuk et al., 2008; Huang et al., 2009)

• Link with submodular functions (Bach, 2010)

– Acting on supports or level sets



Sparse structured PCA

(Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

p
∑

j=1

ψ(dj) s.t. ∀i, ‖αi‖2 ≤ 1

• Structure of the dictionary elements determined by the choice of

overlapping groups F (and thus ψ)

• Efficient learning procedures through “η-tricks”

– Reweighted ℓ2:
∑

G∈F

‖yG‖2 = min
ηG>0,G∈F

1

2

∑

G∈F

{
‖yG‖

2

2

ηG
+ ηG

}



Application to face databases

raw data (unstructured) NMF

• NMF obtains partially local features



Application to face databases

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases

(unstructured) sparse PCA Structured sparse PCA

• Enforce selection of convex nonzero patterns ⇒ robustness to

occlusion



Application to face databases

• Quantitative performance evaluation on classification task
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Dictionary learning vs. sparse structured PCA

Exchange roles of D and A

• Sparse structured PCA (sparse and structured dictionary elements):

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

k∑

j=1

ψ(dj) s.t. ∀i, ‖αi‖2 ≤ 1.

• Dictionary learning with structured sparsity for α:

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2

2
+ λψ(αi) s.t. ∀j, ‖dj‖2 ≤ 1.



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes α (not on dictionary D)

• Hierarchical penalization: ψ(α) =
∑

G∈F ‖αG‖2 where groups G in

F are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning

Efficient optimization

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2

2
+ λψ(αi) s.t. ∀j, ‖dj‖2 ≤ 1.

• Minimization with respect to αi : regularized least-squares

– Many algorithms dedicated to the ℓ1-norm ψ(α) = ‖α‖1

• Proximal methods : first-order methods with optimal convergence

rate (Nesterov, 2007; Beck and Teboulle, 2009)

– Requires solving many times minα∈Rp
1

2
‖y −α‖2

2
+ λψ(α)

• Tree-structured regularization : Efficient linear time algorithm

based on primal-dual decomposition (Jenatton et al., 2010)



Hierarchical dictionary learning

Application to image denoising

• Reconstruction of 100,000 8× 8 natural images patches

– Remove randomly subsampled pixels

– Reconstruct with matrix factorization and structured sparsity

noise 50 % 60 % 70 % 80 % 90 %

flat 19.3± 0.126.8± 0.136.7± 0.150.6± 0.072.1± 0.0

tree 18.6± 0.125.7± 0.135.0± 0.148.0± 0.065.9± 0.3

16 21 31 41 61 81 121 161 181 241 301 321 401
50

60

70

80



Application to image denoising - Dictionary tree



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?

• Experiments:

– Qualitative: NIPS abstracts (1714 documents, 8274 words)

– Quantitative: newsgroup articles (1425 documents, 13312 words)



Modelling of text corpora - Dictionary tree



Modelling of text corpora

• Comparison on predicting newsgroup article subjects:
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Topic models, NMF and matrix factorization

• Three different views on the same problem

– Interesting parallels to be made

– Common problems to be solved

• Structure on dictionary/decomposition coefficients with adapted

priors, e.g., nested Chinese restaurant processes (Blei et al., 2004)

• Learning hyperparameters from data

• Identifiability and interpretation/evaluation of results

• Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien

et al., 2008; Mairal et al., 2009b)

• Optimization and local minima



Conclusion

• Structured matrix factorization has many applications

– Machine learning

– Image/signal processing, audio/music (Lefèvre et al., 2011)

– Extensions to other tasks



Application to background subtraction

(Mairal, Jenatton, Obozinski, and Bach, 2010)

Background ℓ1-norm Structured norm



Ongoing Work - Digital Zooming



Digital Zooming (Couzinie-Devy et al., 2010)



Digital Zooming (Couzinie-Devy et al., 2010)



Digital Zooming (Couzinie-Devy et al., 2010)



Ongoing Work - Task-driven dictionaries

inverse half-toning (Mairal et al., 2010)



Ongoing Work - Task-driven dictionaries

inverse half-toning (Mairal et al., 2010)



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning



Conclusion

• Structured matrix factorization has many applications

– Machine learning

– Image/signal processing, audio/music (Lefèvre et al., 2011)

– Extensions to other tasks

• Algorithmic issues

– Large datasets

– Structured sparsity and convex optimization

– Link with submodular functions (Bach, 2010)

• Theoretical issues

– Identifiability of structures and features

– Improved predictive performance

– Other approaches to sparsity and structure
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