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Population genetic structure

» Many organisms form genetically differentiated subpopulations
(herds, colonies, schools, prides, packs).

» Importance of geographic scales (regional, local scales)

» Importance of culture, social rules, habitat (environmental
covariates)

Novembre et al (Nature 2008)



Population genetic structure

» Natural populations are not random mating populations.
There is a geographic range within which individuals are more
closely related to one another than to those far apart.

» Population structure is influenced by the demographic history
of a species, past events of population fission and fusion,
migrations, etc.

» A clear understanding of population structure is useful for
detecting genes under selection.

» A clear understanding of population structure is useful for

detecting genes associated with particular phenotypes (for
example, diseases).



Genotypic data sets

» n (diploid) individuals, L loci
» Standard genetic markers (10-100 polymorphic markers)
» SNPs (2.5 10% - 2.5 10° binary markers)

» Nuclear DNA sequences, full genomes
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Geographical sampling
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Regional and local scales

> At the regional scale, clusters and clines are the consequences
of demographic processes such as colonization, admixture,
reproductive isolation, or selection

» At the local scale, restricted dispersal creates local patches of
identical genotypes, spatial autocorrelation of allele
frequencies, and long-range isolation by distance patterns



Genetic clusters and clines

» Genetic clusters: Genetically divergent groups of individuals
that arise when gene flow is impeded by physical or behavioral

obstacles
» Clines: Large-scale spatial trends in allele frequencies or

genetic diversity
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Novembre and Dirienzo (Nature Review Genetics 2009)



Clusters and clines are not mutually exclusive patterns

Hewitt (Nature 2000)



Basics of population genetics: The Hardy-Weinberg equilibrium
model

> Allele and genotype frequencies in a population remain
constant from generation to generation.

» It assumes an infinitely large population size, random mating,
no mutation, no migration, and selective neutrality.

» Genotype frequencies are deduced from the allele frequencies.

0(q) 1(p)
0(q) | ¢ pg
1(p)| pg P

Genotype frequencies at a bi-allelic locus (Single Nucleotide
Polymorphism). Heterozygosity H = 2pq.



Linkage Disequilibrium (LD)

» Non random association of alleles at two or more loci

» Considering two bi-allelic loci, A and B, LD can be measured
by

» In the absence of evolutionary forces other than random
mating, the linkage disequilibrium measure D converges to zero
at a rate equal to the recombination rate between the two loci.



Population structure creates LD at unlinked loci

» Suppose our sample contains two populations in equal
proportions

» In population 1, we have pA =1land p, =0 (D =0)
» In population 2, we have p3 =0 and p3 =1 (D = 0)

» In the sample,
and

Thus, because pag = 0, the linkage disequilibrium measure is
non zero, and maximal in absolute value



Population structure creates Hardy-Weinberg disequilibrium

» Suppose our population contains two subpopulations in equal
proportions, each in HW equilibrium

» Consider a bi-allelic (0/1) locus and let p; and p» denote the
allele frequencies in subpopulations 1 and 2 (frequencies of 1).

» In the total population, we have

and

Thus, H # 2pqg.



Bayesian clustering algorithms

» Assume K unknown subpopulations, n individuals genotyped
at L loci.

» Principle: Clusters should maximize HWE and minimize LD

» Mixture model: For each individual i and each cluster &,
compute the probability that individual i originates in cluster k.

» Admixture model: For each individual / and each cluster k,
compute the fraction of genome of individual i that originates
in cluster k.



Mixture model

» Data: (yir)i<ne<t is a matrix of 0 and 1, where each
individual 7 is coded with 2 rows.

» Clusters: (zj)i<n, zi € {1,...,K}
» Allele frequencies: Given z; = k,

Pr(yie=11]zi=k,p) = prk

and

Pr(y| z,p) = HHHP@Z' — pu )t

i=1/¢=1j=1



Prior distributions

» Independent allele frequencies are sampled at each locus ¢ and
in each cluster k

~ beta(A1, \2) (default value \; = 1).

» Uniform distribution on individual cluster labels



Statistical mixture model

» Known for long in statistics as the latent class model
(Lazarsfeld and Henry 1968, Goodman 1974)

» Bayesian implementation popularized by the software
structure (Pritchard et al 2000)



Admixture models

» Genetic admixture is the process by which a hybrid population
is formed from contributions by two or more parental (or
ancestral) populations

> In an admixed population, individual genomes are themselves
(to a greater or a lesser extent) admixed.

» Bayesian clustering methods are capable of calculating
individual admixture proportions where the ancestral
populations are not imposed by the sampling process.



Divergence vs Admixture of populations
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Admixture and LD
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Admixture model

» Introduction of additional parameters: Q-matrix (n x K
dimensions)

gi.x = proportion of individual i’s genome from population k
» One cluster for each allele copy
z; ¢ = population of origin of allele copy y;

and
Pr(zip =k | p,q) = qix

where

gi. ~D(o,. .., oK)



Genetic structure of human populations

» Each individual is represented by a segment of total length 1.

» Admixture proportions are represented by colored segments.
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Rosenberg et al (Science 2003)



Connections

Population genetics

structure Pritchard et al 2000
Mixture model
Admixture model

Lazarsfeld and Henry 1968

Blei et al 2003

structurama Dirichlet process
Hueselenbeck et al 2007

Blei et al 2004

Hidden probit model
Jay et al 2011

Bandeen-Roche et al 1999

pca Patterson et al 2006
sfa Stephens 2010




How can we account for geography in admixture models?

» Gradients in gene frequencies are created by the contact of
two or more populations.
» Their shape is sigmoidal (Barton and Hewitt 1986)
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Modeling the cline
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Extension of the structure algorithm: including spatial
information

» Population genetic structure is spatially structured. Let x; be
the spatial coordinates of individual i. We assume the a
kriging model for the prior distribution

log o = f(xi)TB. + e

where the hyper-prior distribution on S is non-informative and
€ is a spatially autocorrelated Gaussian noise.
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» tess model (Durand et al Mol Biol Evol 2009).



Implementation and choice of K
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Inference based on Gibbs samplers
Model choice (K) is a difficult issue
Deviance Information Criterion
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Cross Validation
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Choosing K — DIC curves

Information criterion
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Geographic admixture of 2 parental populations (simple model)
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Results of structure and tess

TESS admixture model (K = 2)

=004 [ soshiblesEENIN < - oo
STRUCTURE admixture model (K = 2)
k=00 [N ~-o:

» Fgr (of the pooled parental populations) is a measure that
quantifies the departure from HWE in the ancestral population



A realistic scenario for a contact zone (Non equilibrium
stepping-stone simulation) (Movie)
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Results
8 data sets — Each with 100 polymorphic markers (20 alleles) for
1200 individuals (20 populations)

(A) (C)  T=2000, C=1000, m=0.9 (data set 1)
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(D) T=1000, C=1000, m=0.3 (data set 8)
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Results of inference: Visualizing the contact zone
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Application to Fundulus heteroclitus

Fundulus heteroclitus
722 individuals
15 populations

Adams et al 2006

500 km

East River

Hypothesized
contactzone




Application to Fundulus heteroclitus
Data: 722 individuals, 8 markers
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Using covariates: Latent class probit regression model (Jay et al
2011)

> In the multinomial probit model, there K — 1 regression
equations
Wik = XiBk + €ik
» A hidden cluster label variable can be obtained as follows

K if max Wi <0
2T ko if Wiy = max Wiy > 0

» Bayesian inference

Pr(z, B, ply)  Pr(y|z, p)Pr(z|8)Pr(B)Pr(p)



Hidden regression model (Jay et al 2011)
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Population structure of Native American populations (HGDP data set,
512 individuals — 678 markers)



Genes and languages in the Americas
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Admixture inference with covariates

» pops admixture model. Let x7 be the spatial coordinates of
individual /, and x a set of environmental covariates (eg,
climatic variables).

log o, = + + €.
where the prior distribution on /3 is non-informative and € is a

spatially autocorrelated Gaussian noise.

> «; is proportional to the 'average’ individual admixture
coefficient.

» Meets classical ecological modeling assumptions (Lichstein et
al 2002)



Application to alpine plants (Intrabiodiv project, collab. LECA)

20 species sampled in the Alps (= 300 individuals, 200 markers for
each species)

Ligusticum mutellinoides — Geum montanum — Trifolium alpinum



Population structure
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Prediction of intra-specific turnover under scenarios of climate
warming (Movie)

Ligusticum mutellinoides ~ Geum montanum Trifolium alpinum  Temperature
increase
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Prediction of intra-specific turnover under scenarios of climate
warming

400

300

200

100

Shift of the contact zone (km)

B Intra-specific turnover

Temperature augmentation
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Androsace obtusifolia
Arabis alpina
‘Campanula barbata
Cerastium uniflorum
Dryas octopetala

Gentiana nivalis

Geum montanum

Geum reptans
Gypsophila repens
Hedysarum hedysaroides

Hypochaeris uniflora -—-
Juncus trifidus
Ligusticum mutellinoides
Loiseleuria procumbens
Luzula alpinopilosa

Phyteuma hemisphaericum
Rhododendron ferrugineum
Saxifraga stellaris
Sesleria caerulea
Trifolium alpinum




Concluding messages

» Bayesian algorithms detect population structure and individual
admixture levels without a need to predefine ancestral
populations

» Landscape genetics: Include ecological and geographic
covariates in the inference of population structure

» Current and future developments: Explore connections with
topic and probabilistic PCA models

» More developments: Include local adaptation models in the
inference of allele frequencies
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