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How to deal with brain deactivations in the joint detection-estimation framework?
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Introduction:

The Joint Detection-Estimation framework has been proposed in [1-3] as a generalization of regression methods for
the analysis of fMRI data. It enables the detection of brain activation elicited by stimuli along an experimental
paradigm. Also at the subject level, it makes the analysis of brain dynamics feasible through the estimation of regional
Hemodynamic Response Functions. Up to now, the JDE framework has been developed to discriminate activating
voxels from non-activating ones. Here, we extend this paradigm to also account for putative deactivations that may
appear for instance in pathologies (epilepsy). To this end, for any brain region we introduce spatially adaptive 3-class
mixture models and 3D Potts field to embody the spatial correlation over the hidden states of the voxels. The
regularization is spatially adaptive and varies across experimental conditions. We finally illustrate the interest of this
novel approach on synthetic and real unsmoothed fMRI data.

Methods:

The JDE procedure proposed in [1,2] relies on a prior parcellation of the brain into P

functionally homogeneous and connected parcels [3], where typically P = 500 to cover the whole brain. Every parcel is
characterized by a specific model of the BOLD signal, which has to be fitted against the acquired fMRI time series in
the corresponding parcel in order to estimate the HRF shape. As outlined in Fig. 1 the parcel-based BOLD signal
remains bilinear regarding the unknown HRF and the voxelwise and stimulus-dependent magnitudes, also called
Neural Response Levels (NRLs). The main originality in the present contribution lies in the prior model involving the
NRLs, which is composed of stimulus-specific 3-class Spatial Mixture Models (SMM). The three components enable
the discrimination of deactivating, non-activating and activating voxels in response to the corresponding stimulus. The
spatial regularization is embodied in a hidden Potts field and allows us to recover activation clusters instead of isolated
spots by enabling edge-preserving filtering. This regularization is also spatially adaptive meaning that its amount varies
from one parcel to another given our ability to automatically tune all regularization parameters. The generalization to
Potts fields of our min-max extrapolation scheme [4] for Partition Function (PF) estimation has made this automatic
setting possible. This allows us to estimate all PFs very accurately prior to the Gibbs sampling loop in which the
parameters of interest (HRF, NRLs) as well as hyper-parameters are estimated in the posterior mean sense from
unsmoothed fMRI time series. Indeed, it has been shown in [5] that our PF estimation scheme is more stable than
concurrent techniques based on mean-field approximations.

Results:

We applied the JDE procedure to synthetic fMRI time series, which have been generated at low signal-to-noise ratio
considering true activation maps that do not derive from the Potts model. The underlying paradigm consisted of two
stimulus types (M=2) whose activation patterns are shown in Fig. 2(a)-(d), respectively. Fig. 2(b)-(e) illustrates that a
wrong choice of B-value~( 3=0.2) in the supervised SMM (SSMM) induces a misspecification between the activating
and deactivating voxels for the first experimental condition (m=1) and between deactivating and non-activating voxels
as the background is almost classified into deactivating and the non-activating class is almost empty. For m=2, the
situation is better but still noisy under SSMM. The situation is properly regularized by resorting to unsupervised SMM
(USMM): Fig. 2(c-f) yield estimated labels matching exactly the true ones for m=1,2.

These results are enforced by the estimates of the prior mixture components shown in Fig. 3 for the two conditions. In
the SSMM case, we observed a degeneracy regarding the activating class for m=1 (Fig. 3(a)), since the three
Gaussian densities are superimposed. For m=2, the mixture parameters of the SSMM are also problematic while less
degenerated. Since we obtained p_{-1}=y_0 for m=2, this directly impacts the posterior classification towards the
presence of false negatives. On the other hand, Fig. 3(b)-(d) illustrate a better distinction between the three
components in the prior mixtures for m=1,2. For both conditions, we noticed that the distributions do not overlap (Fig.
3(b)) with the USMM setting. Hence, we found an exact posterior classification. Fig. 4 illustrates the behavior of the
SSMM when varying the B-value. A wrong tuning yields a significant decrease in the classification rate of
non-activating (blue) and deactivating labels (red) for $<0.8 et 3>1.2. The USMM provides 3=0.92 (see ¢) which is in
this optimal range [0.8-1.5] and yields optimal classifications.

Conclusions:

We extended a joint detection-estimation of brain activity framework which enables the processing of unsmoothed
fMRI data, described in [2,3]. The latter approach considers two possible states

at each voxel: activating or non-activating. Here, we generalize the model to consider de-activation, in order to take
into account putative negative BOLD effects. The spatial regularization then required 3-colors Potts fields. In order to
make it spatially adaptive, the JDE technique calls for a reliable and fast estimation of 3D Potts field PFs. The JDE
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approach is actually performed independently in a large number of parcels of different shape, each parcel requiring a
specific PF estimation. We extended the algorithm proposed in [3] to the 3-colors Potts fields PF approximation. The

validation on synthetic fMRI data showed promising results in terms of statistical sensitivity. Ongoing work will be

devoted to the processing of real fMRI datasets for which we expect de-activations.
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Categories

* Bayesian Modeling (Modeling and Analysis)
¢ Bold fMRI (Modeling and Analysis)
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