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ABSTRACT be estimated; and (iii) the modelling of spatial correlati®tween
neighboring voxels within each parcel using conditionesipe hid-
den Markov fields. In[[i;12], posterior inference is carriad m a
Bayesian setting using Monte Carlo Markov Chain (MCMC) raeth
ods, which requires in the spatial case, Swendsen-Wangrtalpa
decoupling algorithms to guarantee rapid convergencenghespa-
tial dependencies.

In this paper, we reformulate the approach derived in [2) int
a missing data framework and propose a simplification of tiferi
ence framework. As a more computationally efficient altéveao
MCMC, we resort to variational approximation techniquemgs
Variational Expectation Maximization algorithm (VEM) inder to
derive estimates of the HRF, the Neural Response Levels §NRL
and the corresponding labels (activating/non-activatioxgls). Pre-
o ) ) ) liminary experiments on realistic artificial data sets aparted to
~ Index Terms— Variational EM, MRF, Biomedical signal detec- gemonstrate the good performance of our approach bothrirstef
tion, Magnetic resonance imaging. computation time and estimation quality. The results campa-

1. INTRODUCTION vorably: for a given fixed amount of computational resourtke
variational approach outperforms the MCMC one. This poadipt
increases considerably the impact of the JDE framework mggiks
application possible in larger range brain MRI studies.

We address the issue of jointly detect brain activity andrese
brain hemodynamics from functional MRI data. To this end, we
adopt the so-called JDE framework introducedin [1] and aigped
in [2] with hidden Markov field models to account for spatiapen-
dencies between voxels. This latter spatial addition isresa but
also responsible for high computation costs. To face thadtdbil-
ity induced by Markov models, inference [f [2] is based oeiisive
simulation methods (MCMC). In this work we propose an akern
tive to face this limitation by recasting the JDE framewonkoi a
missing data framework and to derive an EM algorithm for iinfe
ence. We address the intractability issue by consideringti@nal
approximations. We show that the derived Variational ENbetm
outperforms the MCMC procedure on realistic artificial fVidRita.

Functional Magnetic Resonance Imaging (fMRI) is a powetdall

to non-invasively study the relation between cognitivé @sd cere-
bral activity through the analysis of the hemodynamic BOL@ s
nal [3]. Within-subject analysis in event-related fMRI firglies 2. AJOINT DETECTION-ESTIMATION MODEL

on (i) a detection step to localize which parts of the bramasti-  capital letters indicate random variables, and lower chsi teal-
vated by a given stimulus type, and second on (i) an estinaliep  jzations. Matrices are denoted with bold upper case letegy®).
to recover the temporal dynamics of the brain response. Bipst A vector is by convention a column vector. The transposeitéel
proaches to detect neural activity rely on a sirgleriori model for  py ¢ ynless stated otherwise, subscrifitsn, k andn are respec-
the temporal dynamics of activated voxels also known asémedi tively indexes over voxels, stimulus types, mixture comgs and
dynamic response function (HRF) [4]. A canonical HRF is UsU-time point. The Gaussian distribution with mearand variances
ally assumed for the whole brain although there has beeeved s denoted using/(u, ).

that this response can vary with space or region, acrossastgnd o .

groups|[5]. In addition, a robust and accurate estimaticgheHRF ~ 2-1- Missing and observed variables

is possible only in regions that elicit an evoked responsstexper-  We first recast the parcel-based model of the BOLD signalriesst
imental stimulus[[6]. Both issues of properly detectingl@ac- in [2] in a missing data framework. For a given par¢gl the ob-
tivity and estimating the HRF then play a central role in fMiRta  served data is denoted By = {Y;,i € V} whereY; is a N-
analysis. They are usually dealt with independently withpes-  dimensional vector representing the fMRI time course measin
sible feedback although both issues are strongly connemtedo  voxel: € V at times(t,)n=1:.n, Wheret, = nTR, N being the
another. To introduce more flexibility regarding the asstioms on  number of scans and'R, the time of repetition. Additional non
the HRF model, a novel approach referred to as the Joint Dattec observed variables are introduced: 1) The neural respavats|
Estimation(JDE) framework has been introducedln [1] antdreded A = {A,,,m = 1: M} with A,, = {A;,7 € V} whereM is the
in [2] to account for spatial correlation between neighbgnoxels  number of experimental conditions (or stimulus types). Vilealso
in the brain volume (regular lattice in 3D). In this latterpapach,  use the notatio; = {A,.;,m = 1: M}; 2) The HRF function
the HRF can be estimated while simultaneously detectingiyst ~ denoted byH = [Ho, Ha, , ..., Hpad' is a(D + 1)-real valued
in a region-based analysis, that is on a set of pre-spec#igdns of  vector; 3) The activation class assignmefts- {Z,,,m =1: M}
interest (ROI), also nameghrcels This approach is mainly based with Z,,, = {Z.:,7 € V'} represent thactivation classeor each
on: (i) the non-parametric modelling of the HRF at a regiamatial  voxel, in each of theéll experimental conditionsZ,,; = k means
scale (parcel-level) that provides a fair compromise betwgomo-  that voxel: lies in activation clasg for the mth experimental con-
geneity of the BOLD signal and reproducibility of the HRFiegtte;  dition. Typically the number of classes Is = 2 for activating
(ii) prior information about the temporal smoothness ofitiRF to  and non activating voxels. The observed and missing vasahte



then linked through the following relationship implyingditional
parameters to be estimated or fixed as specified bellow. EFach

reads
M

VieV, Yi=> AwXnH+Pl+e,

m=1

@)

where X, = (2} _4a¢)n=1:N,d=0:p denotes theV x (D + 1)
binary matrix that codes the arrival times of theth stimulus which
are approximated to fit A¢-sampled grid, wherét¢ is the sampling
period of the HRF At < T'R); ¢;'s stand for the noise and are in-
dependent and normally distributed,~ A(0,T; '), and P is the
low frequency orthogonaN x L matrix which accounts for physi-
ological artifacts. It consists of an orthonormal basid.dfinctions
[Pr|--- | PL]. We denote by = {¢;,i € V} the set of low fre-
quency drifts . Eacld; is a L-dimensional vector of regressors to be
estimated. We denote Hy = {I';,7 € V'} the set of all precision
matrices.

2.2. Hierarchical model of the complete data distribution

With standard additional assumptions, not detailed here,cmit-
ting the dependence on the parameters to be specified fetatis-
tribution of both the observed and missing variables canduemah-
posed as follows:

p(y,a, h,z) = p(y|a,h) pla|z) p(h) p(z).

To fully define the model, we now specify each term in turn.
The p(y| a, k) term. From [3), it comes that:
p(yla,h) =[] plyilaih)
eV
M
> amiXmh + PL, 1“2.1) :

m=1

with Y;|Ai—ai,H—h~N<

p(Zm, ﬂm) = W(ﬂm)71 eXp(ﬂm Z Z 5(Zm27 ij))7

i€V jEN(3)

whered(zmi, 2m;j) is 1 whenz,,; = zm; and 0 otherwiselV (5,,)

is the normalizing constant antl'(¢) denotes the voxels that are
neighbors to voxel on the 3D brain volume. The unknown param-
etersare the = {Bn,m =1: M}.

For the complete model, it follows that the whole set of param
eters denoted by € © is0 = {T',¢, u,o,0n,3}. Note thatH
could also be considered as a parameter but it distingufstiess
as priors are not necessarily available for the parametérsl they
were, they could be incorporated easily.

3. ESTIMATION BY VARIATIONAL EM

We propose to use an Expectation-Maximization (EM) frame-
work to deal with the missing data namelyy € A, H €

H, Z € Z. Let D be the set of all probability distributions
on A x H x Z. EM can be viewed[[10] as an alternating
maximization procedure of a functioR' such that for anyy €

D, F(q,0) = Eq[logp(y,A,H,Z ; 0)] + I[q] where I[g]
—Eq[log q(A, H, Z)] is the entropy ofg, andE,[.] denotes the
expectation with respect tp Denoting current parameter values by
6, the alternating procedure proceeds as follows:

®3)
(4)

E-step: ¢ = arg max F(q,é(r))
q€D

M-step: 071 = argmax F(q"",0)
oco

However, the optimization step in Ed] (3) leadsqt6 (a, h, 2)
p(a,h,z|y;0™), which is intractable for non trivial models.
Hence, we propose to use an EM variant in which the E-step is

instead solved over a restricted class of probability itistions,

The p(a|z) term. Regarding NRLs, it is standard to assume thatp, chosen as the set of distributions that factorizey@s h, z) =

different types of stimuli induce statistically indepentlBIRLs. The

ga(a) qu(h) qz(z) whereqa € Da, qu € Dy andqgz € Dz , the

allocation variablesZ,,; are then introduced to segregate activatingsets of probability distributions ad, 7, Z respectively.

voxels from non-activating ones. Among voxels, the NRLsage
sumed to be independent conditionally &h, so that putting to-
gether all experimental conditions we get:

plalz) = H H P(@mi | Zmi),

m=1ic€V

@)

The fact that the HRF can be equivalently considered as miss-
ing variables or random parameters induces some similagtiyeen
our Variational EM variant and the Variational Bayesian Elgoa
rithm presented in([11]. Our framework varies slightly frdhe
case of conjugate exponential models described ih [11] aoce m
importantly, our presentation offers the possibility t@deith ex-

where we further assume that the right hand side is defined bifa parametersdj for which no prior information is available. As a
Ami| Zmi = k ~ N(pmr,02;). The Gaussian parameters are Consequence, the variational Bayesian M-step of [11] issfeared

unknown and denoted by ando with p = {u,,,,m =1 : M}
andp,, = [,uml...uwup(]t ando = {om,m = 1 : M} with
Om = [Uml ce. UmK]t-

The p(h) term. Akin to [71[8], we introduce constraints in the prior
that favor smooth variations it

H~N(0,07R) with R=(At)" (D{Ds)""

whereD;, is the second-order finite difference matrix arflis a pa-
rameter to be estimated or fixed. Moreover, the extreme tiomgp
of the HRF are constrained to zeld [8].

into our E-step while our M-step has no equivalent in the fdan
tion of [11]]. It follows then that the E-step becomes an apjpnate
E-step that can be further decomposed into three stagesighwh
the goal is to updatgr, g4 andqz in turn using three equivalent
expressions of” whengq factorizes inD. At iteration(r), with cur-

rent estimates denoted bY{ ~", ¢/~ and§", the updating rules
become (using the Kullback-Leibler divergence prope)ties

E-H: qg)(h) o exp (quqr—l)q(zr—l) [logp(h ly, A, Z; 9(”])

The p(z) term. As in [2], we assume prior independence between E-A: a7 (a) o exp (Eqmq(,‘,l) [log p(a|y, H, Z; 9(7"))})
H %Z

experimental conditions regarding the activation classgasnents.
It follows that

M
p(z) = T Pz )

where we assumed in addition thatz..; 5..) is a K-class Potts
model with interaction parametgy,,,

o () )
E-Z: q;’(z) x exp (qu)qg) [logp(z |y, A, H;0 )]) .
The correspondindyl-step is (sinced and[¢] are independent):

M: 07+ = argmax E

logp(y, A, H,Z ; 0)] .
0O

a5 qy) [



For theE-H andE-A steps it follows from standard algebra thé;"t)

andq!{’ are both Gaussian distributiongl,’ ~ A(m{}, ={)
andq(r) I q(r) with q(r) ~ N(mfﬂ Ef{i)). More specifically,

eV

assuming current values for the; ~", £ andgy " (k), the
™ jteration starts with:

e E-H step: computeE(T) =

57 =37 Z m$ ™ (m

i€V m=1

QW =R ai+ 3 (3 BV (mm) X0 X

i€V m,m’

Z m§=(m

The notationmy " (m) and 5|~ (m,m’) above indicates the

QM-1! andmz) = Eg)g(’"), with

M

X' (30

m=1

m§ Y (m) X))

N(3)}. Seel[12] for details. Th&l-step can also be divided into

four sub-steps involving separatély, o), o, 3 and(¢,T):

e M-(u, o) step. Updating parameterg ando is straightforward
as closed-form expressions are available:
. 2 4, () mm)
T+
TN = - and
> a5 (k)
eV
5 af), (k) ((m&m) = )2 + 55 (m,m)
0_2(r+1) i€V
mk

> ay) (k)

eV

e M-o? step. This step is also closed-form:
t —1
2D _ trace((Z]H +mgmy)R )
h D—1 '

m, resp. (m,m’ ), component of the corresponding vector, resp.The other two M-steps are not closed-form and involved some n

matrix.
e E-A step:
K ~
B0 = (oAp )
k=1
K t
and mE:i) — 25:3 (Z A(T) (T) _|_X(T) g))
k=1
with ;L,(:) = [p1k - . . pasr]* and for everyi € V,

A = diagy [af, V0)/o37, a0 /an ] H s

defined via it§m, m’) components given by

H)) o=t (30X, TV X)) +mi) XEDO X, m)
and X" = [gt] --- | ghs]" With gm = T (yi — PL) X,
For theE-Z step, it comes
M
0’z = J[d%) ) ®)
m=1
with ¢ (2) = p(zm | A = m§ (m); 0, B

wherep., is a Potts model with interaction parameﬁéf) and ex-
ternal fielda!;) = {a'"),i € V}

with @) = £ (m,m) [1/02“). 1o 2““)]

P o B) o exp (3 () (2
i€V

03 8Czmis 2mi) )}

JEN (i)

The expression in{5) is intractable but a number of appraxim
tion techniques are available. In particular, we can use anme
field like algorithm (fixing the neighbours to their mean \&glu
as described in[12] in whichyz,, (z:,) can be approximated

by Gz, (zm) = 1l 4z,.:(zmi) With, if 2mi =k, qz,,(k) o
eV

N (ma, (m); pmk, O )Pm(Zmi = k| Zmarciy; Bm, Om), Where
Zm is a particular configuration of,, updated at each iteration
according to a specific scheme apgl (zmi | Zmar(i); Bm, Om)

exp{aml(zml)—kﬂm Z 6(§jm7 Zml)} andémN(i) = {ij,j S
JEN ()

merical procedures. Fgt, the update can be solved using a mean
field like approximation as done in[12]. Fof, T') itis easy to show
that they satisfy some fixed point equation not detailed herkto

be solved numerically.

4. ILLUSTRATIONS

4.1. Simulated fMRI data

We simulated a random mixed sequence of indexes coding for
M = 2 different stimuli. These two sets of trials (30 trials per
stimulus) were then multiplied by stimulus-dependent apalce-
varying NRLs, which were generated according to the distidin

in Eq. @) cf Fig.[ left column). To this end, we generated 2D
slices €f Fig.[d left column) composed of 20 x 20 binary labels
Zm (activating and non-activating voxels) for each stimulysetmn.
Then, we simulated normally-distributed NRLs:

Avi | Z1i =0~ N(0,0.3),  Avi|Z1i =1~ N(2,0.3),
Agi | Zai = 0 ~ N(0,0.5),  Asi| Zas = 1 ~ N (2.8,0.5).

Fig.[ illustrates the impact of the spatial correlation ba NRL
maps. As illustrated in Fid.]3, the simulated fMRI data atheac
voxel i is obtained by adding a white Gaussian naiseand low-
frequency driftP¢J] to the convolution of the NRL-modulated stim-
uli sequenceX”,, AmiXnm) with the HRF.

Note that the parameter$ and 5. have been set to fixed values
(81 = B2 = 0.8 for the two approaches) and will not be estimated,

as well as™ and/ set as in[[1].
VEM
ﬁw
0

Reference MCMC
"l Bl E
w2 - 12
=1 |l b
4
%ug
2
Fig. 1. Reference (left) and estimated NRLs amplitude using MCMC

simulations (middle) and the proposed approach (right).

1P was defined from a cosine transform basis and paraméjensere
drawn from a normal distribution.

=

[
N

8



Reference MCMC VEM

Amplitude

mlE E E
m2E E E :

Fig. 2. Reference (left) and estimated labels (PPM) using MCMC
simulations (middle) and the proposed approach (right).

paradigm H Noiseg; + drift £;fMRI dataY;
scan number Timeins scan number  scan number

Fig. 3. Simulation of artificial fMRI datasets.

4.2. Performance comparison

We compare here our method based on VEM to the one in previ-

ous work [2] using intensive MCMC simulations. It can be obed (1]
from Fig.[2 that the two methods provide very close resulteims
of estimated posterior activation probability maps (PP&ikept for
the first experimental conditiom = 1. Estimated NRLs are also 2]

very similar both form = 1 andm = 2 from a qualitative viewpoint
(see Fig[l). In order to compare the two approaches from a-qua
titative viewpoint, three different experiments have beenducted
by varying the input Signal-to-Noise Ratio (SNR) of the slated
fMRI data. TabléTL shows SNR values of the simulated fMRI aign
and the estimated NRLs w.r.t. the reference ones for the twe ¢
sidered conditions. It can be first noticed that sipge > 1,2,

a higher SNR is always obtained for the NRLs correspondirtfeo
second experimental conditiom(= 2). As expected, reported SNR
values indicate that the estimation precision increas#stiwe input
SNR. When comparing the two approaches, it seems that the pro
posed one is more robust to the noise in fMRI data. Note tisat di
played results in Fig&ll,2 ah#l 4 correspond to Experiment 1.

(3]

(4]

(5]

(6]

Table 1. SNR (dB) values for the simulated fMRI sign&l and

estimated NRLs. 7
Y MCMC VEM
m=1|m=2 | m=1| m=2
Exp. 1| 11.86| 44.81 45.27 50.96 55.13 [8]
Exp. 2| 1256 | 44.66 | 53.14 | 50.42 | 56.93
Exp. 3| 15.91| 47.97 53.82 52.59 58.41

As regards estimated HRFs, Fig. 4 shows that two approachesg]
perform similarly in terms of estimation precision, mairhe time
and amplitude of the peak. In terms of computational time,ré+
sults hereabove have been reached after 1 min on an Intel2ZCore [10]
2.26 GHz, while the MCMC-based approach took 4 min on the same
architecture and programming language (Python).

5. CONCLUSION
We proposed an alternative to intensive MCMC sampling in the
joint detection-estimation framework. Our contributialies on a
variational EM algorithm. lllustrations showed that thigpeoach
achieved similar and even better results than the MCMCe¢bagpe
proach. Results shown here were at the region level, oncaatifi

(11]

(12]

2D datasets of moderate siz20(x 20).
the application of our method to real 3D datasets on the winaliz
(typically of size96 x 96 x 40). The differences between our method

and the MCMC approach should then be even more significaht bot
in terms of computational cost and results quality.

Ref

—o01 L L L L L
o 5 10 15 20

25
Time (s)

Fig. 4. Reference and estimated HRFs using the VEM and MCMC-
based algorithms.

Future work includes
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