Mixture of Heavy-Tailed distributions for Bivariate Precipitation Data

Julie Carreau*

&

Philippe Naveau*

&

Malaak Kallache

julie.carreau@univ-montp2.fr

philippe.naveau@lsce.ipsl.fr

mk@climpact.com

* HydroSciences Montpellier, FRANCE * Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), FRANCE † Climpact, FRANCE

Var Flood June 15th 2010

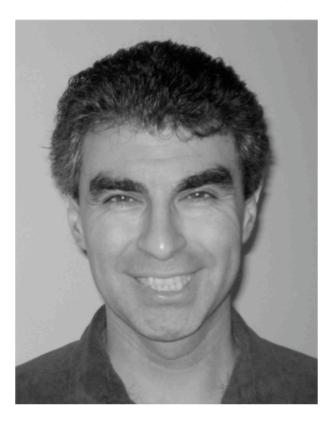
- warm sea
- mountainous landscape
- warm air from Africa

400 mm of rain in 24h \approx 5 months of precipitation

no similar event since 1827

Background

Machine learning



Yoshua Bengio

Extreme-Value Theory

Vilfredo Pareto 1848-1923

Bridge the gap between non-parametric and extreme-value models

Outline

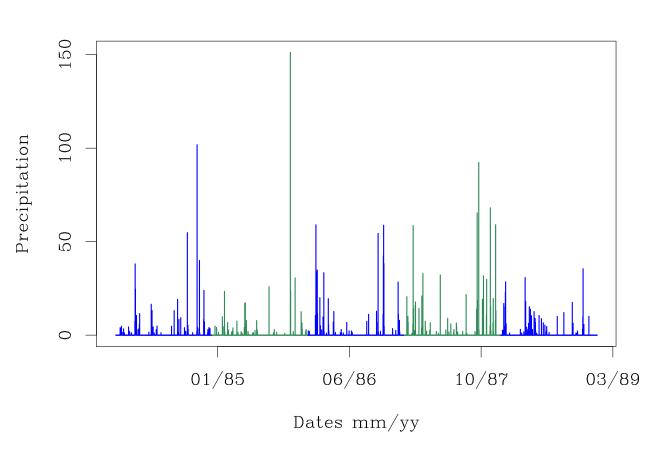
- 1. Precipitation data
- 2. Outline of the bivariate density model:

mixture of bivariate distributions with a heavy tail along 1D projections

- 3. Hybrid Pareto Distribution
- 4. Bivariate Hybrid Pareto Distribution
- 5. Mixture learning and initialization
- 6. Synthetic examples and precipitation data
- 7. Future work

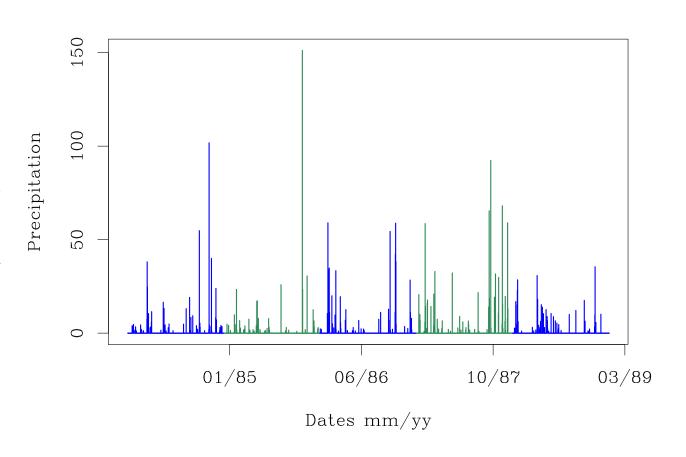
Precipitation Data

- Intermittency
- Temporal and spatial dependence
- Inter-annual / intraannual variability
- extreme values



Precipitation Data

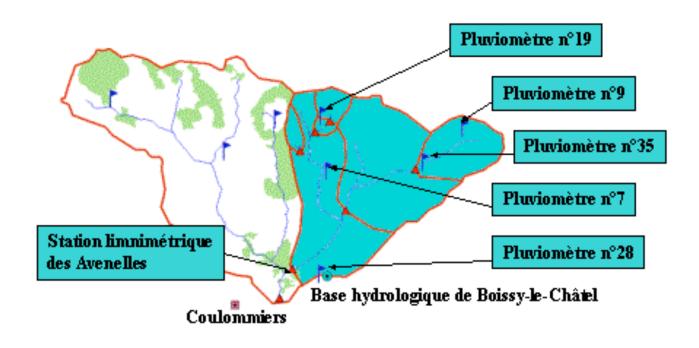
- Intermittency
- Temporal and spatial dependence
- Inter-annual / intraannual variability
- extreme values



Motivation

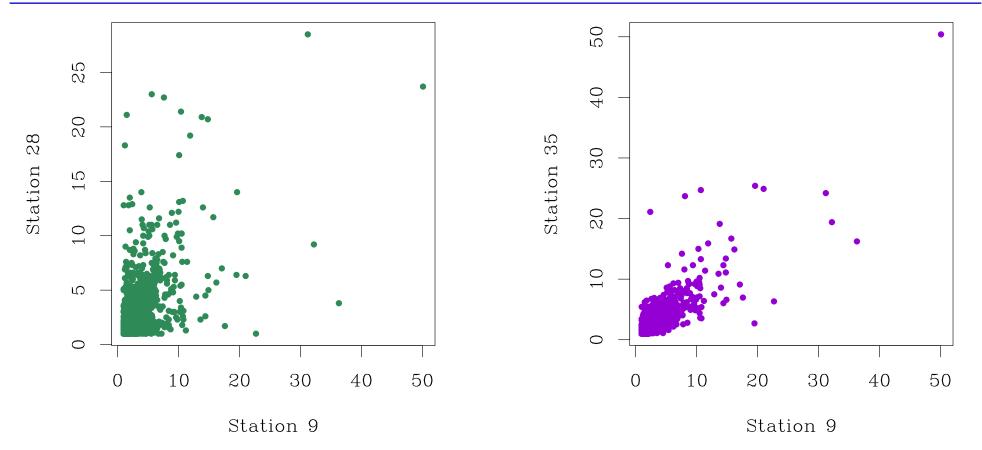
- Simulate runoff from hydrological models:
 spatial rain field over the basin
- Evaluate the impact of climate change :
 model precipitation given large scale atmospheric variables given
 by GCMs
- Dimension of dams and agricultural practice

Avenelles Basin



- * Positive hourly precipitation (> 1 mm) for three stations of the Orgeval Basin, near Paris
- * Data span 1972 to 2002 for about 3000 positive observations

Precipitation



*** Spatially apart/close stations** show a more wide spread/narrow pattern

* Dependence in the central part might differ from dependence in the extremes

Bivariate Mixture Model

Two key aspects of the precipitation data

* Model the dependence structure of the extreme observations

Usually described either by the **spectral measure** or the **copula function**

Bivariate Mixture Model

Two key aspects of the precipitation data

* Model the dependence structure of the extreme observations

Usually described either by the **spectral measure** or the **copula function**

* Full density estimation: central and extremal areas

Perform estimation of the **margins** and of the **dependence structure** at once

Extremal Dependence Structure

***** Pseudo-polar coordinates: angle ω and radius r

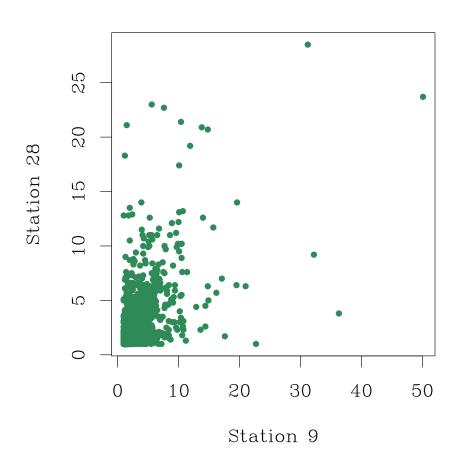
* Decomposition of the density for large values:

product of the angular spread times the radial distance

* Angular spread can be described by the spectral measure

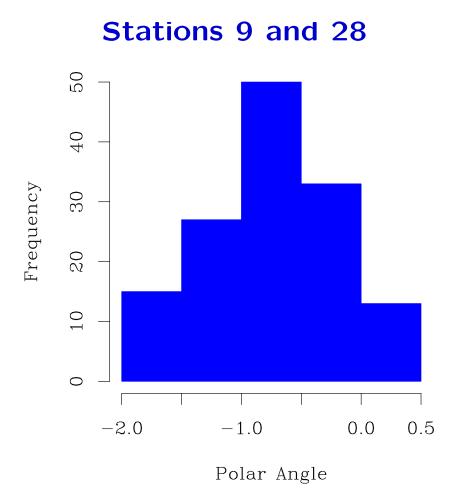
* Radial distance depends on the margins

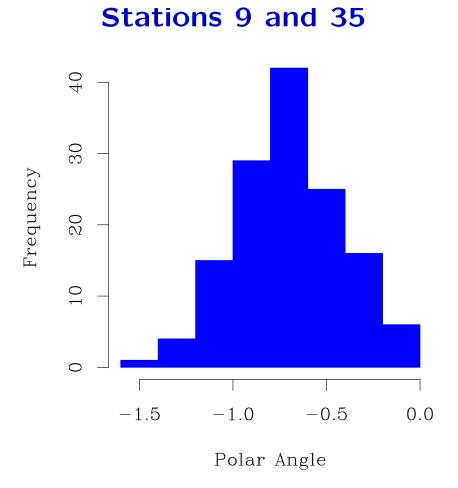
Estimate of Spectral Measure



- **1.** Set R, a large radius
- **2.** Extremes are outside circle of radius ${\cal R}$
- 3. Map extremes on the unit circle
- 4. Distribution of the angles

Examples of Spectral Measure





Block 1: bivariate Gaussian

convenient computationally but not adequate for heavy tails

Block 1: bivariate Gaussian

convenient computationally but not adequate for heavy tails

Block 2: projection pursuit

introduce a heavy tail in a 1D projection defined by angle θ

Block 1: bivariate Gaussian

convenient computationally but not adequate for heavy tails

Block 2: projection pursuit

introduce a heavy tail in a 1D projection defined by angle θ

Block 3: hybrid Pareto distribution

smooth extension of the **generalized Pareto distribution** on the whole real axis

Block 1: bivariate Gaussian

convenient computationally but not adequate for heavy tails

Block 2: projection pursuit

introduce a heavy tail in a 1D projection defined by angle heta

Block 3: hybrid Pareto distribution

smooth extension of the generalized Pareto distribution on the whole real axis

Blocks 1 + 2 + 3: Bivariate hybrid Pareto distribution

a bivariate Gaussian with **heavy tail** in a direction determined by an angle θ

Block 1: bivariate Gaussian

convenient computationally but not adequate for heavy tails

Block 2: projection pursuit

introduce a heavy tail in a 1D projection defined by angle heta

Block 3: hybrid Pareto distribution

smooth extension of the generalized Pareto distribution on the whole real axis

Blocks 1+2+3: Bivariate hybrid Pareto distribution

a bivariate Gaussian with **heavy tail** in a direction determined by an angle θ

Block 4: Mixture of Bivariate hybrid Pareto distribution

a discrete number of direction with heavy tails ⇒ mixture size

Extreme Value Theory

Goal: methods to analyze and characterize extreme events

Challenges:

- few observations are extreme
- estimate a risk which was never observed

Extreme Value Theory

Goal: methods to analyze and characterize extreme events

Challenges:

- few observations are extreme
- estimate a risk which was never observed

Extremes are defined as:

- Maxima : $M_n = \max\{Z_1, \dots, Z_n\}$ Two types of approaches
- Exceedances : Z_i such that $Z_i > u$

Block Maxima Approach

In theory : $M_n = \max\{Z_1, \dots, Z_n\}$, Z_i i.i.d. for large n

In practice: set a block size and take the maximum over each block

Typical example with daily data : block size = year \implies annual maxima

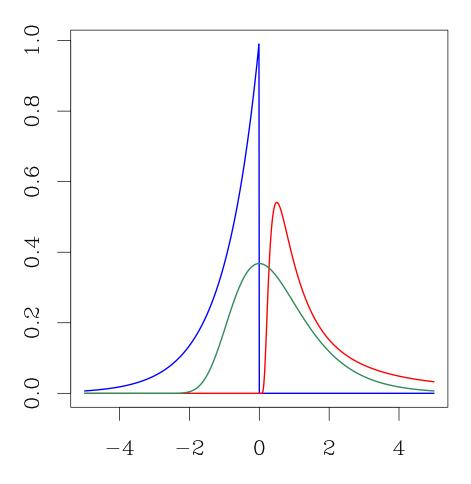
Return level:

What is the level \boldsymbol{u} that the maximum runoff would exceed once in a 100 years?

$$P(M_n > u) = 1/100$$

Extreme Value Distributions

Maxima M_n , for large n, will behave either like



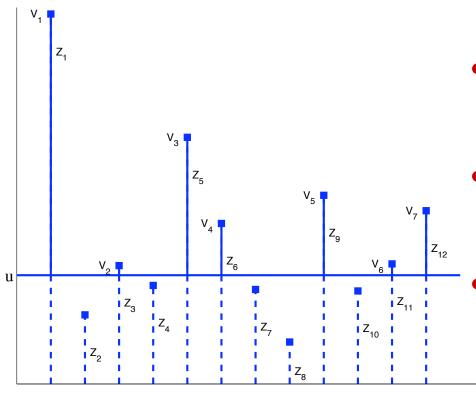
Fréchet, heavy/Pareto tail:Student t, Cauchy

Gumbel, light/exponential tail:
 Normal

• Weibull, finite tail: uniform

Peaks-over-Threshold

Excesses : $V_i = Z_i - u \mid Z_i > u$, u is a given threshold

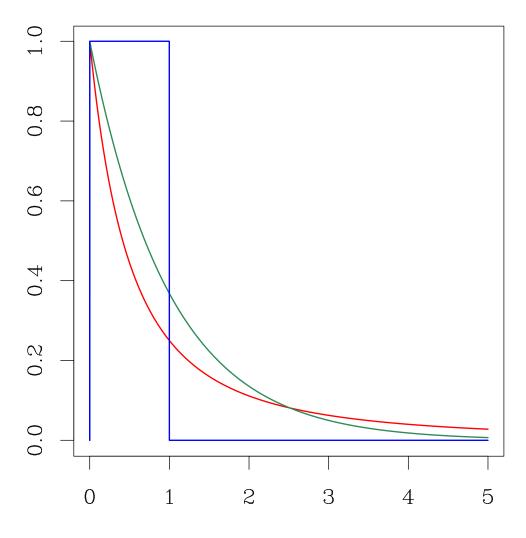


- Advantage: more data contribute to the estimation
- Difficulty: find a good threshold: bias / variance trade-off
- Questions on large events :

$$P(Z > u + \epsilon | Z > u)$$

Generalized Pareto Distribution

Excesses V_i , for large u will behave like a GPD with tail index ξ :



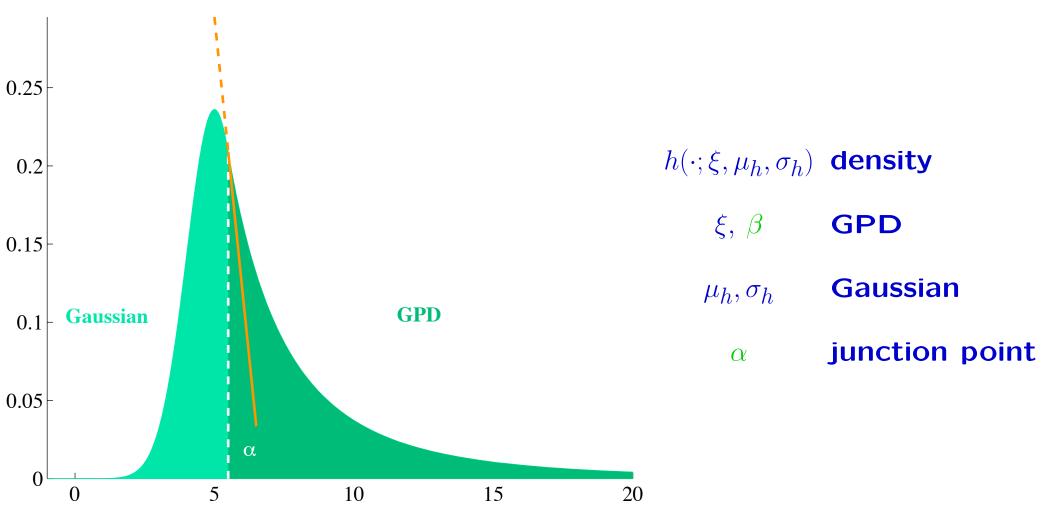
• $\xi > 0$, heavy/Pareto tail: Student t, Cauchy

• $\xi = 0$, light/exponential tail: Normal, Log-Normal, Gamma

• ξ < 0, finite tail: Uniform, Beta

Univariate Hybrid Pareto

Heavy-tailed distribution built by stitching together a Gaussian and a Generalized Pareto with continuity constraints

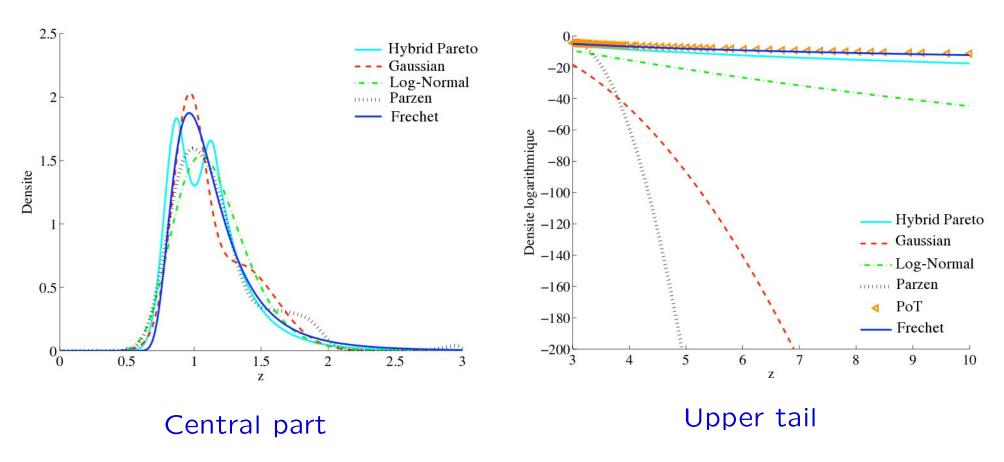


Modelling with the hybrid Pareto

- * Mixture of hybrid Paretos: univariate heavy tailed data
 - non parametric in the central part: mixture of Gaussians
 - parametric in the upper tail: combination of GPDs

Comparing Mixture Components

100 points from a Frechet distribution with $\xi = 0.2$

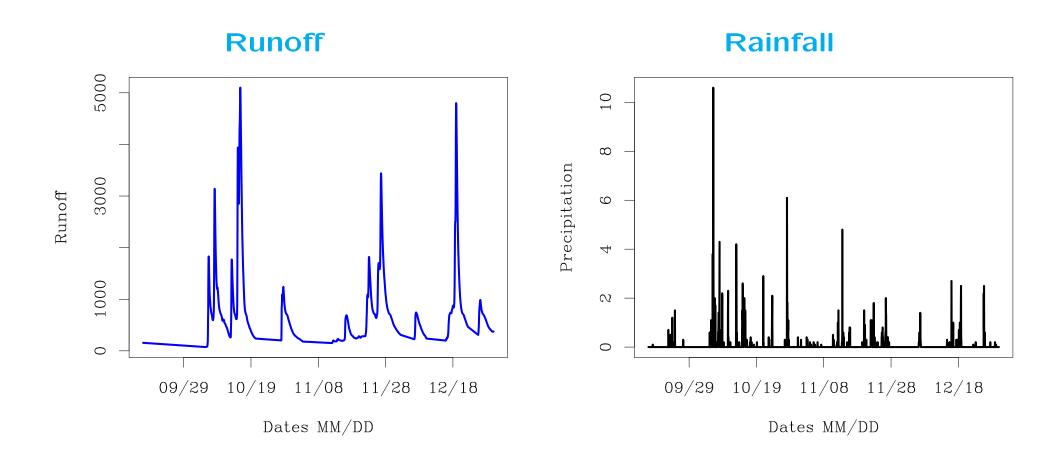


Modelling with the hybrid Pareto

- * Mixture of hybrid Paretos: univariate heavy tailed data
 - non parametric in the central part: mixture of Gaussians
 - parametric in the upper tail: combination of GPDs

- * Conditional mixture: parameters are functions of the input
 - environmental application : rainfall-runoff modelling
 - downscaling: precipitation given large scale variables

Rainfall-Runoff process



1. Find a 1D projection which is interesting interestingness could mean heavy tails

- 1. Find a 1D projection which is interesting interestingness could mean heavy tails
- 2. Remove interestingness using a rotation trick
 - Rotate to align the 1D projection with the x-axis
 - Gaussianize by modelling with a univariate density along the x-axis
 - Rotate back

- 1. Find a 1D projection which is interesting interestingness could mean heavy tails
- 2. Remove interestingness using a rotation trick Rotate, Gaussianize, Rotate back
- 3. Iterate steps 1 and 2
 Stop when no more interesting 1D projection can be found

- 1. Find a 1D projection which is interesting interestingness could mean heavy tails
- 2. Remove interestingness using a rotation trick Rotate, Gaussianize, Rotate back
- 3. Iterate steps 1 and 2Stop when no more interesting 1D projection can be found
- 4. Model resulting density with a multivariate Gaussian

 Combine the multivariate Gaussian with the 1D densities

Bivariate Hybrid Pareto Construction

Last steps of Projection Pursuit and reverse

4'. Start from a bivariate standard Gaussian : assume no interestingness == heavy tail is present

Bivariate Hybrid Pareto Construction

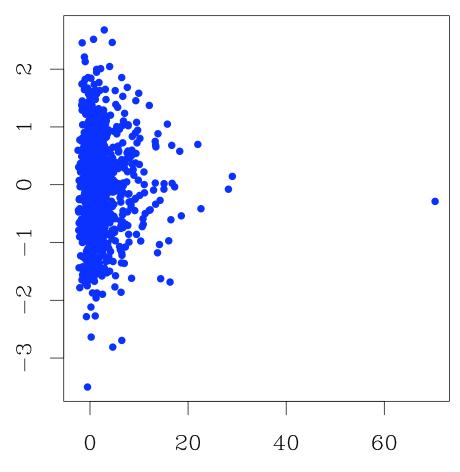
Last steps of Projection Pursuit and reverse

- 4'. Start from a bivariate standard Gaussian : assume no interestingness == heavy tail is present
- 3'. Iterate once, i.e. apply steps 1 and 2 once introduce interestingness in a 1D projection defined by an angle θ
 - Transform the density along the x-axis into a heavy-tailed density
 - Rotate back to align heavy-tailed density with angle θ

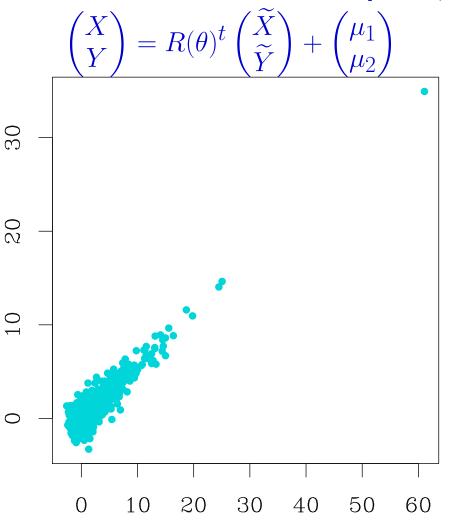
Bivariate Hybrid Pareto Construction

Independent random variables

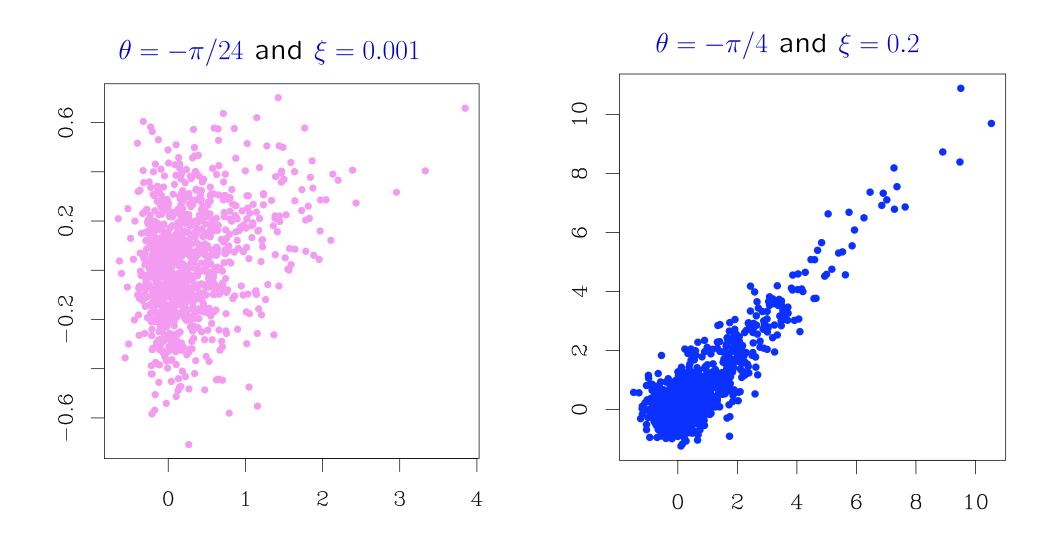
$$\widetilde{X} \to h(\cdot; \xi, 0, \sigma_h) \text{ and } \widetilde{Y} \to \phi(\cdot; 0, \sigma)$$



Rotation with angle $\theta \in [-\pi, \pi)$



Sample from Bivariate Hybrid Paretos



Density of the Bivariate Hybrid Pareto

According to the PP construction:

$$h_2(x, y; \psi) = \phi_2(x, y) \frac{h(p_{\theta}(x, y))}{\phi(p_{\theta}^{\perp}(x, y))}$$

 \star h and ϕ are the densities of the hybrid Pareto and the standard Gaussian respectively

* p_{θ} and p_{θ}^{\perp} are the projections along the line defined by θ and the line orthogonal to it

Density of the Bivariate Hybrid Pareto

According to the PP construction:

$$h_2(x, y; \psi) = \phi_2(x, y) \frac{h(p_{\theta}(x, y))}{\phi(p_{\theta}^{\perp}(x, y))}$$

- \star h and ϕ are the densities of the hybrid Pareto and the standard Gaussian respectively
- * p_{θ} and p_{θ}^{\perp} are the projections along the line defined by θ and the line orthogonal to it
- * The density of the bivariate hybrid decomposes into

$$h_2(x,y;\psi) = \underbrace{h(p_\theta(x-\mu_1,y-\mu_2);\xi,\sigma^{(h)})}_{\mbox{hybrid Pareto}} \underbrace{\phi(p_\theta^\perp(x-\mu_1,y-\mu_2)/\sigma)}_{\mbox{Gaussian}}$$

* $\psi = (\mu_1, \mu_2, \sigma, \theta, \xi, \sigma^{(h)})$ is the bivariate hybrid Pareto parameter vector

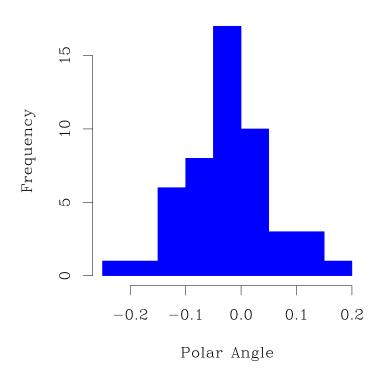
Rotation and Dependence

* Rotation transforms the covariance matrix : $R(\theta)\Sigma R(\theta)^t$

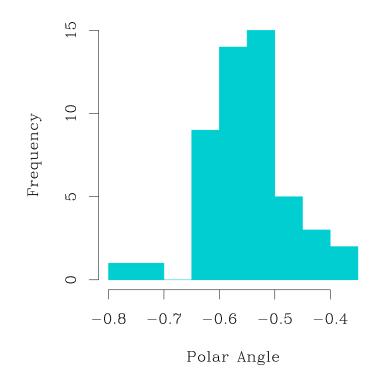
Rotation and Dependence

- * Rotation transforms the covariance matrix : $R(\theta)\Sigma R(\theta)^t$
- * Rotation introduces dependence in the extremes as well

 Polar angle corresponding to large radius



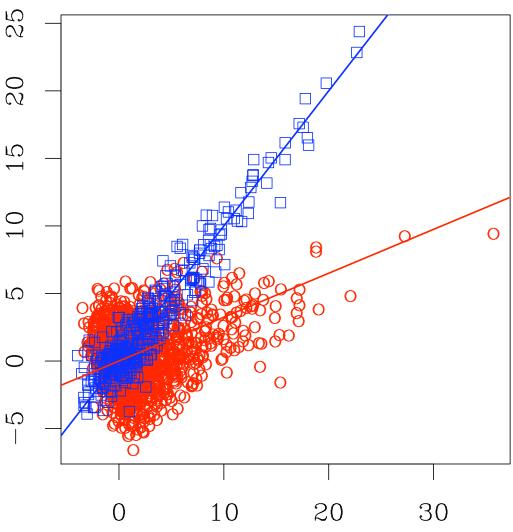
Independence $\theta = 0$



Dependence $\theta \neq 0$

Directions of Extremes in the Mixture

$$P(||(X,Y)|| > R, S = j) = P(||(X,Y)|| > R|S = j)P(S = j) \approx \frac{\pi_j}{\gamma} \left(\frac{\xi}{\beta_j}\right)^{-1/\xi} R^{-1/\xi}$$



$$P(\theta = \theta_j) \propto \pi_j(\sigma_j^{(h)})^{1/\xi}$$

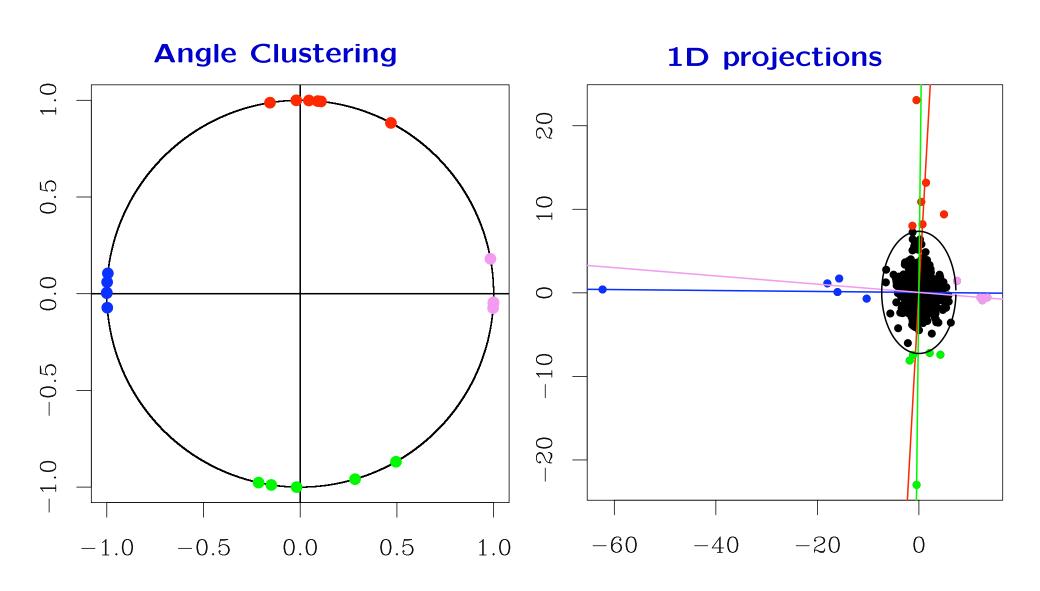
- Same tail index: $\xi_j = \xi \ \forall j$
- $\bullet \pi_i$ is the mixture weight

Initialize θ_j

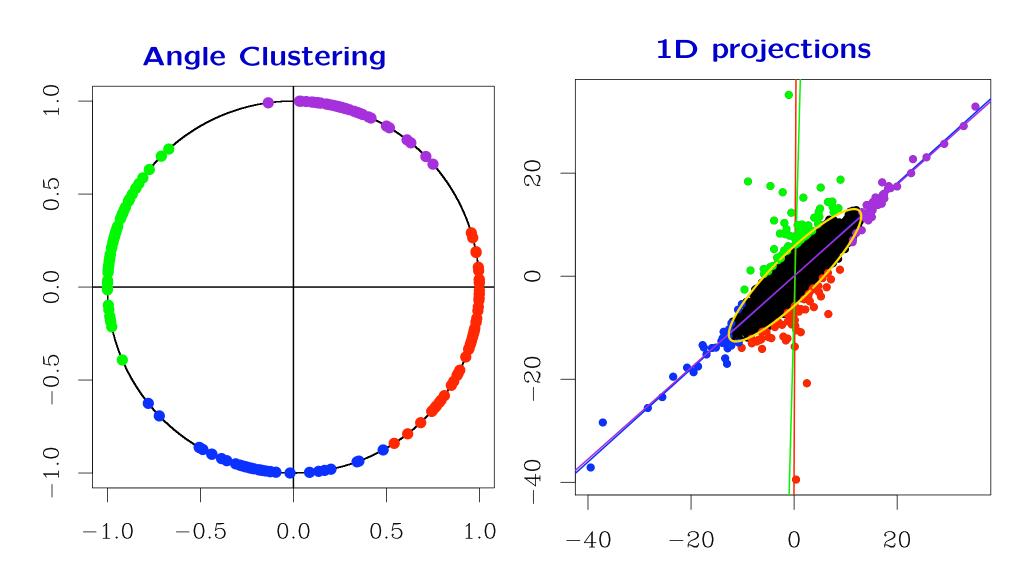
Angle Clustering: Find good extremal directions

- a) Center and sphere the data
- **b)** Transform into polar coordinates: $R \in \mathbb{R}^+$ and $\omega \in [-\pi, \pi)$
- c) Consider ω such that R>u
- d) Compute circular distances
- e) Perform clustering and cluster centers are taken as initial angles

Independent Bivariate α -stable Data



AR(1) with Student t Noise



Mixture Initialization

- 1. Estimate the rotation angles θ_j
- * Clustering of angles corresponding to large radius

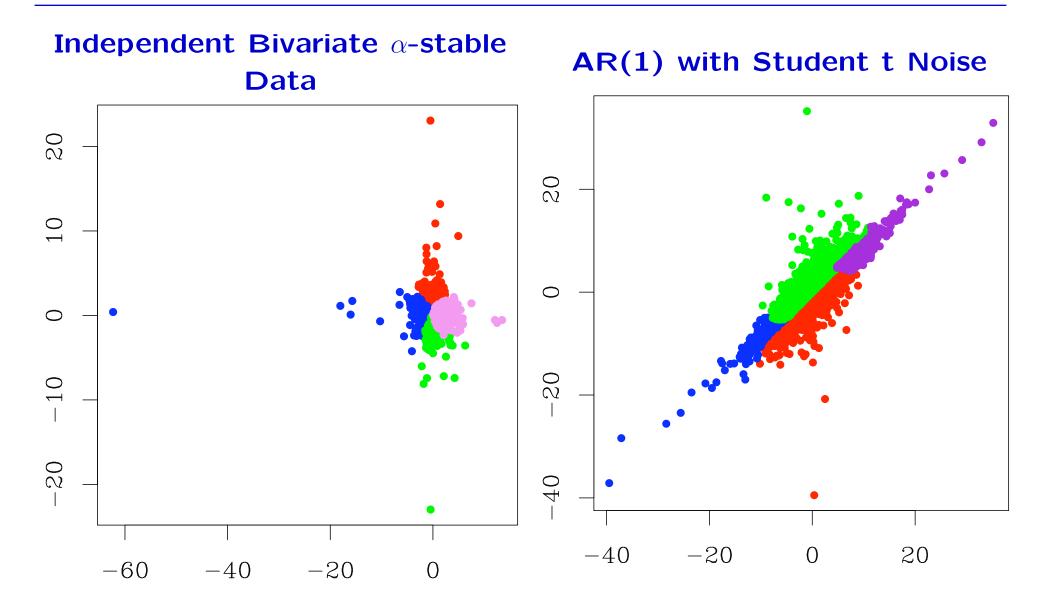
Mixture Initialization

- 1. Estimate the rotation angles θ_j
- * Clustering of angles corresponding to large radius
- 2. Iterative classification
- * Decrease the threshold used for angle estimation
- * Classify new points according to previous classification

Mixture Initialization

- 1. Estimate the rotation angles θ_j
- * Clustering of angles corresponding to large radius
- 2. Iterative classification
- *** Decrease the threshold** used for angle estimation
- * Classify new points according to previous classification
- 3. Initialize one component per cluster
- * Estimate univariate density parameters on projected data

Iterative Clustering



GEM for the Bivariate Mixture

 $\sum_{j=1}^{m} \pi_{j} h_{2}(x, y; \psi_{j})$, with $h_{2}(\cdot, \cdot; \psi_{j})$ the bivariate hybrid pareto density

 $\{\pi_j,\psi_j\}_{j=1:m}$ are estimated by maximizing the log-likelihood

GEM for the Bivariate Mixture

 $\sum_{j=1}^{m} \pi_{j} h_{2}(x, y; \psi_{j})$, with $h_{2}(\cdot, \cdot; \psi_{j})$ the bivariate hybrid pareto density

 $\{\pi_j, \psi_j\}_{j=1:m}$ are estimated by maximizing the log-likelihood

Generalized EM algorithm:

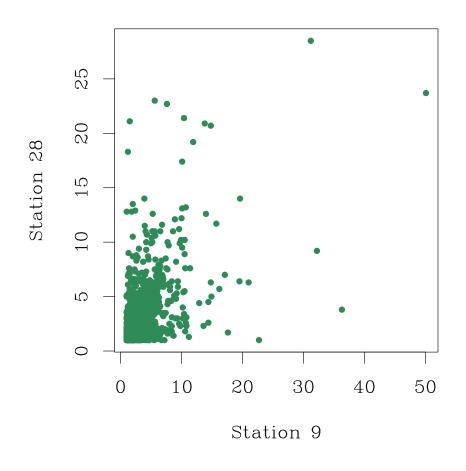
E-step: compute posteriors $\tau_{i,j}$ according to current parameters

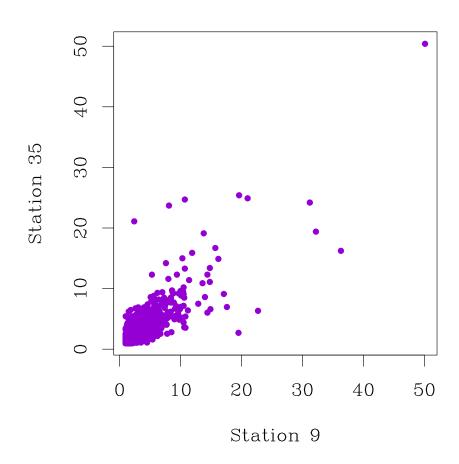
M-step:

- **1.** Update the priors $\pi_j = 1/n \sum_{i=1}^n \tau_{i,j}$
- **2.** For each j, optimize numerically w/r to ψ_i :

$$\sum_{i=1}^{n} \tau_{i,j} \log \left(h_2(x_i, y_i; \psi_j) \right)$$

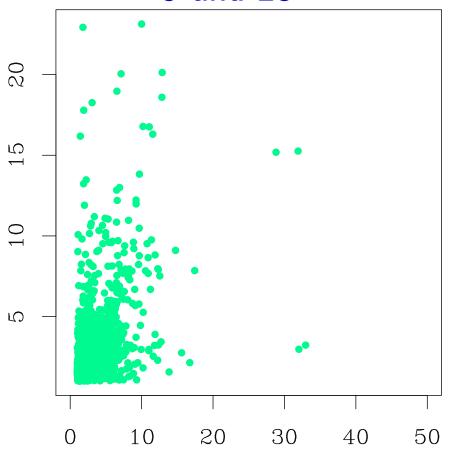
Precipitation



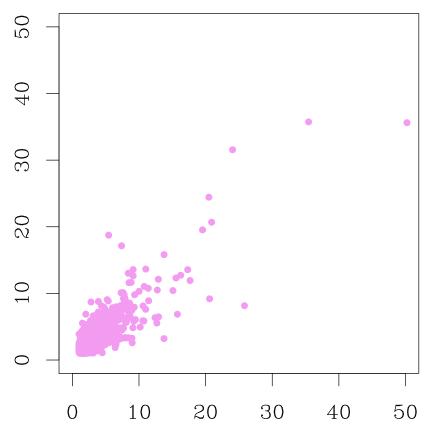


Data generated from the trained model

Trained on data from stations 9 and 28

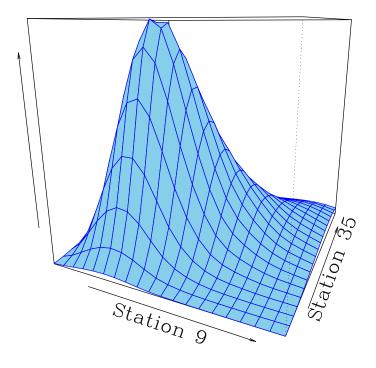


Trained on data from stations 9 and 35

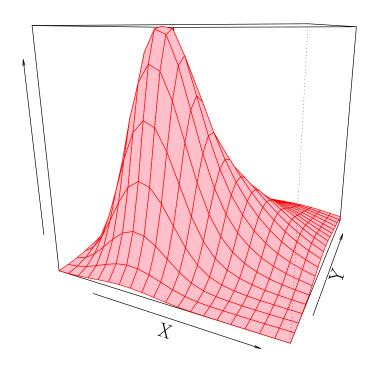


Full Density Estimate

Stations 9 and 35



Trained mixture



Kernel Estimates of the Angular Spread

Precipitation data versus Trained Mixture

Stations 9 and 28

0.0 0.2 0.4 0.6

-2.0

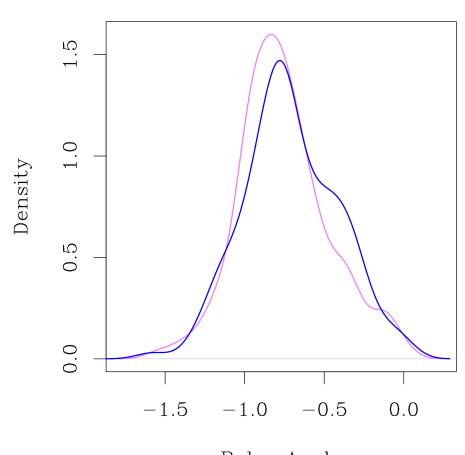
Polar Angle

0.0

0.5

-1.0

Stations 9 and 35



Polar Angle

Next Steps

* Introduce multivariate Gaussian components to model the central part

* Automated model selection: number of components

* Higher dimensions...

References

- [1] Carreau J. and Bengio Y. (2009) A Hybrid Pareto Model for Asymmetric Fat-tailed Data: the Univariate Case, Extremes, Vol. 12, 53-76.
- [2] Friedman, J. H. (1987) Exploratory Projection Pursuit, JASA, Vol. 82, 249-266.
- [3] Chen, S. S. and Gopinath, R. A. (2001) Gaussianization, NIPS, Vol. 13.
- [4] Coles, S., Heffernan J. and Tawn J. (1999) Dependence measures for extreme value analysis, Extremes, Vol. 2, 339-365