MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI
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ABSTRACT

Brain parcellation into a number of hemodynamically ho-
mogeneous regions (parcels) is a challenging issue in fMRI
analyses. This task has been recently integrated in the joint
detection estimation [1] resulting in the so-called joint parcel-
lation detection estimation (JPDE) model [2]. JPDE automat-
ically estimates the parcels from the fMRI data but requires
the desired number of parcels to be fixed. This is potentially
critical in that the chosen number of parcels may influence
detection-estimation performance. In this paper, we propose
a model selection procedure to automatically set the number
of parcels from the data. The selection procedure relies on
the calculation of the free energy corresponding to each con-
current model, within the variational expectation maximiza-
tion framework. Experiments on synthetic and real fMRI data
demonstrate the ability of the proposed procedure to select the
optimal number of parcels.

Index Terms— fMRI, JDE, JPDE, Parcellation, VEM

1. INTRODUCTION

Functional MRI (fMRI) is an imaging technique that indi-
rectly measures neural activity through the blood-oxygen-level-
dependent (BOLD) signal [3], which captures the variation
in blood oxygenation arising from an external stimulation.
This variation also allows the estimation of the underlying
dynamics, namely the characterization of the so-called hemo-
dynamic response function (HRF). The hemodynamic char-
acteristics are likely to spatially vary, but can be considered
constant up to a certain spatial extent. Hence, it makes sense
to estimate a single HRF shape for any given area of the brain.
To this end, parcel-based approaches that segment fMRI data
into functionally homogeneous regions and perform parcel-
wise fMRI data analysis provide an appealing framework [4].
In [1, 5, 6], a joint detection-estimation (JDE) approach
has been proposed for simultaneously localizing evoked brain
activity and estimating HRF shapes at a parcel-level. This
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parcel scale allows one to make a spatial compromise be-
tween hemodynamics reproducibility and signal aggregation,
the latter operation enhancing the inherent low signal-to-noise
ratio (SNR) of fMRI data. This aggregation has to be well
spatially controlled because of the known fluctuation of hemo-
dynamics across brain regions [7, 8]. Hence, the JDE ap-
proach operates on a prior partitioning of the brain into func-
tionally homogeneous parcels in which the hemodynamics is
assumed constant. A robust parcellation is needed to ensure a
good JDE performance. A few attempts have been proposed
to cope with this issue [2, 4, 8-11] among which some do
not account for hemodynamics variability [4, 9, 10]. In this
work, we focus on the JDE extension proposed in [2]. This
extension performs online parcellation during the detection-
estimation step, resulting in the so-called joint parcellation
detection estimation (JPDE) framework. This was accom-
plished by proposing the concept of hemodynamic territory,
which is a set of parcels that share a common HRF pattern.
HRFs are voxel-wise and are defined as local stochastic per-
turbations of the same HRF pattern, which is used to define
the hemodynamic territory. However, this approach still re-
quires to fix the number of parcels and lacks the possibility to
determine this number automatically from the data. Indeed,
as reported in [2], prior parcellations may suffer frorm over
granularity, which means that some of the brain regions are
assumed to be in different parcels while they share the same
HREF properties. The JPDE model allows to reduce this over-
parcellation effect. However, the user still has to manually
specify the number of parcels to be considered.

In this paper, we propose a variational scoring for JPDE model
selection. It relies on calculating the free energy of the model
with different numbers of parcels. The model with the highest
free energy corresponds to the best fit. The selection criterion
is integrated in the variational expectation maximization al-
gorithm already developed in [2]. The algorithm is tested on
both synthetic and real data and the results show its ability
to select the best model that fits the data automatically. The
rest of the paper is organized as follows. Section 2 describes
the JPDE framework. The model selection procedure is then
described in Section 3 and validated in Section 4 both on syn-
thetic and real data. Finally, some conclusions and perspec-
tives are drawn in Section 5.



2. JOINT PARCELLATION DETECTION
ESTIMATION MODEL

2.1. The JPDE model

The adopted JPDE model is the one proposed in [2], which
can be fragmented as follows. Let PP be the set of voxels (J
voxels) and y; the fMRI time series for the voxel #; at times
{tn, n = 1,...,N}, where t, = nTR, N is the number
of scans and TR is the repetition time. The whole data set
is denoted by Y = {y,,j € P} and we consider M dif-
ferent stimulus types (experimental conditions). The HRFs
are assumed voxel-dependent and belong to a set denoted by
H = {hj,j € P} with h; € RPT!. Each h; is asso-
ciated with one among K considered HRF groups (parcels).
These groups are encoded using a set of hidden labels Z =
{#;,j € P} (where z; € {1,...,K}) which follows a K-
class Markov field (Potts) model with interaction parameter
B.. This parameter accounts for spatial information and is as-
signed an exponential prior with hyperparameter \,. We as-
sume that in the group #£k, the HRF h; is a stochastic pertur-
bation of an HRF pattern hj,. More precisely, we assign to h;
a Gaussian prior distribution A (hy, vId). To favor smooth
HRF patterns, the temporal HRF mean hy, is also assumed
to be distributed according to a common centered isotropic
Gaussian distribution defined by a scalar variance parameter
0% . We then consider the following observation model

M
VieP, yi=> a'Xnhj+Pli+e, (1)

m=1

where P/; corresponds to low frequency drifts (more details
are given in [1,6, 12]). For the mth experimental condition,
X,, = {274 n = 1,...,N,d = 0,...,D} is a bi-
nary matrix that provides information on the stimulus occur-
rences, At < TR being the sampling period of the unknown
HRFs. The neural response levels (NRL) are denoted by A =
{a™,m=1,..., M} with a™ = {a}”,j € P}. The a™’s
follow spatial Gaussian mixtures defined by a set of parame-
ters 8, and governed by binary Markov fields. More specif-
ically, each NRL is assigned to one of the activation classes
encoded by the variables Q@ = {¢™,m =1,..., M} where
q" = {q}", jE 73} is a binary Markov field with interaction
parameter 3, distributed according to an exponential distri-
bution with parameter \,,. Two classes are considered, q;” =
1 (resp. ¢;j* = 2) if voxel j is not activated (resp. activated)
by condition m. Akin to [1, 2,6, 12], an additive Gaussian
noise &; is considered with covariance matrix I‘;l. The JPDE
model is summarized in the directed acyclic graph displayed
in Fig. 1. We will denote by ® = {L,T, 04,0, \;,07}
the set of hyperparameters of the proposed model, where L
(resp. I',v) is a shortcut for L = {¢;,j € P} (resp. T’ =
{T;,j € P}, v = {v,k = 1,...,K}). The other ran-
dom parameters for which we consider priors are denoted
by ¥ = {h,B,8.} withh = {hy,k = 1,...,K} and

B = {Bm,m = 1,...,M}. The set of all model parame-
ters is finally denoted as ® = {¥, ®}.

Note here that the proposed model depends on K, the number
of parcels, and hence the number of Gaussian distributions in-
volved in the prior of h;. This parameter has to be known to
apply the estimation procedure developed in [2] (see dashed
square in Fig. 1). However, several models with different val-
ues of K may be in competition to better fit the fMRI data.
The main contribution of this paper is to investigate a method
allowing the best value of K to be selected. This method is
detailed in Section 3.
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Fig. 1. Graphical model describing dependencies between
variables involved in the JPDE model. Circles and squares in-
dicate random variables and model parameters, respectively.
Red squares indicate the random model parameters. The
dashed square indicates the fixed parameter K.

2.2. Variational expectation maximization estimation

Using the same assumptions as in [2], joint distribution of the
proposed model is

pY,A,Q H,Z,¥;®)=p(Y|A H;®)p(A|Q; ®)x

p(Q|B) p(H | Z,h; ®) p(Z|B.) p(h; ®)p(B; ®)p(B; ®),
(2)

where we have distinguished parameters from hyperparame-
ters by using @ whenever there was a dependence on some of
the hyperparameters. For inference, we use as in [2], a vari-
ational expectation maximization (VEM) [13, 14] procedure
in which we compute approximate posterior distributions for
the missing variables namely {A, H,Q, Z}. Formally, we
could also compute posterior distributions for the parameters
W but we choose to restrict for them to point estimates, which
amounts to seeking for posteriors that are Dirac (§) functions.
It follows that the VEM procedure is based on the alternating
maximization of the following free energy term

F(p,©) =E;[logp(Y, A, Q,H,Z,¥;®)| +G(p), (3)

where we optimize alternatively with respect to a distribu-
tion p (VE-step) and the parameter vector ® (VM step). Note
that p has the following product form p(A, H,Q,Z,¥) =



pa(A) pu(H) po(Q) pz(Z) 45 (¥) and over & (VM-
step). Ej[.] denotes the expectation with respect to f and
G(p) = —E;[logp(A, H,Q, Z, ¥)] is the entropy of p. For
the product form above, it simplifies to G(p) = G(pa) +
G(pu) + G(pg) + G(pz). Starting from initial distributions
By, 5% 5y, By and initial values ®(©), @), we then al-
ternate the two optimization E and M steps to obtain the final

posteriors denoted by 5, 5o, 1380), Py

mates \Il(‘x’), &) where ¥(*) takes into account the prior
distributions for the parameters in W. Point estimates for the
missing variables can then be also straightforwardly derived.
In the next section, we explain that the free energy can be in
addition used as a model selection criterion to assess the best
model that fits the data.

and point esti-

3. JPDE MODEL SELECTION

As stated in the introduction, selecting the number of parcels
is a challenging issue for fMRI data analysis. In the above
mentioned JPDE framework, it reduces to a model selection
issue in which we seek for the value of K that provides the
best fit to the data under consideration. When comparing
models with different parameter sets (typically the number
of JPDE parameters increases with K), the likelihood cannot
be directly used as a model score because it does not account
for the model complexity. Existing well known alternatives
based on penalized likelihoods include the Bayesian infor-
mation criterion (BIC) and the minimum description length
(MDL) criterion [15]. We propose another automatic approach
that allows retrieving the number of useful parcels based on
the calculated free energy (F). Indeed, it has been stated in
[16, 17] that the variational objective function F penalizes
model complexity and thus can be used for model selection. It
is the idea investigated in this paper which is directly related
to the proposed VEM framework. Note that the value of the
free energy converges to the popular BIC and MDL criteria
when the sample size increases, illustrating the interest of this
measure for model selection.

Let us consider (2 different competing models. For each
model, the number of considered parcels (HRF groups) will
be denoted by K¥ (w € {1,...,9Q}). For each model w,
a VEM procedure is run as explained in the previous section
leading to some estimated posteriors

ﬁ;oo),ﬁgo),ﬁggo),ﬁ(zoo) and point estimates P> $(2) 1o
refer to model w, the previous quantities will be indexed by
the superscript w, typically writing p% instead of ]55400). The

free energy in (3) can then be rewritten as

Fp”, %, @%) =

Ep"" [logp(YaAaQaHv Za \Ilw’(bw)} +g(pw) (4’)

where p” is p (A, Q, H, Z) = p4 (A)p8(Q) p (H) p5(Z),

or equivalently as
F(p¥,®¥ &%) = Epspe [1ogp(Y | A, H; q)w)}
+ Eps s [logp(A | Q; )] + Epg [log p(Q|8*)]
+ Eps,ps [log p(H | Z, h*; ®*)] + Eyy [log p(Z52)]
+ log p(h“; ®*) + log p(B*; ) + log p(52; ®*)
+6G(r3) +9g) + 9(ir) + G(r7)-
Each term in the sum above can be easily computed using the
VEM results due to the tractable (e.g. Gaussian) form of the
posteriors. The reader is invited to consult [2] for details on
these posteriors. After running JPDE for the 2 models, the

model giving the highest free energy is selected as the most
relevant one with respect to the parcellation task.

®)

4. EXPERIMENTAL VALIDATION

In order to validate the proposed model selection procedure,
different experiments have been conducted both on real and
synthetic data.

4.1. Synthetic data

Three experiments (denoted as Exp.1, Exp.2 and Exp.3) have
been conducted here to validate the proposed model selec-
tion procedure. For each experiment, a different parcella-
tion mask is considered with two, three and four parcels (see
Fig. 3[left]). Based on these original masks, a BOLD signal
has been generated according to the observation model in (1)
for each experiment (using the PYHRF software'). Two ex-
perimental conditions (M = 2) have been considered with
30 trials for each of them. The reference activation labels
are illustrated in Fig. 2. These maps of size 20 x 20 have
been chosen so that each parcel covers a part of the simu-
lated activity. As regards NRLs, they have been drawn ac-
cording to their prior distribution. For the HRFs, different
groups have been considered, each with K = w + 1 parcels
where w € (). Data resulting from the three experiments have
been processed by the proposed JPDE framework while per-
forming model selection based on the proposed free energy
scoring. For each experiment, a set of {2 = 1,... 4 models
has been investigated. After evaluating the free energies for
all models, it turns out that the retained models are w = 1,
w = 2 and w = 3, respectively. The corresponding values of
the free energy are provided in Tab. 1, where the highest value
for each experiment appears in bold font. The estimated and
initial parcellation masks are displayed in Figs. 3[middle] and
3[right] , respectively. This figure shows accurate estimated
masks from a visual point of view.

Quantitatively speaking, MSE (mean square error) values
for NRLs and activation maps are reported in Tab. 2. The
same table also shows the parcellation error percentage for the

'www.pyhrf.org



m=1 m=2

Fig. 2. Reference activation labels for the two experimental
conditions.

Reference mask Initialization Estimated mask

Exp. 1

Exp. 2

Exp. 3

11
roer

Fig. 3. Reference, estimated and initial parcellation masks for
the three experiments.

selected model in each experiment. The results are promising
and illustrate the good detection accuracy and parcellation as-
sociated with the proposed JPDE for the selected model. The
values reported in Tab. 1 also show the slight error increase
with respect to the number of parcels, which is actually ex-
pected. Note that these results are reproducible across runs.

Table 1. Estimated free energy for the three experiments and
the four different models. Bold values indicate the highest
free energy.

Exp.1 Exp.2 Exp.3
w =1 (2 parcels) | 78614.04 | 59459.32 | 6185.50
w = 2 (3 parcels) | 77126.72 | 86584.94 | 83424.95
w = 3 (4 parcels) | 78365.17 | 86492.43 | 89146.02
w =4 (5 parcels) | 75651.11 | 85180.44 | 87305.96

4.2. Real data

A gradient-echo EPI (echo planar imaging) sequence
(Echo Time=30ms / Repetition Time=2.4s / slice thickness
= 3mm / Field Of View=192mm?) was used to acquire the

Table 2. MSE values of NRLs and activation maps, in addi-
tion to the parcellation error percentage. The reported values
correspond to the estimated model for each experiment.

Exp.1 | Exp.2 | Exp.3

m—=1] 0016 | 0.017 | 0.017

NRLs = —5T0012 [ 0012 | 0012

Labels | =1 0.0034 | 0.011 | 0011

A =92170.0026 | 0.0026 | 0.0027
Parcellation 15% | 2.75% | 3.25% |

real fMRI data at 3T during a localizer experiment [18]. This
paradigm involved sixty auditory, visual and motor stimuli,
defined in ten experimental conditions (M = 10). During
the used paradigm, 128 scans have been acquired at a 2 x
2 x 3mm? 3D spatial resolution. Akin to the experiment con-
ducted in [2], we focus on the auditory condition that gener-
ates activations in the temporal lobe. Specifically, we focus on
the two regions of interest (ROI) presented in Fig. 4 denoted
as ROI 1 (left ROI) and ROI 2 (right ROI). Q2 = 5 different
models have been tested with K = 1, K2 = 2, K3 = 3,
K* = 5and K° = 8. For each model, the initial parcellation
has been obtained by merging neighboring parcels obtained
by applying the method of [4]. After running all the models
separately and calculating the final free energies, it turns out
that w = 2 (2 parcels) is the best model that fits the fMRI
data. The initialization and estimated masks with the selected
model are illustrated in Figs. 4[a] and 4[b]. This figure shows
the two estimated parcels. Fig. 4[c] also shows the estimated
NRLs with the same model. These results are consistent with
those obtained in [2] where three parcels have been identi-
fied, two of them being very similar. In our results, these
two parcels have been successfully merged in the two-parcel
model.

(a) (b)

Fig. 4. (a): initial parcellation mask; (b) estimated parcella-
tion mask with the two-parcel model (w = 2); (c) estimated
NRLs with the retained model (w = 2). ROI 1: left side; ROI
2: right side.

5. CONCLUSION

In this paper, a model selection procedure was proposed to
assess the problem of selecting the number of parcels in the



Table 3. Evaluated free energy values for the 5 models tested on real data.

w=1{par) | w=2Q2par) | w=3Bpar) | w=4(Spar) | w=>5(8par.)
ROI'1 -307292 -306941 -309810 -309580 -310089
ROI2 -226216 -224608 -226127 -227406 -226571

JPDE framework. The proposed procedure relied on calculat-
ing the free energy of different concurrent models. The model
with the highest free energy yields best fit. The proposed pro-
cedure was included in the VEM framework already adopted
in [2]. Validation on synthetic and real data confirmed the
ability of the proposed model selection procedure to select the
model that best fits the data. Future work will focus on apply-
ing the JPDE framework with the proposed model selection
procedure to both region-based and whole brain analyses.
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