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Outline

I Population genetic structure

I Mixture and admixture models

I Latent variable regression models

I Applications to humans and plants



Population genetic structure

I Many organisms form genetically di�erentiated subpopulations
(herds, colonies, schools, prides, packs).

I Importance of geographic scales (regional, local scales)

I Importance of culture, social rules, habitat (environmental
covariates)

Novembre et al (Nature 2008)



Population genetic structure

I Natural populations are not random mating populations.
There is a geographic range within which individuals are more
closely related to one another than to those far apart.

I Population structure is in�uenced by the demographic history
of a species, past events of population �ssion and fusion,
migrations, etc.

I A clear understanding of population structure is useful for
detecting genes under selection.

I A clear understanding of population structure is useful for
detecting genes associated with particular phenotypes (for
example, diseases).



Genotypic data sets

I n (diploid) individuals, L loci

I Standard genetic markers (10-100 polymorphic markers)

I SNPs (2.5 105 - 2.5 106 binary markers)

I Nuclear DNA sequences, full genomes

Loc1.1 Loc1.2 Loc2.1

ind1 11 8 3

ind2 11 7 5

...



Geographical sampling
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Cultural, ecological or environmental covariates

I Language

I Habitat

I Climate

I · · ·



Regional and local scales

I At the regional scale, clusters and clines are the consequences
of demographic processes such as colonization, admixture,
reproductive isolation, or selection

I At the local scale, restricted dispersal creates local patches of
identical genotypes, spatial autocorrelation of allele
frequencies, and long-range isolation by distance patterns



Genetic clusters and clines

I Genetic clusters: Genetically divergent groups of individuals
that arise when gene �ow is impeded by physical or behavioral
obstacles

I Clines: Large-scale spatial trends in allele frequencies or
genetic diversity

Novembre and Dirienzo (Nature Review Genetics 2009)



Clusters and clines are not mutually exclusive patterns

Hewitt (Nature 2000)



Basics of population genetics: The Hardy-Weinberg equilibrium
model

I Allele and genotype frequencies in a population remain
constant from generation to generation.

I It assumes an in�nitely large population size, random mating,
no mutation, no migration, and selective neutrality.

I Genotype frequencies are deduced from the allele frequencies.

0 (q) 1 (p)

0 (q) q2 pq

1 (p) pq p2

Genotype frequencies at a bi-allelic locus (Single Nucleotide

Polymorphism). Heterozygosity H = 2pq.



Linkage Disequilibrium (LD)

I Non random association of alleles at two or more loci

I Considering two bi-allelic loci, A and B , LD can be measured
by

D = pAB − pApB = cov(A,B)

I In the absence of evolutionary forces other than random
mating, the linkage disequilibrium measure D converges to zero
at a rate equal to the recombination rate between the two loci.



Population structure creates LD at unlinked loci

I Suppose our sample contains two populations in equal
proportions

I In population 1, we have p1A = 1 and p1B = 0 (D = 0)

I In population 2, we have p2A = 0 and p2B = 1 (D = 0)

I In the sample,

pA = 1/2 and pB = 1/2

Thus, because pAB = 0, the linkage disequilibrium measure is
non zero, and maximal in absolute value

|D| = 1/4 .



Population structure creates Hardy-Weinberg disequilibrium

I Suppose our population contains two subpopulations in equal
proportions, each in HW equilibrium

I Consider a bi-allelic (0/1) locus and let p1 and p2 denote the
allele frequencies in subpopulations 1 and 2 (frequencies of 1).

I In the total population, we have

p =
p1 + p2

2
and H = p1q1 + p2q2

Thus, H 6= 2pq.



Bayesian clustering algorithms

I Assume K unknown subpopulations, n individuals genotyped
at L loci.

I Principle: Clusters should maximize HWE and minimize LD

I Mixture model: For each individual i and each cluster k ,
compute the probability that individual i originates in cluster k .

I Admixture model: For each individual i and each cluster k ,
compute the fraction of genome of individual i that originates
in cluster k .



Mixture model

I Data: (yi`)i≤n,`≤L is a matrix of 0 and 1, where each
individual i is coded with 2 rows.

I Clusters: (zi )i≤n, zi ∈ {1, . . . ,K}
I Allele frequencies: Given zi = k ,

Pr(yi` = 1 | zi = k , p) = p`,k

and

Pr(y | z , p) =
n∏

i=1

L∏
`=1

2∏
j=1

p
y

j
i

`,zi
(1− p`,zi

)1−y
j
i



Prior distributions

I Independent allele frequencies are sampled at each locus ` and
in each cluster k

p`k ∼ beta(λ1, λ2) (default value λi = 1).

I Uniform distribution on individual cluster labels

Pr(zi = k) =
1

K
, k = 1, . . . ,K .



Statistical mixture model

I Known for long in statistics as the latent class model

(Lazarsfeld and Henry 1968, Goodman 1974)

I Bayesian implementation popularized by the software
structure (Pritchard et al 2000)



Admixture models

I Genetic admixture is the process by which a hybrid population
is formed from contributions by two or more parental (or
ancestral) populations

I In an admixed population, individual genomes are themselves
(to a greater or a lesser extent) admixed.

I Bayesian clustering methods are capable of calculating
individual admixture proportions where the ancestral
populations are not imposed by the sampling process.



Divergence vs Admixture of populations



Admixture and LD

Population 1 Population 2

Secondary
Contact



Admixture model

I Introduction of additional parameters: Q-matrix (n × K

dimensions)

qi ,k = proportion of individual i ′s genome from population k

I One cluster for each allele copy

zi ,` = population of origin of allele copy yi ,`

and
Pr(zi ,` = k | p, q) = qi ,k

where

qi ,. ∼ D(α1, . . . , αK ) Dirichlet distribution.



Genetic structure of human populations

I Each individual is represented by a segment of total length 1.

I Admixture proportions are represented by colored segments.

Rosenberg et al (Science 2003)



Connections

Population genetics Statistical learning

structure Pritchard et al 2000 Latent class models
Mixture model Lazarsfeld and Henry 1968

Admixture model Latent Dirichlet Allocation
Blei et al 2003

structurama Dirichlet process Hierarchical topic models
Hueselenbeck et al 2007 Blei et al 2004

Hidden probit model Latent class regression models
Jay et al 2011 Bandeen-Roche et al 1999

pca Patterson et al 2006 probabilistic PCA
sfa Stephens 2010 Non-negative matrix factorization



How can we account for geography in admixture models?

I Gradients in gene frequencies are created by the contact of
two or more populations.

I Their shape is sigmoidal (Barton and Hewitt 1986)



Modeling the cline



Extension of the structure algorithm: including spatial
information

I Population genetic structure is spatially structured. Let xi be
the spatial coordinates of individual i . We assume the a
kriging model for the prior distribution

logαi . = f (xi )
Tβ. + εi .

where the hyper-prior distribution on β is non-informative and
ε is a spatially autocorrelated Gaussian noise.

I tess model (Durand et al Mol Biol Evol 2009).



Implementation and choice of K

I Inference based on Gibbs samplers

I Model choice (K ) is a di�cult issue

I Deviance Information Criterion

I Cross Validation



Choosing K � DIC curves
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Geographic admixture of 2 parental populations (simple model)



Results of structure and tess

I FST (of the pooled parental populations) is a measure that
quanti�es the departure from HWE in the ancestral population



A realistic scenario for a contact zone (Non equilibrium
stepping-stone simulation) (Movie)
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Results
8 data sets � Each with 100 polymorphic markers (20 alleles) for
1200 individuals (20 populations)



Results of inference: Visualizing the contact zone
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Application to Fundulus heteroclitus



Application to Fundulus heteroclitus

Data: 722 individuals, 8 markers



Using covariates: Latent class probit regression model (Jay et al
2011)

I In the multinomial probit model, there K − 1 regression
equations

Wik = X̃iβk + εik

I A hidden cluster label variable can be obtained as follows

zi =

{
K if maxWi` < 0
k if Wik = maxWi` > 0

I Bayesian inference

Pr(z , β, p|y) ∝ Pr(y |z , p)Pr(z |β)Pr(β)Pr(p)



Hidden regression model (Jay et al 2011)

Population structure of Native American populations (HGDP data set,

512 individuals � 678 markers)



Genes and languages in the Americas



Admixture inference with covariates

I pops admixture model. Let x si be the spatial coordinates of
individual i , and xei a set of environmental covariates (eg,
climatic variables).

logαi . = f (x si )
Tβs. + f (xei )

Tβe. + εi .

where the prior distribution on β is non-informative and ε is a
spatially autocorrelated Gaussian noise.

I αi is proportional to the 'average' individual admixture
coe�cient.

I Meets classical ecological modeling assumptions (Lichstein et
al 2002)



Application to alpine plants (Intrabiodiv project, collab. LECA)

20 species sampled in the Alps (≈ 300 individuals, 200 markers for
each species)

Ligusticum mutellinoides � Geum montanum � Trifolium alpinum



Population structure



Prediction of intra-speci�c turnover under scenarios of climate
warming (Movie)



Prediction of intra-speci�c turnover under scenarios of climate
warming



Concluding messages

I Bayesian algorithms detect population structure and individual
admixture levels without a need to prede�ne ancestral
populations

I Landscape genetics: Include ecological and geographic
covariates in the inference of population structure

I Current and future developments: Explore connections with
topic and probabilistic PCA models

I More developments: Include local adaptation models in the
inference of allele frequencies
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