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@ Motivations

e Finding multiple change-points in a single profile

e Finding multiple change-points shared by many signals
e Supervised classification of genomic profiles

e Learning molecular classifiers with network information

e Conclusion
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Chromosomic aberrations in cancer

Chromosome
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Comparative Genomic Hybridization (CGH)
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Can we identify breakpoints and "smooth" each
profile?
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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Can we detect discriminative patterns?
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Aggressive (left) vs non-aggressive (right) melanoma.
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DNA — RNA — protein
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@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Can we identify the cancer subtype? (diagnosis
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Can we predict the future evolution? (prognosis)
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@ Many problems...
@ Data are high-dimensional, but "structured"”

@ Classification accuracy is not all, interpretation is necessary
(pattern discovery)

@ A general strategy
min R(3) + AQ(5)
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e Finding multiple change-points in a single profile
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The problem
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@ Let Y € RP the signal
@ We want to find a piecewise constant approximation U € RP with
at most k change-points.
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The problem
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@ Let Y € RP the signal
@ We want to find a piecewise constant approximation U € RP with
at most k change-points.
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
i _ 2 ) )
min || Y — U|[® such that > (Uit # Up) < k

i=1
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k
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@ This is an optimization problem over the () partitions...
@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 108 ~ 10°...
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(3) is convex and "smooth", the solution of

m|n R(5 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(3) is convex and "smooth", the solution of

mlnR +)\Z\ﬁ,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = i1 — Bi, Uy = (1
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 3 piecewise constant
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TV signal approximator

p—1
in|Y-p3]|? h th 1= Gi] <
min ||Y'— 3 |* such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 3| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e Y P . 32 < v (Mairal et al. 2010)

Sige
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p=
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Solving TV signal approximator

p—1
min || Y — 3||° such that g — Bl <
min || Y- 5] ;wm Bil <

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all  with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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Speed trial : 2 s. for K = 100, p = 107

Speed for K=1, 10, 1e2, 1e3, 1e4, 1e5
T T

0.9 i

0.7f o

0.6 .

05f : ‘ 1

seconds

0.3 4

0.2 =

0.1

signal length

J.P Vert (ParisTech) Prior knowlege in ML StatLearn 21/68



@ A fast method for multiple change-point detection

@ An embedded method that boils down to a dichotomic wrapper
method (very different from dynamic programming)
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e Finding multiple change-points shared by many signals
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The problem

L L L L L
500 600 700 800 900 1000

L L L
0 100 200 300 400

L L L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000

L L L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000

@ Let Y € RP*" the nsignals of length p

@ We want to find a piecewise constant approximation {J ¢ RP*"

with at most k change-points.
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation U € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(Uqe # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + [|wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3

J.P Vert (ParisTech) Prior knowlege in ML StatLearn 26/68



TV approximator for many signals

@ Replace

p—1
min | Y—U|? suchthat > 1(Us1e# Uy.) <k

Uerpxm i1
by
p—1
min ||Y — U]|[? such that Wil|Ui 1 e — Ul <
UGRPXHH | > Wil Ui, ol < 1

i=1

e Practice: can we solve it efficiently?

e Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

@ Make the change of variables:

Bie =W (Ut1e—Uy,) fori=1,....,p—1.

@ TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

p—1
min || Y= X3+ X ol
ﬂeR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.
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TV approximator implementation

p—1

min ||V = X3+ 2> [ Bie

—1
,BGR(P )xn i—1

The TV approximator can be solved efficiently:

@ approximately with the group LARS in O(npk) in time and O(np)
in memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X' R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a),) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a<...<apy <p-1,andforany |Al x nmatrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory
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Consistency for a single change-point

Suppose a single change-point:
@ at position u = ap

@ with increments (3;)i—1, p S.t. % = limy_oo 2 377 32
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as

p increases?
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Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[Up1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7® < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;;2 +o(p~1/2).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wil|Uit1.e — Uil <
UeRpan | ; il Ui, ioll < 1t

Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n — +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xpr+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

 i(p— | 72 D N2 e
G- Efi _p—1) » 3 x{' (p—u)? ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistent estimation of more change-points?
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e Supervised classification of genomic profiles
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The problem
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@ Xq,...,Xn € RP the n profiles of length p
@ Yi,...,¥n € [—1,1] the labels
@ We want to learn a function f : R° — [—1,1]
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Prior knowledge

@ Sparsity : not all positions should be discriminative, and we want
to identify the predictive region (presence of oncogenes or tumor
suppressor genes?)

@ Piecewise constant : within a selected region, all probes should
contribute equally

. l "
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Fused Lasso signal approximator (Tibshirani et al.,

2005)

p P p—1
Bn;;lgj (Vi — Bi)? + M Zlﬂil +Azz|ﬁi+1 - Bil -
i— i—1 i—1

@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions

Sige
2 1 0 1 2 3
=]
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Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
] T

: , 14 A 1 — 3.
[%Q)i_/(yl,ﬂ x,)+A1§w+ 2§W:+1 Bi

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

J.P Vert (ParisTech) Prior knowlege in ML StatLearn 40/68



Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
] T

, , 1+ A i1 — Bl
f%i_/(y,,ﬁ x,)+A1§w+ zgwﬁm Bi

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
up to p=10% ~ 10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°
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Example: predicting metastasis in melanoma
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e Learning molecular classifiers with network information
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Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph-based penalty

min R(5) + X2a(0)

Hypothesis

We would like to design penalties Qg(5) to promote one of the
following hypothesis:
@ Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph

@ Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Graph based penalty
Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Qspectral(ﬁ) - Z(ﬁ/ - ﬁ/) )

inj
min R(3) + ;j(ﬂi — 6.
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Spectral penalty as a kernel

Theorem

The function f(x) = 3" x where b is solution of

ﬂrghg,;lzl(ﬁTx,,y,) +A> (6

IN]

is equal to g(x) = v ®(x) where 7 is solution of

;2;15,,—72/( To(x)), y,)+M Y5

and where
d(x)To(x') = xT Kgx'

for Kg = L*, the pseudo-inverse of the graph Laplacian.

v
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Classifiers
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Classifier
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Other penalties with kernels

d(x)To(x') = x" Kgx’
with:
@ Kg=(c+ L) 1leadsto

p
Qp)=cd B2 +> (5-8)°.
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of 5 in the Fourier domain.
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Other penalties without kernels

@ Gene selection + Piecewise constant on the graph

QB)=>|8- 6,\+Z\B,

INj

@ Gene selection + smooth on the graph

QB) =>_ (8- 8) +Z!6,

IN_[
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How to select jointly genes belonging to predefined

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wo, W) = |[(wq, wa) |2+ wal|2
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What if a gene belongs to several groups?

Issue of using the group-lasso
® Qgroup(W) = >4 || Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1 O
Cell
cycle
= §
G2 G2
IGF, lwg llo=[Iwgzll2=0 -
%%
Qoo\q\o\\ /”5,;"% G3 O
S o“s 7
? o,
%

Removal of any group
containing a gene = the
weight of the gene is 0.

J.P Vert (ParisTech) Prior knowlege in ML StatLearn 56 /68

IGF selection = selection of
unwanted groups



Overlap norm (Jacob et al., 2009)

Introduce latent variables vg:

o |
minL(w) + 2> [vollz o= g
geg Lo

W = ]+ v2 +

W =23 geq Vo | |
ol M

supp (vg) € g- NI

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.
@ Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm

mln L(w) + A |lvgll

geg
=min L(w) + \Q w
W = ZQGQ Vg W ( ) over/ap( )
supp (vg) € g. |
with v Z [vgll2
A 9€6
Qover/ap(W) =Y w= 3 o Vg (*)
g9

supp (vg) C g.

Property

@ Qoveriap(W) is a norm of w.

@ Quvenap(.) associates to w a specific (not necessarily unique)
decomposition (vg)geg Which is the argmin of (x).
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Overlap and group unity balls

Balls for QY

Sroup () (middle) and QF

overlap

(+) (right) for the groups
G = {{1,2},{2,3}} where w; is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vg and Q7 cap (W) = 3 [[Vgll2-
@ Consider the regularized empirical risk minimization problem
Lw) + 29 . (w).

overlap

v
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that

W= Zg Vg and Qoverlap ( ) Z ” Vg||2
@ Consider the regularized empirical risk minimization problem

(W) + )‘Qoverlap (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n — oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWg7£0}:{geg]Vg7£0}.

v
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

10

I -
. —overlapping|
z lasso
x

RMSE
o v a0 ®

1 15 2
10g, (1) log,(A) log, o(n)

80

Frequency of selection of each variable with the lasso (left) and Qogver,ap ()

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Qim‘ersection(ﬁ) - Z \/ @2 + ﬁ'z )

i~f

Qunion(B) = sup OéTﬁ-

A 2 2
(XERP.VINLHQI ""O‘j [I<1

v
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~of

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 2 Q erinr ()
ERROR 0.38+0.04 0.36+0.03
MEAN { PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36£0.01
Av. SIZE C.C. 1.03 1.30
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Lasso signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40
S
aa

}E‘FlAl
PCSK6 —  BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT
MYCBP GRP. DLEU2  ALDH3A2  VEGFB  PSMD7  CXCLI3 FLT3
SLC16A3  AKRIC4 ~ BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8 ~ NLRP2  ANKZF1  PRC1

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2
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Graph Lasso signature

Ca0ortn1

conez

ekavT
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SLC39A7 — PFONG
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3
cenez
VEGFA — VEGFS
AREG — MMPO

peske

RADS1
" Rapso
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YWHAZ Graps
sep1
PovA
TroRL
~
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\ |
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— BTG2 ALDH3AZ — Ceorf35  AURKE — BIRCS

Prior knowlege in

N2

psMD2 — ZeTHIG

P2 AP

GA1 — peee

FADST

FADS2

StatLearn

66 /68



G Conclusion
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Conclusions

@ Feature / pattern selection in high dimension is central for many
applications

@ Convex sparsity-inducing penalties or positive definite kernels are
promising

@ Success stories remain limited on real data...

@ Need to adjust the complexity of the model to the data available
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