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Building a differentiable and riemannian setting on shape spaces

Anatomical shapes

Few anatomical structures segmented in MRI

Sulcal Lines Internal Structures Fiber Bundles

Various shape spaces: points, surfaces, pieces of submanifolds, grey-level
images, tensor fields, etc.
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Building a differentiable and riemannian setting on shape spaces

Trivial metric don’t work

I Differentiable structure should be compatible with “smooth”
transformation of a shape (e.g. geometrical transformation)

I Not true for the L2 metric on image and “smooth” transformations

τ → τ ḟ (x)
.

= f (x + τ)

I τ → t · f is not smooth (but τ → τ is !).
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Building a differentiable and riemannian setting on shape spaces

A global geometrical setting through Riemannian
submersion from a group of transformation onto a
homogeneous space

I Consider a transitive group action i.e.

G ×M → M
(g,m) → g.m

where M = Gṁ0 with m0 ∈ M (“template”).
I If G is equipped with a G0 (isotropy group) equivariant metric then

dM(m,m′) = inf{ dG(g,g′) | g.m0 = m, g′.m0 = m′}

is a distance on M (coming from the projected riemannian distance on M)

G/G0 ' M

I Simple framework: Right invariant metric on G (standard construction on
finite dimensional Lie group).

(Video) Example on the sphere (landmarks matching) (J. Glaunes)
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Building a differentiable and riemannian setting on shape spaces

Thm (T.)
For any V ↪→ C1

0 (Rd ,Rd ) there exists GV ⊂ Diff1(Rd ) with a right invariant
distance dG for which

I GV is complete

I There exists a minimizing geodesic between any two elements in GV

dG(Id, φ)2 = inf{
∫ 1

0
|vt |2dt | φ̇ = v ◦ φ, φ1 = φ}
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Normal coordinates for statistical analysis
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Normal coordinates for statistical analysis

Common representation framework

I Exponential mapping

expm0
: Tm0M → M

δm0 → expm0
(δm0)

such that t → expm0
(tδm0) is the solution

of the geodesic equation

∇ṁṁ = 0

starting from m0 with initial velocity δm0.
I Local diffeomorphism (when dimM <∞)
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Normal coordinates for statistical analysis

Feasibility of the normal coordinate computation

I Optimal control problem, π(φ) = φ.m0:∣∣∣∣∣∣
min 1

2

∫
|vt |2V dt + g(m1) g(m) = r(m,mobs)

ṁ = dπ(m).v = v .m

I Associated hamiltonian

H(m,p, v) = (p|v .m)− 1
2
|v |2V

I Metric operator:

1
2
|v |2V = (Lv |v) with L : V → V ∗
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Normal coordinates for statistical analysis

Reduction via momentum map

I v = Kj(m,p) (Horizontal lift)
I Maximum Pontryagin Principle

Hr (m,p) = max
v

H(m,p, v)

I Hamiltonian evolution:∣∣∣∣∣ ṁ = ∂Hr
∂p

ṗ = −∂Hr
∂q
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Normal coordinates for statistical analysis

Reduction and statistical power

I A geodesic on M comes from a geodesic on G but its initial velocities v0

or its momentum Lv0 belongs to a subspace

V ∗0 = j(m0,T ∗m0
M) ⊂ V ∗

So, geodesic optimization⇒ dimensionality reduction⇒ better statistical
power.
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Normal coordinates for statistical analysis

I Curve example: γ0 : [0,1]→ Rd a continuous curve. Then p0 is a
vectorial measureMf ([0,1],Rd ) = C([0,1],Rd )∗ and

v0(x) =

∫ 1

0
K (x , γ0(s))dp0(s) K (x , y) ∈Md (R) kernel

I Moreover, if the geodesic comes from a smooth inexact matching
problem e.g.

g(γ1) =

∫
|γobs − γ1(s)|2ds

then p1 + ∂g
∂γ (γ1) = 0 and p1 ∈ C([0,1],Rd ). Same is true for p0

I For images, if the template is smooth and the data attachment term is
smooth e.g. g(I1) =

∫
|Iobs − I1|2(x)dx then

v0(x) =

∫
K (x , y)p0(y)∇I0(y)dy

Lv0 = p0∇I0 distribution of vector fields normal to the level set of I0.
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Means and Atlases

Karcher means

For a data set {mi} 1 ≤ i ≤ n the Karcher mean is the point m0 minimizing

V (m0)
.

=
n∑

i=1

dM(m0,m1)2

I Existence and uniqueness for finite dimensional M and {mi} sufficiently
closed or under negative curvature condition. Situation unclear for
dimM =∞.
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Means and Atlases

I Usually observations are yi belongs to an observation space Y different
from M. Need the introduction of a data attachment term.

minimize
m0,m1,··· ,mn

n∑
i=1

dM(m0,m1)2 + λ

n∑
i=1

r(mi , yi )

or equivalently (lift on the group G)

minimize
m0,φ1,··· ,φn

∑
i=1

dG(Id, φi )
2 + λ

n∑
i=1

r(φi .mi , yi )
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Means and Atlases

Hypertemplate setting

minimize
m0,φ1,··· ,φn

∑
i=1

dG(Id, φi )
2 + λ

n∑
i=1

r(φi .mi , yi )

I Variational problem: if r is smooth enough we have existence of a
solution φ̂i , · · · , φ̂n for m0 fixed: n pairwise matching problems.

I If m0 is let free, existence issues if dim(M) = +∞.

I Introduce an hypertemplate mh and look for m0 = ψ.mh solution of

minimize
ψ,φ1,··· ,φn

dG(Id, ψ)2 +
∑
i=1

dG(Id, φi )
2 + λ

n∑
i=1

r(φi ◦ ψ.mh, yi )

m̂0 = ψ̂.mh, m̂1 = φ̂i .m̂0 Actually used to build atlases in medical imaging
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Means and Atlases

Atlas learning through hypertemplate

Figure: 3D hippocampuses data.- Ma, Miller, T., Younes Neuroimage’08
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Currents and Manifold Representation

Why using currents ?

I Challenging problem for submanifold data :

I if X is a submanifold, it does not depend as a manifold on any particular
parametrization (up to smooth chart changes)

I Noisy observation of manifolds may not be a smooth manifold or a
manifold at all !

Alain Trouvé () Statistics on Shape Spaces 19 / 42



Currents and Manifold Representation

What is a current ?

I Goes back to De Rham. Introduced in this setting by Glaunes and
Vaillant.

I Currents integrate differential forms

ω ∈ Ωp
0(Rd )︸ ︷︷ ︸

cont. p-form

→ CX (ω) =

∫
X
ω ∈ R

On a chart γ : U → X ⊂ Rd∫
γ(U)

ω
.

=

∫
U
ωγ(s)(

∂γ

∂s1
∧ · · · ∧ ∂γ

∂sp
)ds

but the expression in independent of a smooth positively oriented
reparametrization of the coordinate space ψ : U → U

∂γ ◦ ψ
∂s1

∧ · · · ∧ ∂γ ◦ ψ
∂sp

= Jac(ψ)(
∂γ

∂s1
∧ · · · ∧ ∂γ

∂sp
) ◦ ψ

I X can be seen as an element of (Ωp
0(Rd ))∗. Depends on the orientation

of X (X is an orientable manifold).
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Currents and Manifold Representation

RKHS norms on currents

I Idea: if W is a RKHS on the space on p-forms and W ↪→ Ωp
0(Rd ) then

Ωp
0(Rd )∗ ↪→W ∗ (W dense subset of Ωp

0(Rd )). We get an hilbertian
structure on currents (dual norm).

I A kernel for p-forms is given as K : Rd × Rd → (ΛpRd ⊗ ΛpRd )∗ and if
X ,Y are two orientable sub-manifolds

〈CX ,XY 〉W∗
.

=

∫
X×Y

K
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Currents and Manifold Representation

Punctual currents and approximations

I ξ ∈ ΛpRd , x ∈ Rd define a punctual current ξ ⊗ δx ∈W ∗ such that

(ξ ⊗ δx |ω) = ωx (ξ)

I Discretization : line γ : [0,1]→ Rd

Cγ '
n∑

i=1

(γ(si+1 − si ))⊗ δ(γ(si )+γ(si+1)/2

I Triangulated surface :

T (a,b, c)→ ξ ⊗ δx

with x = (a + b + c)/3 and ξ = ~ab ∧ ~ac.
I Make sense for arbitrary dimensions p

and d .
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Currents and Manifold Representation

Matching pursuit algorithm

Start from an initial manifold and C0 = CX and iterate :∣∣∣∣∣∣
(xn+1, ξn+1) = argmaxx,ξ〈ξ ⊗ δx ,CX − Cn︸ ︷︷ ︸

residual

〉W∗

Cn+1 = Cn + ξn+1 ⊗ δxn+1

I Very convenient to get compressed representation of manifolds

I Complexity control via sparse non parametric approximations

-Durrleman, Pennec, T., Ayache MICCAI’08.
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Currents and Manifold Representation

Currents and means (Atlas construction for manifolds)

1. Define a parametrization invariant data attachment term: for X and Y two
orientable submanifold (same dimension)

r(X ,Y ) = h(|CX − CY |W∗) .

2. Easy to consider noisy observation as currents Y = W ∗ and to defined
generalized Karcher means :

minimize
C0,φ1,··· ,φn

∑
i=1

dG(Id, φi )
2 + λ

n∑
i=1

|φi .C0 − yi |2W∗

where (φ,C)→ C.φ is the push forward action.

3. For φ1, · · · , φn fixed feasible computation of C0 even with a large number
of observations yi (control of the number of points via matching pursuit).
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Currents and Manifold Representation

Atlas construction for fiber tracts

Figure: 5 fiber tracts segmented in 6 subjects
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Currents and Manifold Representation

Atlas construction for fiber tracts

(a) One subject (b) template (c) template
(occipital view) (lateral view)

Figure: Computed Template - Durrleman, Fillard, Pennec, T., Ayache Neuroimage’11
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Statistics and statistical models
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Statistics and statistical models

Deformation analysis

I φ̂1, · · · , φ̂n gives initial momentum p̂1, · · · , p̂n the statistical analysis in the
(finite dimensional) tangent space.

I PCA analysis (using the induced metric)

The analysis can be lifted on the space of diffeomorphism by horizontal lift
giving generative model via shooting.

Sulcal lines: pairwise registration first mode
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Statistics and statistical models

Deformation + textures (for manifolds)

I Deformations
φ̂1, · · · , φ̂n −→ p̂1, · · · , p̂n .

I Texture : Residues
R̂i = yi − φ̂.C0 ∈W ∗

I Analysis of the joint model

Fiber tracts: Deformation pairwise registration first mode (corticobulbar tract)
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Statistics and statistical models

Deformation + textures (for manifolds)

I Deformations
φ̂1, · · · , φ̂n −→ p̂1, · · · , p̂n .

I Texture : Residues
R̂i = yi − φ̂.C0 ∈W ∗

I Analysis of the joint model

Fiber tracts: First Mode of Residues (corticobulbar tract)

texture mode at −σ template texture mode at +σ
B̄ −mε B̄ B̄ + mε
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Statistics and statistical models

Discrimination study workflow

I Learning of a common template + analysis in normal coordinates

I Application there of stander classification/discrimination methods

I Analysis of log(Jac(Φ)) on the template (atrophy patterns).
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Statistics and statistical models

Population analysis via bayesian mixed-effects
hierarchical model

yi = φi .(m0 + Ti ) + σni

I Fixed effects (population effects): template m0,law of the deformations φ,
law of the texture model T , noise level σ: θ = (m0,pφ,pT , σ).

I Random effects (individual effects): individual deformation φi , texture Ti .

I Many hidden-variables: φi ’s,Ti ’s, ni ’s.

I Hyperparameters: priors on the fixed effect distribution.

θ̂ = argmax
θ

P(θ|y1, · · · , yn)
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Statistics and statistical models

Deterministic algorithm as approximations of
stochastic ones

yi = φi .(m0 + Ti ) + σni

I Usual deterministic method for atlas learning appear to be straightforward
approximations of EM-type algorithms (where the E-step is replaced by
the mode approximation of the posterior distribution on the hidden
variables)- Allassonnière, Amit, T. JRSS’07

I We could use this statistical setting to propose better algorithms: MCMC
methods for the posterior distribution. -Kuhn and Lavielle, Compt. Stat.
and Datata Analysis’05, Allassonniere, Kuhn, T. Bernoulli’10

Current state-of-the-art: Finite dimensional setting pour the fixed effects, no
texture, SAEM-MCMC algorithms, linear deformation model, images.
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Statistics and statistical models

Templates estimation through SAEM-MCMC algorithm

Figure: US-Postal database, from Allassonnière et al., Bernoulli’10. Single model,
SAEM-MCMC algorithm
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Statistics and statistical models

Templates estimation through SAEM-MCMC algorithm

Figure: US-Postal database, from Allassonnière et al., Bernoulli’10. Robustness to
noise: Mode approximation Versus SAEM-MCMC algorithm
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Statistics and statistical models

Mixture models

Statistical models extended to mixture models allowing multi-template
estimation

Figure: US Postal database - multi-template learning via mixture model. From
Allassonniere, Kuhn ESAIM P&S’10
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Challenges
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Challenges

I Proper statistical modeling and model estimation point of view appears to
be a promising avenue in this high dimensional setting compared to more
purely model free deterministic point of view

I In particular, integration of the posterior distribution of deformations
instead of mode approximation is necessary for consistent model
estimation and to work in noisy situations.
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Challenges

I However, still a high computational burden for MCMC sampling since the
hidden variable are living in a high dimensional space. This implies the
need of better adapted sampling scheme using the implicit low
dimensionality of the high posterior log-likelihood curved submanifold
(Riemannian Manifold Hamiltonian Monte Carlo, Girolami, Calderhead,
Chin JRSS’10).

I Extension to the non linear situation using momentum representation and
geodesic shooting is possible (work in progress)

I Manifolds: extension to the manifold setting is not done yet. Nor the
estimation in this framework of a texture part (fiber tracks).

I Current implementation and theoretical work for the statistical modeling is
restricted to the finite dimensional setting. Needs to understand the limit
to the infinite dimensional setting.
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Challenges

Next frontier: Modeling shape evolution and growth

An emerging question
I An emerging question of interest is now to study

the time dependent data of shapes (images,
landmarks, surfaces or tensors).

I Main target application: Growth studies,
longitudinal studies.

with specific needs and challenges
I Flexibility: more or less non parametric models
I Versatility (various data and contexts)
I Robustness (noise, time sampling)
I Interpretability (ideally generative stochastic

models)
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Challenges

Piecewise Geodesics Models

Observed shapes

Reconstructed path

Miller’s Growth Model (TS-LDDMM)

x̂t = φt · x0, (∂tφ = vt ◦ φ)

inf
v

∫ 1

0
|vt |2dt +

n∑
k=1

gk (φt · x0,xobs
tk )

where xobs
tk are observed shapes (one subject).
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Challenges

Piecewise Geodesics Models

Figure: Longitudinal growth model results for Huntington’s Disease examining the
caudate nucleus, From A. Khan and M. F. Beg, ISBI 2008.

Miller’s Growth Model (TS-LDDMM)

x̂t = φt · x0, (∂tφ = vt ◦ φ)

inf
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Challenges

2nd order model: Shape Spline V Piecewise Geodesic
P
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Challenges

A few references
Shapes and Diffeomorphisms

I L. Younes, “Shapes and Diffeomorphisms”, Springer, May 2010.
I A. Trouvé and L. Younes, “Shape Spaces”, Handbook of Mathematical Methods in

Image Processing., Springer 2010.
Computational Anatomy, Statistic modeling, Currents and Growth

I M.I. Miller, “Computational anatomy: shape, growth, and atrophy comparison via
diffeomorphisms”, NeuroImage, ps19-s23, 2004.

I S. Allassonnière, Y. Amit, and A. T. Towards a coherent statistical framework for
dense deformable template estimation. JRSS, Series B, 69(1) :3-29, 2007.

I S. Allassonnière, E. Khun, A. T. Bayesian deformable models building via
stochastic approximation algorithm : A convergence study. Bernoulli, 2010

I J. Glaunes, Transport par difféomorphismes de points, de mesures et de courants
pour la comparaison de formes et l’anatomie numérique, PhD Thesis, Univ Paris
13, 2005.

I S. Durrleman, Statistical models of currents for measuring the variability of
anatomical curves, surfaces and their evolution, PhD Thesis, Univ. Nice, 2010.

I A. T. and F.-X. Vialard “Shape Splines and Stochastic Shape Evolution: A Second
Order Point of View”, QAM 2010.
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