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Abstract—Hidden Markov random fields appear naturally in problems such as image segmentation, where an unknown class
assignment has to be estimated from the observations at each pixel. Choosing the probabilistic model that best accounts for the
observations is an important first step for the quality of the subsequent estimation and analysis. A commonly used selection criterion is
the Bayesian Information Criterion (BIC) of Schwarz (1978), but for hidden Markov random fields, its exact computation is not tractable
due to the dependence structure induced by the Markov model. We propose approximations of BIC based on the mean field principle
of statistical physics. The mean field theory provides approximations of Markov random fields by systems of independent variables
leading to tractable computations. Using this principle, we first derive a class of criteria by approximating the Markov distribution in the
usual BIC expression as a penalized likelihood. We then rewrite BIC in terms of normalizing constants, also called partition functions,
instead of Markov distributions. It enables us to use finer mean field approximations and to derive other criteria using optimal lower
bounds for the normalizing constants. To illustrate the performance of our partition function-based approximation of BIC as a model
selection criterion, we focus on the preliminary issue of choosing the number of classes before the segmentation task. Experiments on
simulated and real data point out our criterion as promising: It takes spatial information into account through the Markov model and
improves the results obtained with BIC for independent mixture models.

Index Terms—Image segmentation, hidden Markov random fields, model selection, Bayesian Information Criterion, mean field

approximation, partition function.
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1 INTRODUCTION

PROBLEMS involving incomplete data, where part of the
data is missing or unobservable, are common in image

analysis. The aimmay be to recover an original image which
is hidden and has to be estimated from a noisy or blurred
version. More generally, the observed and hidden data are
not necessarily of the same nature. The observations may
represent measurements, e.g., multidimensional variables
recorded at each pixel of an image while the hidden data
could consist of an unknown class assignment to be
estimated from the observations at each pixel. This case is
usually referred to as image segmentation. In the context of
statistical image segmentation, choosing the probabilistic
model that best accounts for the observations is an important
first step for the quality of the subsequent estimation and
analysis. In most cases, the choice is done subjectively using
expert knowledge or ad hoc procedures and there is a
striking lack of systematic data-based approaches. We recast
this choice as a problem of probabilistic model comparison
and use the standard approach of Bayes factors. Evaluating
the Bayes factor of one model against another involves
calculating the ratio of the integrated likelihoods for each
model, i.e., the likelihoods of the observations integrated

over the respective model parameters. For a lot of models of
interest, these integrated likelihoods are high-dimensional
and intractable integrals so that most available software is
generally inefficient for their evaluation. Various approx-
imations have been proposed. In particular, the Bayesian
Information Criterion (BIC) approximation of [1] is based on
the Laplace method for integrals. It leads to an equation
giving the log-integrated likelihood as the maximized log-
likelihood minus a correction or penalization term and an
Oð1Þ error term, as the sample size tends to infinity. BIC can
be compared to other selection criteria. One of them is the
Akaike Information Criterion (AIC) of [2], which differs from
BIC in the correction term, but has been shown to over-
estimate the number of parameters in practice. The criterion
proposed in [3] is based on stochastic complexity and is
similar to BIC, and methods using cross validation [4] seem
promising, but their tractability in our context is not
straightforward due to the dependence structure in the data.
Many other approaches can be found in the literature on
model selection (see for instance the list of references in [5]).

BIC has become quite popular due to its simplicity and
its good results in cases where p-values and the standard
model selection procedures based on them were unsatis-
factory. P-values (see [6]), or observed significant levels, are
indicators of the strength of the evidence of one model
against another in hypothesis testing, but can be highly
misleading when used for model selection (see [7]). In BIC,
the Oð1Þ error does suggest the approximation to be
somewhat crude. However, empirical experience has found
the approximation to be more accurate in practice than the
Oð1Þ error term would suggest. As regards model selection,
Kass and Raftery [5] observe that the criterion does not
seem to be grossly misleading in a qualitative sense as long
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as the number of degrees of freedom involved in the
comparison is relatively small relative to sample size. In this
paper, we consider Markov model-based image segmenta-
tion and focus on the use of BIC for the underlying issue of
choosing a model from a collection of hidden Markov
random fields. In this case, we have no specific results on
the quality of BIC as an approximation of the integrated
likelihood and this choice as a selection criterion is
arguable. However, the question of the criterion ability to
asymptotically choose the correct model can be addressed
independently of the integrated likelihood approximation
issue. As an illustration, the author in [8] have proven
recently that for the more specialized but related case of
hidden Markov chains, under reasonable conditions, the
maximum penalized marginal likelihood estimator of the
number of hidden states in the chain is consistent. This
estimator is defined for a class of penalization terms that
includes the BIC correction term and involves an approx-
imation of the maximized log-likelihood which is not
necessarily good, namely the maximized log-marginal
likelihood. In particular, this criterion is consistent even if
there is no guarantee that it provides a good approximation
of the integrated likelihood. The choice of BIC for hidden
Markov model selection appears then reasonable and we
will show that criteria with good experimental behavior can
be derived from it.

The difficulty in the context of hidden Markov random
fields lies in that the maximized log-likelihood part in BIC
involves Markov distributions whose exact computation
requires an exponential amount of time. As regards
observed Markov random fields selection, Ji and Seymour
[9] propose a consistent procedure based on penalized
Besag pseudolikelihood [10], [11] study a Markov Chain
Monte Carlo (MCMC) approximation of BIC. When the
fields are hidden, little has been done to address the
selection problem. Two approximations of BIC are pro-
posed in [12]: For the Pseudo-Likelihood Information
Criterion (PLIC) the required maximized distribution is
approximated by the Qian and Titterington pseudolikeli-
hood [13], while a simpler approximation, the Marginal
Mixture Information Criterion (MMIC) is based on the
marginal distribution of pixel values. In practice, good
results are reported for PLIC in [12], whereas MMIC is less
satisfactory. In this paper, we propose approximations of
BIC based on the mean field principle. Mean field theory of
statistical physics [14] is an approach providing an
approximation of a Markov random field by a system of
independent variables and leading to tractable computa-
tions. We use a generalization of the mean field principle
presented in a previous work [15] and derive a class of
criteria that includes PLIC as a particular case and as a
result gives some new insight on its nature. We also show
that the straightforward use of the mean field approxima-
tion can be improved by rewritting BIC in terms of
normalizing constants, also called partition functions,
instead of Markov distributions and then using optimal
mean field lower bounds, usually referred to as Gibbs-
Bogoliubov-Feynman bounds, for the normalizing con-
stants. We derive this way another tractable criterion
denoted by BICGBF . Questions of interest relevant to model
selection include choosing the Markov field neighborhood
or more generally its energy function and choosing the
number of classes in which to segment the data. They can
all be addressed straightforwardly in our framework, but

we focus on the latter because of its practical importance.
Experiments on simulated and real data point out BICGBF

as a promising criterion. It is easy to compute and shows
good and stable performance. It takes spatial information
into account through the Markov model and improves the
results obtained with BIC for independent mixture models.
In particular, it seems to avoid the overestimation of the
number of classes observed in [16].

The complete parametric models for the observed and
unobserved variables are specified in Section 2 and the
basics for BIC are recalled in Section 3. The mean field
approximation principle is briefly presented in Section 4
and in Section 5, we show how we propose to use it to
compute approximations of BIC and derive new computa-
tionally tractable criteria for hidden Markov model selec-
tion. Experiments are reported in Section 6 and a discussion
section ends the paper.

2 HIDDEN MARKOV MODELS

Let S be a finite set of sites with a neighborhood system
defined on it. Let jSj ¼ n denote the number of sites. A
typical example in image analysis is the two-dimensional
lattice with a second order neighborhood system. For each
site, the neighbors are the eight sites surrounding it. A set of
sites C is called a clique if the sites are all neighbors. Let
V ¼ fe1; . . . ; eKg be a finite set with K elements. Each of
them will be represented by a binary vector of length K
with one component being 1, all others being 0, so that V
will be seen as included in f0; 1gK . We define a discrete
Markov random field as a collection of discrete random
variables, Z ¼ fZi; i 2 Sg, defined on S, each Zi taking
values in V , whose joint probability distribution satisfies the
following properties:

8z; PGðzi j zSnfigÞ ¼ PGðzi j zj; j 2 NðiÞÞ; ð1Þ
8z; PGðzÞ > 0; ð2Þ

where zSnfig denotes a realization of the field restricted to
Snfig ¼ fj 2 S; j 6¼ ig and NðiÞ denotes the set of neighbors
of i. More generally, if A is a subset of S, we will write zA
for fzi; i 2 Ag. In words, (1) means that interactions
between site i and the other sites actually reduce to
interactions with its neighbors. Equation (2) is important
for the Hammersley-Clifford Theorem [17] (or [18] for a
published reference) to hold. This theorem states that the
joint probability distribution of a Markov field is a Gibbs
distribution, for which we use the notation PG given by

PGðzÞ ¼ W�1 expð�HðzÞÞ; ð3Þ

where H is the energy function

HðzÞ ¼
X
c

VcðzcÞ: ð4Þ

The sum is over the set of cliques and the Vcs are the clique

potentials which may depend on parameters not specified in

the notation W ¼
P

z expð�HðzÞÞ is the normalizing con-

stant also called the partition function. We will write
P

z

(respectively,
P

zA
) a sum over all possible values of z

(respectively, zA). The computation of W involves all

possible realizations z of the Markov field. Therefore, it is

in general exponentially complex and not computationally
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feasible. This can be a problem when using these models in

situations where an expression of the joint distribution PGðzÞ
is required. An approximation of the distribution (3) is the

pseudolikelihood introduced by [10] and defined as

PLðzÞ ¼
Y
i2S

PG zi j zNðiÞ
� �

: ð5Þ

Each term in the product is easy to compute. For a given
value zi of variable Zi,

PGðzi j zNðiÞÞ ¼
expð�

P
c ; i2c

VcðzcÞÞP
z0i

expð�
P

c ; i2c
Vcðz0cÞÞ

; ð6Þ

where the sums in theexponentials areonlyover cliques c that
contain site i and where the outer sum in the denominator is

over all possible values z0i forZi. For c containing i and a given
z0i, z0c denotes values fz0i; zj; j 2 c; j 6¼ ig for sites in c.

Equation (5) is a genuine probability distribution only when
the variables are independent, but it can be used to obtain
estimates of a Markov random field parameters. It has been

used by [19] in the model selection context (see Section 5). In
Section 5,wewill use other approximations based on systems
of independent variables. Their factorization properties

simplify computations as does approximation (5) and they
correspond to valid probability models.

Image segmentation involves observed variables and

unobserved variables to be recovered. The unobserved
variables are modeled as a discrete Markov random field, Z,
as defined in (3) with energy function H depending on a

parameter �. In hidden Markov models, the observations Y
are conditionally independent given Z, according to a

density f , which is assumed to be of the following type (� is
a parameter and the fis are given),

fðy j z; �Þ ¼
Y
i2S

fiðyi j zi; �Þ

¼ exp
X
i2S

log fiðyi j zi; �Þ
( )

;

ð7Þ

assuming that all the fiðyi j zi; �Þ are positive. This makes

the model similar to an independent mixture model [20].
An independent mixture model could be seen as a hidden
Markov model where the hidden field Z is one of

independent identically distributed variables. In the general
case, the complete likelihood is given by

PGðy; z j �; �Þ ¼ fðy j z; �Þ PGðz j �Þ
¼ Wð�Þ�1

Y
i2S

fiðyi j zi; �Þ
Y
c

expf�Vcðzc j �Þg

¼ Wð�Þ�1exp �Hðz j �Þþ
X
i2S

log fiðyi j zi; �Þ
( )

:

ð8Þ

Thus, the conditional field Z given Y ¼ y is a Markov field

as Z is. Its energy function is

Hðz j y; �; �Þ ¼ Hðz j �Þ �
X
i2S

log fiðyi j zi; �Þ: ð9Þ

In the following developments, we will refer to Markov

fields Z and Z given Y ¼ y as the marginal and conditional

fields and denote by � ¼ ð�; �Þ the parameter vector.

3 BAYESIAN INFORMATION CRITERION

In a Bayesian framework, a way of selecting a model among

R models M1;M2; . . . ;MR consists of choosing the model

with highest posterior probability. By Bayes theorem, the

posterior probability of Mr (r 2 f1; . . . ; Rg) given the

observations y is

P ðMrjyÞ ¼ PGðyjMrÞP ðMrÞPR
k¼1

PGðyjMkÞP ðMkÞ
;

where PGðyjMrÞ is the integrated or marginal likelihood of

model Mr and P ðMrÞ is its prior probability. Assuming that

all models have equal prior probabilities, choosing the

model with the highest posterior probability is equivalent to

select the model with the largest integrated likelihood,

PGðyjMrÞ ¼
Z

PGðyj�r;MrÞP ð�rjMrÞd�r; ð10Þ

where �r varies in the model Mr parameter space and

P ð�rjMrÞ is the prior distribution on �r for the same model.

Computing (10) is not usually tractable. A simple and often

reliable way to approximate the integrated likelihood is

provided by the Bayesian Information Criterion (BIC) of [1]

(see, for instance, [5]),

2 logPGðyjMrÞ � BICðMrÞ ¼ 2 logPGðy j �ml
r Þ � dr logðnÞ;

ð11Þ

where �ml
r is the maximum-likelihood estimate of �r,

�ml
r ¼ argmax

�r

PGðy j �r;MrÞ;

dr is the number of free parameters in modelMr and n is the

number of observations (n ¼ jSj the number of sites). It has

been widely used in the context of selecting the number of

components in independent mixture models [21], [22]. In

this context, BIC limitations have been pointed out. In

particular, it has been observed that in practice the criterion

can tend to overestimate the right number of components

when the true model is not in fM1; . . . :MRg [16].
For hidden Markov models, the difficulty comes from

that �ml
r and PGðy j �ml

r Þ are not available. For computing

BIC, methods using simulations have been investigated in

[23], while [19] proposed using the pseudolikelihood (5) as

an approximation to the intractable Markov distribution. In

this paper, we suggest using the mean field approximation

principle to derive a class of other tractable criteria. As for

the pseudolikelihood approximation, it consists of replacing

the original Markov distribution by a product easier to deal

with. We recall the mean field principle in the next section

and describe applications in the model selection context in

Section 5.
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4 MEAN FIELD THEORY

The mean field approximation is originally a method of

approximation for the computation of the mean of a

Markov random field. It comes from statistical physics

[14] where it has been used to study phase transition

phenomena. More recently, it has been used in computer

vision applications [24], [25], [26], graphical models [27]

and references therein, and other areas [28]. This principle

provides an approximation of the distribution PG of a

Markov random field. The idea when considering a

particular site i is to neglect the fluctuations of the sites

interacting with i, by fixing them to their mean values.

The resulting system behaves as one composed of

independent variables, with factorized distribution, for

which computation gets tractable. Let IEP denote the

expectation under distribution P . A proper presentation

(see, for instance, [28]) and a rational for using the mean

field approximation arise from the minimization of the

Kullback-Leibler divergence, KL½P; PG� ¼ IEP log P ðZÞ
PGðZÞ

� �h i
,

between a given distribution P and the Gibbs distribution

PG, over the set of probability distributions P ¼
Q

i2S Pi

that factorize. The Kullback-Leibler divergence is a

measure of dissimilarity between two distributions. It is

always positive and is zero only when the distributions

are equal. The mean field approximation of PG, denoted

by Pmf in what follows, is then defined as the

distribution that factorizes, which is the closest to PG in

term of the Kullback-Leibler divergence. In practice, the

mean field approximation Pmf ¼
Q

i2S P
mf
i is obtained by

solving a fixed point equation determining its marginal

distributions Pmf
i for all i in S. Indeed, a distribution P

that factorizes into
Q

i2S Pi is completely defined by its

marginal distributions Pi for all i in S. In our settings,

these marginal distributions are defined over a finite set

V of indicator vectors of length K denoted by fe1; . . . ; eKg
(see Section 2), each of them representing a possible value

for variable Zi. Therefore, Pi is completely defined by its

values on V , i.e., by Piðe1Þ; . . . ; PiðeKÞ or equivalently by

its expectation IEPi
½Zi� ¼ ðPiðe1Þ; . . . ; PiðeKÞÞt denoted by �zzi

in what follows. Then, finding the factorized distribution

P that minimizes KL½P; PG� consists of finding, for all i

in S, the optimal �zzis. Computing the gradient of the

Kullback-Leibler divergence with regards to the �zzis and

setting it to zero (see [14] for details), leads to the

following fixed point equation involving �zz ¼ f�zzj; j 2 Sg
and PG,

�zz ¼ gð�zzÞ ¼
g1ðf�zzj; j 2 Nð1ÞgÞ
..
.

gnðf�zzj; j 2 NðnÞgÞ;

8><
>: ð12Þ

where for all i in S, giðf�zzj; j 2 NðiÞgÞ ¼
P
zi

ziPG zi j �zzNðiÞ
� �

with the sites in jSj numbered from 1 to n. The mean field
approximation consists of solving this fixed point equation

and taking the solution denoted by zmf ¼ fzmf
i ; i 2 Sg as an

estimate of the exact mean field IEPG
½Z�. In the right-hand

side of (12), giðfzmf
j ; j 2 NðiÞgÞ is the expectation of Zi under

the conditional distribution PGð : j zmf
NðiÞÞ, that is intuitively,

under the original Gibbs distribution PG where the

neighbors (sites in NðiÞ) are fixed to zmf
NðiÞ. We can recover

this way the interpretation of mean field approximation as a

way to deal with the interactions in the original Gibbs

measure PG by setting the neighbors to their mean values.

Also, (12) states that the mean field computed based on the

approximation (right-hand side) is equal to the mean field

used to define this approximation (left-hand side). It is often

referred to as a self-consistency condition. The mean field

approximation PmfðzÞ of the Gibbs distribution is then

defined by

PmfðzÞ ¼
Y
i2S

Pmf
i ðziÞ; ð13Þ

with Pmf
i ðziÞ ¼ PGðzi j zmf

NðiÞÞ:
It follows straightforwardly an expression of Pmf as a

Gibbs distribution,

PmfðzÞ ¼ 1

Wmf
expð�HmfðzÞÞ; ð14Þ

where Hmf and Wmf denote, respectively, the energy

function and the partition function under (13) and are easy

to compute due to the factorization property. If IEmf

denotes the expectation under (13), using (14), it is easy to

see from the positivity of the Kullback-Leibler divergence

KL½Pmf; PG�, that the following inequality holds,

W � Wmf expð�IEmf ½HðZÞ �HmfðZÞ�Þ : ð15Þ

This inequality is known as the the Gibbs-Bogoliubov-

Feynman (GBF) bound [14]. Note that the same inequality

is valid for any energy function other than Hmf .

However, the mean field model (13) is optimal among

models with factorization property, in the sense that it

maximizes the lower bound in inequality (15) for such

models. When considering the expansion around zero of

expð�IEmf ½HðZÞ �HmfðZÞ�Þ, the right-hand side of in-

equality (15), denoted by WGBF in what follows:

WGBF ¼ Wmf expð�IEmf ½HðZÞ �HmfðZÞ�Þ ; ð16Þ

can be seen as a first order approximation (in�H =H �Hmf )

of the normalization constant W (see [14]). As a first order

approximation, we can expect WGBF to be a closer approx-

imation of W than Wmf which corresponds to the zeroth

order. This is illustrated by the example in the Appendix

where the three quantitiesW ,WGBF , andWmf are compared

for a 2-color Potts model.
Therefore, in addition to the zeroth order mean field

approximation, PG � Pmf , a first order approximation of

the partition function W can be easily derived. In the

following sections, we then propose two ways of approx-

imating BIC. In Section 5.1, we derive BIC approximations

based on approximation PG � Pmf , while in Section 5.2, we

show how to use the first order approximation of W .
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5 MEAN FIELD-LIKE APPROXIMATIONS OF BIC

The mean field approach consists of neglecting fluctuations
from the mean in the environment of each pixel. More
generally, we talk about mean field-like approximations
when the value at site i does not depend on the values at
other sites which are all set to constants (not necessarily the
means) independently of the value at site i [15]. In
Section 5.1, we apply this idea to release the computational
burden when dealing with the intractable distribution
PGðy j �Þ in BIC computation. This approach is the most
straightforward, considering (11) of BIC and includes
criterion PLIC introduced in [19] and recalled below.
However, we will show that in practice this does not
always lead to satisfying results. In Section 5.2, we show
that approximating the whole distribution is actually not
necessary and we derive alternative criteria approximating
BIC using the first order partition function approximation
(16). Experimental results confirm the superiority of this
method.

As regards the notation, we consider a model Mr among
R hidden Markov models (r ¼ 1; . . . ; R) as defined by (3)
and (7) with parameters �r ¼ ð�r; �rÞ.

5.1 Approximating the Gibbs Distribution

A mean field-like approximation of a Gibbs distribution can
be defined as follows: Given a configuration ~zz, set the
neighbors of each site i to ~zzNðiÞ and replace the marginal
distribution PGðz j �rÞ by

P~zzðz j �rÞ ¼
Y
i2S

PGðzi j ~zzNðiÞ; �rÞ: ð17Þ

It corresponds to an observed likelihood of the form

P~zzðy j �rÞ ¼
X
z

fðy j z; �rÞP~zzðz j �rÞ

¼
Y
i2S

X
zi

fiðyi j zi; �rÞ PGðzi j ~zzNðiÞ; �rÞ

¼
Y
i2S

PGðyi j ~zzNðiÞ;�rÞ:

ð18Þ

We consider P~zzðy j �rÞ as a candidate for an approxima-
tion of the intractable PGðy j �rÞ involved in (11) of BIC. The
flexibility of our proposition is then in the choice of the values
~zz. Anatural candidatewouldbe one that leads to a reasonable
approximation of PGðy; z j �rÞ. In our model, PGðz j �rÞ and
PGðz j y;�rÞ are not available while fðy j z; �rÞ is. Knowing
fðy j z; �rÞ, it is enough to approximate one of the unknown
quantities, either PGðz j �rÞ or PGðz j y;�rÞ, to derive an
approximation of the other and of the joint distribution.
Therefore, our selectionof ~zz canbedrivenby thequality of the
corresponding approximation of PGðz j �rÞ or PGðz j y;�rÞ.
As regards the Kullback-Leibler divergence, the approxima-
tions cannot be both optimal and satisfy the Bayes rule. It
seems more reasonable to base our choice on the conditional
field distribution rather than on the marginal field distribu-
tion. It has the advantage of taking the observations directly
into account. Moreover, the study of the case of the
homogeneous isotropicPottsmodelgives reasonsdissuading
from using the mean field approximation on the marginal
field (see [29] and [15]).

For computing BIC, it then remains the problem of
computing the maximum-likelihood estimator �ml

r . Let �̂�r

be an approximation of �ml
r .

An approximation for BIC is then,

BIC~zzð�̂�rÞ ¼ 2 logP~zzðy j �̂�rÞ � dr logðnÞ: ð19Þ

As regards the quality of such an approximation, it is not
clear whether ~zz and �̂�r must be chosen independently or
not. As an example, the Pseudo-Likelihood Information
Criterion (PLIC) of [19] is a particular case of BIC~zzð�̂�rÞ.
Indeed, one possibility to get values for �̂�r and ~zz is to use
the unsupervised Iterated Conditional Modes (ICM) algo-
rithm of [30]. In that case, �̂�r and ~zz are computed using a
single iterative procedure which alternates between esti-
mating �r and estimating z so that the final estimates,
denoted by �ICM

r and zICM
r , can be deduced from one

another and are not chosen independently. Then, approx-
imation (19) becomes

BICzICM
r ð�ICM

r Þ ¼ 2 logðPzICM ðy j �ICM
r ÞÞ � dr logðnÞ

¼ PLICðMrÞ:
ð20Þ

In this paper, we propose to use for ~zz and �̂�r the output of
the Expectation-Maximization (EM) algorithm-based pro-
cedures described in [15] and referred to as mean field-like
algorithms in what follows. The idea underlying these
algorithms is to replace the intractable Markov distribution
by a simpler distribution obtained by fixing the neighbors
of each pixel to constant values as in (17). Then, an iteration
of a mean field-like algorithm consists of two steps: In the
first step, the values ~zz for the neighbors are updated
according to the observations y and to the current value of
the parameter. As in (17), it follows an approximation of the
intractable Markov distribution. Then, the second step
consists of carrying out the EM algorithm for the corre-
sponding approximated observed likelihood (18) to obtain
an updated value �̂�r of the parameter. Mean field-like
algorithms can thus be related to the EM algorithm for
independent mixture models, with the significant difference
that the mixture model adaptively changes at each iteration
depending on the current choice of the neighbors values.
Like ICM, these algorithms alternatively produce a config-
uration ~zz and, using (18), an estimation �̂�r (see Section 6 for
more details). In [15], we compared three different ways of
updating ~zz: the mean field approximation of the conditional
mean, an approximation of the conditional mode, and a
simulated realization of the conditional Gibbs distribution
obtained with the Gibbs sampler of [31]. Based of this study,
we focused on the last solution. It leads to an algorithm
referred to in [15] as the simulated field algorithm, which
showed good performance as regards hidden Markov
random fields parameter estimation and outperformed
ICM in this task in most cases.

PLIC shows promising results when used to select the
number of components in tests on synthetic and real images
reported in [19]. In Section 6, we report additional results
for ~zz and �̂�r set to values provided by the ICM algorithm
(PLIC). The results when ~zz and �̂�r are obtained via mean
field-like algorithms are not reported, but can be found in
[32]. They were satisfactory for real data, but surprisingly
unstable as regards the number of components on simu-
lated data (simulated Potts models as in Section 6.1).
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In this first approach, the use of the simulated field
algorithm for �̂�r appears reasonable and we will keep this
estimation procedure in the next section. As regards the
quality of the approximation of PGðy j �rÞ by P~zzðy j �rÞ, it
is not easy to assess but in what follows we will propose a
more satisfying alternative.

5.2 Approximating the Partition Function

In this section, the idea is to use an expression for BIC that
involves only partition functions so that the problem of
approximating the Markov distributions can be replaced by
that of approximating the partition functions. The advan-
tage is that the partition function first order approximations
presented in Section 4, can be used and results in better
approximations.

Let Wðy;�Þ and Wð�Þ be the partition functions for the
conditional and marginal fields, respectively,

Wð�Þ ¼
X
z

expð�Hðzj�ÞÞ

W ðy;�Þ ¼
X
z

expð�Hðzjy;�ÞÞ:

Using notation of Section 2, it comes from

PGðy j �Þ ¼ PGðy; z j �Þ
PGðz j y;�Þ ¼

fðy j z; �Þ PGðz j �Þ
PGðz j y;�Þ

that

PGðy j �Þ ¼ fðy j z; �Þ expð�Hðzj�ÞÞ
expð�Hðzjy;�ÞÞ

Wðy;�Þ
Wð�Þ ;

which, using expression (9), simplifies into

PGðy j �Þ ¼ Wðy;�Þ
W ð�Þ : ð21Þ

Other derivations and uses of (21) can be found in other
papers. For instance, in [33], (21) is used with the mean field
approximation to approximate the maximum-likelihood
estimator of the Markov field parameters. Using (21), the
expression (11) of BIC is equivalent to the following one
which uses only the partition functions W ðy;�Þ and W ð�Þ,

BICðMrÞ ¼ 2 logWðy;�ml
r Þ � 2 logW ð�ml

r Þ � dr logðnÞ: ð22Þ

At this stage, a possible approach is to approximate the two
partition functions using a Monte Carlo partition function
estimation algorithm (see [34] for a unified presentation of
such methods). Monte Carlo simulations, however, are very
time consuming. As an alternative, we propose to use the
mean field first order approximations for the partition
functions. Let Hmfðzj�Þ and Hmfðzjy;�Þ denote the mean
field expressions for the marginal and conditional field
energies. Using the first order approximations, a new
approximation of BIC is:

BICGBF ð�̂�rÞ ¼2 logWmfðy; �̂�rÞ � 2IEmf ½HðZjy; �̂�rÞ
�HmfðZjy; �̂�rÞjy�
� 2 logWmfð�̂�rÞ þ 2IEmf ½HðZj�̂�rÞ
�HmfðZj�̂�rÞ�
� dr logðnÞ:

ð23Þ

As before, �̂�r must be estimated and we used mean field-
like algorithms and, more specifically, the simulated field
algorithm described previously. The marginal and condi-
tional mean field approximations were then computed,
using this value of the parameter, by solving the corre-
sponding fixed point equations (12).

The expression ofBICGBF (23) ismore satisfactory than the
approximationBIC~zz (19). Away to see the improvement is to
rewrite P~zzðy j �rÞ in (18) using partition functions as in (21),

P~zzðy j �rÞ ¼
W~zzðy;�rÞ
W~zzð�rÞ

:

Expressions for both quantities in the ratio are easily
deduced from (17) and (6). The ratio (21) is thus better
approximated in BICGBF than in BIC~zz since as explained in
Section 4, it uses the best lower bound (15) for each partition
function. Therefore, there are some theoretical and experi-
mental reasons to believe that our BICGBF is a better
approximation of the true BIC than BIC~zz and, thus, than
PLIC. BICGBF is based on a better approximation of
PGðy j �rÞ and the procedure it uses to compute �̂�r has
shown to be as reliable if not better than ICM in practice
[15]. However, note that as regards model selection, this
does not necessarily ensure that the resulting criterion
would lead to better results although the experiments
reported in Section 6 tend to confirm this.

6 EXPERIMENTS

In this section, the gain in approximating the partition
functions, leading to BICGBF -like criteria, rather than the
whole Markov distribution, leading to PLIC-like criteria, is
investigated. We examine the performance of the two
approaches as regards the problem of choosing the number
of classes in the segmentation. We report experiments on
three types of images. For all examples, the observed
images are considered as realizations of the simple
following hidden Markov model. The distribution of the
hidden field is supposed to be a K-color Potts model where
each zi takes one of K states, which represent K different
class assignments or colors. Recall that each of the states is
represented by a binary vector of length K with one
component being 1, all others being 0. The distribution of a
K-color Potts model is defined by,

PGðz j �Þ ¼ Wð�Þ�1 exp �
X
i�j

ztizj

 !
; ð24Þ

where � is a real nonnegative parameter and the notation
i � j represents all pairs of sites ði; jÞ which are neighbors.

For the fis we considered Gaussian distributions. If site i
is in class k, fi is the Gaussian distribution with mean �k

and standard deviation �k. The parameter to be estimated is
then � ¼ f�; �g with � ¼ fð�k; �kÞ; k ¼ 1; . . . ; Kg. Let MK be
the model defined above when the number of colors is K.
To assess its ability to select a relevant number K, the
criterion BICGBF is computed for model MK withK ¼ Kmin

to K ¼ Kmax. The required estimations of �̂�K for each value
of K considered were obtained with the simulated field
algorithm. In practice, a sequential version of this algorithm
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was used. At each iteration, the simulated field ~zz was first
updated by carrying out only one iteration of the Gibbs
sampler for the current parameter value and then one
iteration of the EM algorithm was done for the resulting
factorized model. As regards estimation of �, so doing the
Maximization (M) step in EM becomes tractable. To be more
specific, as noted by [13], the likelihood (18) takes the form
of a likelihood from independent observations from finite
mixture of the same component densities but the sets of
mixing weights vary for each site i depending on the choice
of ~zz. It follows that estimating � was straightforward since,
in this case, a closed-form expression similar to that for
finite Gaussian mixtures (see, for instance, [35] chapter 2), is
available. Parameter � was also easily obtained through a
standard numerical maximization procedure.

Then, BICGBF ð�̂�KÞ was computed as defined in (23). We
also report values of BIC when the images are seen as
realizations of independent mixture models in order to
measure the gain of taking spatial information into account
when selecting the number of classes. The EM algorithm
was used to estimate the parameters and the criterion
(computed exactly in this case) is denoted by BICIND. We
also compared with PLIC based on the ICM algorithm as an
alternative criterion assuming a spatial model.

When not otherwise specified, the algorithms (Simulated
field, EM, and ICM algorithms) were initialized using the
same segmentation computed by simple thresholding. We
divided the pixel values range in the degraded image into
regular intervals and assigned each of them to a component.
The algorithms were all stopped after N ¼ 100 iterations.

The images used for the experiments are described
below. In Section 6.1, we first compare the criteria on fully
simulated data. The models used for the simulations are the

models used in the estimation and segmentation algo-
rithms. In Section 6.2, we consider synthetic images
degraded with some simulated Gaussian noise. The true
K is known, but the images are not realizations of a known
probabilistic model. In Section 6.3, real-life images are
considered.

6.1 Hidden K-Color Potts Models

We first tested the criteria on images simulated from hidden

Potts models for which the true parameters � and � were

known. We created 100� 100 images by simulating

2D K-color Potts models (24) for K ¼ 2; . . . 6 and different

values of � using the Gibbs sampler of [31]. We considered a

first order neighborhood, i.e., four neighbors for each pixel.

We chose � so that the simulated images present homo-

geneous regions and some spatial structure (e.g., Fig. 1) for in

other cases we cannot really expect the criteria to recover the

trueK. For smaller values of�, typical realizations lookmuch

noisier and are visually close to independently distributed

colors. For larger values, the simulations lead to close to

monocolor images, whatever the true K used for the

simulations. Then, a Gaussian noise was added to the Potts

model realizations, so that the resulting simulated data are

continuously valued images and correspond to hidden

K-color Potts models for which � ¼ fð�k; �kÞ; k ¼ 1; . . .Kg
with �k ¼ k and �k ¼ 0:5, for k ¼ 1; . . .K. We used our

knowledge of a constant variance for the K states to fit a

model and recover the true image. For each model consid-

ered, 100 simulations were carried out. The corresponding

criteria results are reported in Table 1. It appears that criteria

BICGBF and PLIC perform well and outperform BICIND,

which shows degradation in selecting the right number of

colorswhenK is larger than 4. This confirms the advantage of

using spatial models even through approximations, but does

not enable to differentiateBICGBF fromPLIC. PLIC performs

slightlybetter forK ¼ 4andK ¼ 5, but thedifferences cannot

be considered as significant. More differences appear in the

next two sections.

6.2 Noise-Corrupted Synthetic Images

In this section, we consider noise-corrupted images corre-
sponding to known values ofK. Fig. 2b is a 128� 128 image
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Fig. 1. Simulations of a K-color Potts model (before adding noise) for

different values of K and �: (a) K ¼ 2; � ¼ 0:78, (b) K ¼ 3; � ¼ 0:9,

(c) K ¼ 4; � ¼ 1, and (d) K ¼ 5; � ¼ 1.

TABLE 1
Degraded K-color Potts Model

Selected K using BIC for independent mixture models (BICIND),
pseudolikelihood (PLIC) and mean field-like (BICGBF ) approximations of
BIC. The reported values are the number of times a given K is selected
out of 100 experiments.



obtained by adding someGaussian noise to the 4-color image
of Fig. 2a. Thenoiseparameters are givenby � ¼ fð�k; �kÞ; k ¼
1; . . . ; 4g with �k ¼ k and �k ¼ 0:5 for k ¼ 1; . . . ; 4. The other
example (Fig. 2g) is a 133� 142 noise-corrupted 2-color
image. We used Gaussian densities with class-dependent
variances so that the true noise parameters are ð�1; �1Þ ¼
ð51; 130Þ and ð�2; �2Þ ¼ ð255; 300Þ. These images before
degradation are not realizations from a known Markov field
model. However, the spatial component is important in these
two examples. Using the EM algorithm for independent
mixturemodels to restore theoriginal images, leads to images
still noisy (see Figs. 2c and 2h). When considering the
selection of K, assuming a nonspatial model can then be
inefficient (Table 2). When taking into account the spatial
component, we assumed for estimation a model with second
order neighborhood (i.e., the eight closest neighbors for each
pixel). The selected K are reported in Table 2. In these
experiments, BICGBF and PLIC behave differently. We
observe that BICGBF is better in selecting the right number
of colors for images presenting thin features (e.g., Fig. 2f)
while they bothperformwellwhen images aremade of larger

regions (e.g., Fig. 2a). The corresponding segmentations
(Figs. 2e and 2j) using the simulated field algorithm are closer
to the original images than that obtained using ICM (Figs. 2d
and 2i). Additional experiments were carried out with other
images containing thin lines and showed similar results in
favor of BICGBF . This may be due to the respective use of the
simulated field and ICM algorithms which are of a rather
different nature. Awell-known feature of ICM is its tendency
to produce oversmoothed segmentationswhile the stochastic
natureof the simulated field algorithmmakes itmore flexible.
However, in our experiments, the same difference in the
numberof classes selectedbyPLICandBICGBF wasobserved
even when the parameter estimations and segmentations
were similar for the different values ofK. This suggests that
the better performance of BICGBF relies mainly in the way
BIC is approximated: a better approximation of the likelihood
and a satisfying estimation of the parameters. It is not clear
thoughwhy this differencewith PLIC is notmore striking for
images made of large monocolor regions. This may come
from the nature of BIC itself, but investigating this was out of
the scope of this paper. The difficulty of the analysis is
increased by the coupling of segmentation and estimation
algorithms with model selection criteria.

6.3 Gray-Level Images

We eventually tried the criteria on real images for which a
true value for K does not exist (in real-life, it is usually part
of the problem to assess its value), but for which intuition or
expert knowledge could give an indication of what would
be a reasonable value. As an illustration, Fig. 3a is an aerial
100� 100 image of a buoy against a background of dark
water, and Fig. 3g is a 128� 128 PET image of a dog lung
(see [19] for more details on their nature and origin).

For the first image, we suspect that 2 is a relevant value
for K. Fig. 3a presents some artifact: horizontal scan lines
from the imaging process can be observed. Some prepro-
cessing step to remove this known artifact could be carried
out as in [19], but we tested here the criteria on the raw data.
The selectedK are shown in Table 3, and the corresponding
segmentations in Fig. 3. BICGBF performs much better than
PLIC, which selects a too large number of components
while BICIND probably suffers from not taking into account
the spatial information, as can be seen on Fig. 3d. These
results were obtained using basic thresholding to produce
initial segmentations for the estimation algorithms (simu-
lated field and ICM algorithms). We tried BICGBF and PLIC
with more refined initializations using the independent
mixtures EM algorithm segmentations as first images. This
can be seen as a preprocessing step. The selected K was
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Fig. 2. Noise-corrupted synthetic images. Checkerboard image:
(a) original image, (b) noise-corrupted image, (c) 3-color segmentation
usingEM for independent mixtures, (d) 4-color segmentation using ICM,
and (e) 4-color segmentation using the simulated field algorithm. Logo
image: (f) original image, (g) noise-corrupted image, (h) 2-color
segmenation using EM for independent mixtures, (i) 3-color segmenta-
tion using ICM, and (j) 2-color segmenation using the simulated field
algorithm.

TABLE 2
Noise-Corrupted Synthetic Images

Selected K using BIC for independent mixture models (BICIND),
pseudolikelihood (PLIC), and mean field-like (BICGBF ) approximations
of BIC.



then 2 for BICGBF (Fig. 3f), but still too large (seven classes)
for PLIC which leads to a meaningless segmentation
(Fig. 3e).

For the dog lung image, the aim is to distinguish the lung
from the rest of the image in order to measure the
heterogeneity of the tissue in the region of interest. Only
pixels in this delimited area will then be considered to
compute a heterogeneity measure, such as a coefficient of
variation. PLIC and BICGBF select rather different K with
again a too large value for PLIC (Table 3). The corresponding
segmentations are shown in Figs. 3i and 3j. The 3-color
segmentation obtained usingBICGBF and the simulated field
algorithm (Fig. 3j) is the more satisfactory as regards
interpretation. It shows one color for the background and
two for the lung itself. This is not surprising since the image is
constructed based on radioactive emissions from gas in the
lung.The twosegments account for thehighgasdensity in the
interior of the lung and the somewhat lower gas density

around the periphery. BICIND also selects three colors, but

the corresponding segmentation is rather different (Fig. 3h),

focusing more on the artificial background circle. We then

also computed PLIC and BICGBF using the independent

mixtures EM segmentations instead of the ones obtained via
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Fig. 3. Gray-level images. Buoy image: (a) original image, (b) and (c) 6 and 3-color segementation using, respectively, ICM and the simulated field
algorithm initialized by threshholding, (d) 4-color segmentation using EM for independent mixtures, (e) and (f) 7 and 2-color segmentations using,
respectively, ICM and the simulated field algorithm initialized by EM for independent mixtures. PET image of a dog lung: (g) original image, (h) 3-color
segmentation using EM for independent mixtures, (i) 6-color segmentation using ICM, and (j) 3-color segmentation using the simulated field
algorithm.

TABLE 3
Gray-Level Images

Selected K using BIC for independent mixture models (BICIND),
pseudolikelihood (PLIC), and mean field-like (BICGBF ) approximations
of BIC.



thresholding as initializing images, but noticed no significant
difference.

7 DISCUSSION

In the context of Markov model selection, starting from BIC
as our selection criterion, we proposed using mean field-
like approximations to deal with the computation of the
intractable Markov distribution in BIC expression. More
specifically, one of our contributions was to notice that BIC
could be rewritten in terms of partition functions for which
a first order rather than zeroth order mean field approx-
imation was available (Section 5.2). The advantage is that
the quality of the approximation is easier to assess since it
uses the best lower bounds for the partition functions. We
introduced a class of new criteria among which we chose
one, the so-called BICGBF (23) based on these theoretical
considerations regarding the quality of the approximation
of the intractable likelihood and based on previous
experimental results as regards parameter estimation for
various types of images. First, it appears that taking spatial
information into account leads to some improvements when
compared to BIC for independent mixture models
(BICIND). Then, our criterion differentiates from PLIC
(BIC approximation based on the pseudolikelihood) in its
ability to deal better with thin features in images. It also
shows good performance on real images although we can
suspect decreasing performance in the presence of artifact,
like scan lines, that the criterion may consider as relevant
information instead of noise. However, this is likely to be
handled by some preprocessing step using reasonable
initializations, as EM for independent mixtures for instance.

After carrying out various experiments, it appeared that
a sensible procedure for model selection would be to first
perform simple procedures. For example, for selecting the
number of components into which to segment an image, a
natural procedure is the EM algorithm for independent
mixture models easy to implement and for which BIC values
can be computed exactly. In some cases, this could lead to
reasonably satisfying selection and segmentation so that
users may choose not to go further. If not, as it is likely to
occur for images with significant spatial structure, the
corresponding procedure could possibly be further used to
initialize more refined algorithms based on spatial models.
For example, [12] studied ICM and used the pseudolikeli-
hood approximation while we propose to use the simulated
field algorithm of [15] and the mean field approximation
principle to compute criterion BICGBF .

On the set of images tested in our experiments, our
procedure showed much better performance, especially on
real data. We believe that this is mainly due to a better
approximation of the likelihood in BICGBF (see the
Appendix for an illustration of the superiority of the first
order approximation) coupled to a satisfying estimation of
the parameter provided by the simulated field algorithm.

This study remains somewhat limited in that it is mainly
exploratory and based on experiments. We did not address
the question of the consistency of the various criteria. As far
as we know, no such results are currently available for
hidden Markov random fields. In some recent work, [8]
consider a maximized penalized marginal likelihood criter-
ion for estimating the number of hidden states in hidden
Markov chains. The author in [8] proves a consistency result

for this criterion, although the marginal likelihood involved
is not necessarily close to the likelihood (they are equal only
when the variables are independent). This suggests that a
good approximation of the maximized log-likelihood is not
a strong requirement to obtain consistent criteria. A key
point in [8] seems to be the decomposition of the criterion as
a sum of identically distributed terms. The criteria proposed
in this paper can also be written as sum because of the
factorization property of the distributions involved. The
generalization is not straightforward, but our next step is
therefore to investigate if consistency results can be
deduced in a similar way.

APPENDIX

ZEROTH AND FIRST ORDER APPROXIMATIONS FOR

THE PARTITION FUNCTION OF A 2-COLOR

POTTS MODEL

The notation is that of Section 4. Considering simple Potts
models, our aim is to illustrate that WGBF (16) can be a
better approximation of W than the standard mean field
approximation Wmf . The energy of a Potts model can be
written

Hðzj�Þ ¼ ��
X
i�j

ztizj ¼ ��

2

Xn
i¼1

zti
X

j2NðiÞ
zj ;

it follows the zeroth order mean field approximation
Hmfðzj�Þ ¼ ��

Pn
i¼1

zti
P

j2NðiÞ
zj, with zj ¼ IEmf ½Zj�. Then,

IEmf ½HðZj�Þ� ¼ ��

2

Xn
i¼1

zti
X

j2NðiÞ
zj ¼

1

2
IEmf ½HmfðZj�Þ�;

so that Wmf ¼
X
z

expð�Hmfðzj�ÞÞ

¼
Yn
i¼1

X
zi

exp �zti
X

j2NðiÞ
zj

0
@

1
A;

and WGBF ¼ Wmf expðIEmf ½HðZj�Þ�Þ

¼ Wmf exp � �

2

Xn
i¼1

zti
X

j2NðiÞ
zj

0
@

1
A:

Using symmetries, for all i ¼ 1; . . . ; n, we can write zi ¼ m
with m being, in the two-color case, the two-component
vector ðm1;m2Þt satisfying m1 þm2 ¼ 1 and the following
consistency conditions,

m1 ¼
expð�Nm1Þ

expð�Nm1Þ þ expð�Nm2Þ

m2 ¼
expð�Nm2Þ

expð�Nm1Þ þ expð�Nm2Þ
;

where N ¼ jNðiÞj is the number of neighbors assumed the
same for all sites.

This is equivalent to solve

m1 ¼
expð�Nm1Þ

expð�Nm1Þ þ expð�Nð1�m1ÞÞ

¼ 1

1þ expð�Nð1� 2m1ÞÞ
:
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Note that, if m1 satisfies (25), then 1�m1 is also a

solution. For � < K=N , i.e., � < 2=N there is only one

solution m1 ¼ 1=2. For � > 2=N , there are two additional

solutions m1 and 1�m1 with m1 > 1=2. We focus on

solutions m1 6¼ 1=2. Such a solution is a nonconstant

function of � whose closed form expression is not available.

However, using (25), � can be expressed as a function f of

m1 given by

� ¼ fðm1Þ ¼ 1

Nð1� 2m1Þ
log

1�m1

m1

� �
: ð26Þ

It is easy to check that fð1�m1Þ ¼ fðm1Þ so that two

symmetric solutions lead to the same � as expected. We can

also check that fðm1Þ tends to 2=N when m1 tends to 1=2

and to infinity when m1 tends to 1. The graph of m1 against

� is shown in Fig. 4a.
The quantity m1 appears in the expressions of Wmf and

WGBF , while the true W depends only on �. However,

when W is available in closed form, using (26), the three

quantities can be expressed and compared as functions of
m1. For periodic boundary conditions, it comes

Wmf ¼ expð�Nm1Þ þ expð�Nð1�m1ÞÞð Þn ð27Þ

WGBF ¼ Wmf expð� �

2
Nnðm2

1 þ ð1�m1Þ2ÞÞ: ð28Þ

It follows, using (25)

logðWmfÞ ¼ �Nnm1 þ n logð1þ expð�Nð1� 2m1ÞÞÞ
¼ �Nnm1 � n logðm1Þ ð29Þ

and; logðWGBF Þ ¼ �

2
Nnð4m1 � 2m2

1 � 1Þ

þ n logð1þ expð�Nð1� 2m1ÞÞÞ: ð30Þ

As regards W , a closed form is not available, in general.
However, in the 1-dimensional case for which N ¼ 2, an
expression of W is W ¼ ðexpð�Þ þ 1Þn þ ðexpð�Þ � 1Þn. It is
then easy to compare the logarithms. For N ¼ 2,

logðWmfÞ ¼ 2nm1� þ n logð1þ expð2�ð1� 2m1ÞÞÞ
logðWGBF Þ ¼ nð4m1 � 2m2

1 � 1Þ�
þ n logð1þ expð2�ð1� 2m1ÞÞÞ

logðW Þ ¼ n� þ n logð1þ expð��ÞÞ

þ log 1þ 1� expð��Þ
1þ expð��Þ

� �n� �
:

For � < 1, m1 ¼ 1=2, it comes

logðWmfÞ ¼ n� þ n logð2Þ;

logðWGBF Þ ¼ n
�

2
þ n logð2Þ:

The corresponding graphs are shown in Fig. 4b.
When � > 1, there are no analytical expressions for m1 as

a function of �, but we can plot the graphs by inverting (26)
(See Fig. 4b). Note that logðWmfÞ and logðWGBF Þ remain the
same when m1 is changed to 1�m1. It appears clearly on
the plot that logðWGBF Þ is a far better approximation of the
exact logðWÞ than logðWmfÞ.

For dimension greater than 1, the mean field approxima-
tion expressions (27) and (28) are still valid, but the
computation of the true W is exponentially complex. We
are restricted then to a 3� 3 grid, i.e., n ¼ 9 sites and
considered successively N ¼ 4 and N ¼ 8 neighbors. For
N ¼ 4, the exact partition function is,

W ¼ 102 expð6�Þ þ 144 expð8�Þ þ 198 expð10�Þþ
48 expð12�Þ þ 18 expð14�Þ þ 2 expð18�Þ:

For N ¼ 8, it comes

W ¼ 252 expð16�Þ þ 168 expð18�Þ þ 72 expð22�Þþ
18 expð28�Þ þ 2 expð36�Þ:

The partition function logarithm and its approximations
are shown in Fig. 5. In the general case, when � tends to
infinity, W behaves (if K denotes the number of colors) as
K expðnN�=2Þ, which is the dominant term in the sum over
all possible configurations. The term nN=2 is the maximum
number of homogeneous cliques. It occurs for each of the
K monocolor configurations. Therefore, when � tends to
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Fig. 4. One-dimensional (N ¼ 2 neighbors) 2-color Potts model:
(a) solutions (m1; 1�m1) of the mean field consistency conditions as
� varies, (b) for n ¼ 100 sites, exact partition function logarithm and two
approximations for � > 0. Solid line shows the exact logW , wider
dashed line shows logWGBF and smaller dashed line shows logWmf .



infinity, logðW Þ behaves as nN�=2þ logK. When looking at

(29) and (30), it appears that when � tends to infinity, m1

tends to 0 or 1 and, in both cases, logðWmfÞ behaves as nN�

and logðWGBF Þ as nN�=2. This suggests ways to improve

the approximations. The logð2Þ ¼ 0:69 difference between

logðWÞ and logðWGBF Þ appears more clearly in Fig. 5.

Again, logðWGBF Þ appears to be a much better approxima-

tion of logðWÞ than logðWmfÞ.
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