Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF

Thomas Vincent1,2, Solveig Badillo2,3, Laurent Risser2,4, Lotfi Chaari1,5, Christine Bakhous1, Florence Forbes1 and Philippe Ciuciu2,3,*

1INRIA, MISTIS, Grenoble University, LJK, Grenoble, France
2CEA/DSV/2BM NeuroSpin center, Bât. 145, F-91191 Gif-sur-Yvette, France
3INRIA, Parietal, NeuroSpin center, Bât. 145, F-91191 Gif-sur-Yvette, France
4CNRS, Toulouse Mathematics Institute, UMR 5219, Toulouse, France
5INP-ENSEEIHT / CNRS UMR 5505, University of Toulouse, IRIT, Toulouse, France

Correspondence*:
Philippe Ciuciu
CEA/DSV/2BM NeuroSpin center, Bât. 145, F-91191 Gif-sur-Yvette, France, philippe.ciuciu@cea.fr

Research Topic

\textbf{ABSTRACT}

As part of fMRI data analysis, the \texttt{pyhrf} package provides a set of tools for addressing the two main issues involved in intra-subject fMRI data analysis: (i) the localization of cerebral regions that elicit evoked activity and (ii) the estimation of the activation dynamics also referenced to as the recovery of the Hemodynamic Response Function (HRF). To tackle these two problems, \texttt{pyhrf} implements the Joint Detection-Estimation framework (JDE) which recovers parcel-level HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With respect to the sole detection issue (i), the classical voxelwise GLM procedure is also available through \texttt{nipy}, whereas Finite Impulse Response (FIR) and temporally regularized FIR models are implemented to deal with HRF estimation concerns (ii). Several parcellation tools are also integrated such as spatial and functional clustering. Parcellations may be used for spatial averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates in the JDE approach. These analysis procedures can be applied either to volumic data sets or to data projected onto the cortical surface. For validation purpose, this package is shipped with artificial and real fMRI data sets, which are used in this paper to compare the outcome of the different available approaches. The artificial fMRI data generator is also described to illustrate how to simulate different activation configurations, HRF shapes or nuisance components. To cope with the high computational needs for inference, \texttt{pyhrf} handles distributing computing by exploiting cluster units as well as multiple cores computers. Finally, a dedicated viewer is presented, which handles \(n\)-dimensional images and provides suitable features to explore whole brain hemodynamics (time series, maps, ROI mask overlay).

\textbf{Keywords:} medical imaging analysis, fMRI, Bayesian inference, python, scientific computing
1 INTRODUCTION

As Magnetic Resonance Imaging (MRI) is a growing imaging modality in neuroscience, the need for powerful tools to explore the increasing amount of data is more and more significant. This data growth is quantitative as cohort sizes are getting bigger through the development of international multi-centre projects like the Human Brain Project (Koslow and Huerta, 2013) but also qualitative as high field magnets become more and more available (Duyn and Koretsky, 2011). Functional MRI (fMRI) especially benefits from these improvements and the experimenter has access to finer spatial (∼1 mm) and temporal (∼1 sec.) resolutions and also higher signal-to-noise ratio (SNR). In particular, the higher temporal resolution combined with higher SNR allows a better recovery of dynamical processes so that we no longer have to accommodate with only static mappings of cerebral activity. In this context, pyhrf aims at extracting dynamical features from fMRI data and especially the Blood Oxygenated Level Dependent (BOLD) modality (Ogawa et al., 1990). The observed BOLD signal is an indirect measure of the neural activity via the oxygen variation induced by the neuro-vascular coupling. Therefore, analysis methods have to formalize a hemodynamic model in order to make inference on neural processes. However, even if BOLD variations are known to correlate with neural activity, it is difficult to disentangle the dynamics of neural and the vascular components. As the employed methodology mainly resorts to linear systems, dynamical processes are summarized within the so-called Hemodynamic Response Function (HRF), which is the impulse response that links neuronal activity to the fMRI signal. In fact, the package offers various tools to analyze evoked fMRI data ranging from spatial mappings such as those provided by the General Linear Model (GLM) framework (Friston et al., 1995) to finer hemodynamics models as provided by the joint detection-estimation (JDE) approach described in Makni et al. (2005, 2008); Vincent et al. (2010). Through a bilinear and time-invariant system, the JDE approach models an unknown HRF at the level of a group of voxels (referred to as a parcel in the following) as well as voxel- and condition-specific response levels to encode the local magnitudes of this response. The HRF is only constrained to be smooth (temporal regularization) and can cover a wide variety of shapes. The response levels are spatially regularized within each parcel. Hence, the JDE approach is a spatially adaptive GLM built on unknown parcel-dependent HRFs with spatio-temporal regularization.

The usage of each tool depends on a choice of model which is driven by the features required by the experimenter’s questioning. To obtain classical detection results, a GLM based on the canonical HRF (and possibly its temporal derivatives) may be sufficient. Even if the between-region hemodynamics variability is acknowledged, the canonical HRF can provide good results in regions where it has precisely been calibrated such as temporal and occipital cortices as studied by Boynton et al. (1996). However, to detect activations in regions involving more complex processes or where potential hemodynamics delays happen (varying reaction delays or pathological cases), hemodynamic fluctuations influencing detection activation may occur that are not caught by the HRF derivatives or function bases. Moreover, if one is interested in studying the dynamics features of the response, an explicit HRF estimation is required. The main question in this case concerns the need for condition-specific features or not, namely for an HRF estimation associated with each experimental condition or for a single HRF estimate associated with all conditions. If explicit condition-wise HRFs are required, the best methodological tool to use is the temporally Regularized FIR (RFIR) developed in Marrelec et al. (2003); Ciuciu et al. (2003). Otherwise, if variability is expected only across separated and specialized regions, the JDE framework is well-suited. Indeed, within a specialized region, if only one condition exhibits activity then the region-specific HRF can be considered a condition-specific HRF. The performance of RFIR models depends nonetheless on the number of experimental conditions involved in the paradigm because the higher this number, the larger the number of parameters to estimate and thus the fewer the number of degrees of freedom for statistical testing. The model choice depends thus also on the experimental paradigm. First, it is worth noticing that the use of the JDE formulation is less relevant to analyze block paradigm data since the signal variability in this case is hardly significant. The JDE formalism is actually more adapted to fast event-related paradigms or to paradigms including many conditions, like the localizer paradigm (10 conditions) introduced by Pinel et al. (2007) and used hereafter in this paper. The JDE approach is also optimally tuned to combined analysis of hemodynamics features with the detection of activated brain.
areas. To sum up on the model choice, the JDE model provides a fair compromise with the possibility for
the user to adapt the model to the studied region.

JDE also delivers interesting and complementary results for the sole activation-detection aspect
compared with classical GLM. Spatial regularization, which is necessary due to the low SNR in fMRI, is
not enforced in the same way between methods. In the GLM, FIR and RFIR cases, there is no embedded
spatial regularization within models. Indeed, the data are usually spatially smoothed with a fixed Gaussian
kernel as part of preprocessings. In contrast, JDE incorporates spatial correlation through hidden Markov
models. The amount of spatial correlation is automatically tuned and also adaptive across brain regions,
therefore avoiding any prior invariant smoothing.

`pyhrf` is mainly written in python with some C code to cope with computationally demanding parts
of algorithms. This python choice has been made possible thanks to the `nipy` project and especially
`nibabel` to handle data reading/writing in the NIFTI format.

In terms of package maturity, `pyhrf` is a research tool which has the ambition to target cognitive
neuroscientists and clinicians. Efforts are made in terms of user-friendliness and the design is a trade-off
between *mutability* which is required by methodological research where specifications change frequently
and *usability* where user interfaces should be as stable as possible to ease external non-developer use
cases.

The rest of the paper is organized as follows. First, methods available in the package are presented,
comprising parcellation and detection/estimation analyses. Then, the workflow and design of the `pyhrf`
package are detailed which cover the user interface and code snippets for the main analysis treatments,
simulation framework, distributed computations and data viewer. Results illustrate the outcome of
gerometrical and functional parcellations and their impact on detection/estimation treatments. Finally,
conclusions are drawn and perspectives for future developments are indicated.

2 METHODS

The main fMRI data analysis methods available in `pyhrf` are of two kinds: (i) parcellation tools that
segment the brain into disjoint sets of positions and (ii) activation detection/HRF estimation tools that
highlight correlations between the input experimental paradigm and variations in the measured fMRI
signal. The first kind comprises two spatial parcellation tools: Voronoi-based random parcellation,
reviewed by Aurenhammer and Klein (2000) and balanced partitioning, developed in Elor and
Bruckstein (2009). The second kind comprises the GLM introduced in Friston (1998), the FIR model
described in Henson et al. (2000), the RFIR model developed in Ciuciu et al. (2003) and the JDE
approach presented in Vincent et al. (2010); Risser et al. (2011). The GLM and FIR GLM procedures
are provided by `nipy` while RFIR and JDE are originally implemented in `pyhrf`. For all these methods,
we refer to their respective bibliographical references for an extensive presentation of their methodology.
Nonetheless, the main aspects of these methods are summarized in what follows with the concern of
allowing the comparison between them, especially in terms of model structure and assumptions.

After detailing notations, we introduce detection/estimation methods, namely GLM, FIR and RFIR, which
require the measured fMRI signal and the timing of the experimental paradigm as input. After setting
the generative model common to all detection/estimation methods and a brief comparative overview,
each approach is presented in more details. Subsequently, parcellation methods are presented. Spatial
parcellation approaches can be applied directly to the input fMRI data and only depend on its geometry.
Functional parcellation, which is a clustering of GLM results, is detailed afterwards.

1 ADDED: www.nipy.org
2 ADDED: www.nipy.org/nibabel
2.1 NOTATION

Conventions We denote vectors with bold lower case (e.g., y) and matrices with bold upper case letters (e.g., P). A vector is by convention a column vector. Scalars are denoted with non-bold lower case letters (e.g., a). The transpose operation is denoted by t. Probability distribution functions (pdf) are denoted using calligraphic letters (eg, N and G for the Gaussian and gamma distributions).

Data geometry As methods can be applied to data defined in the volume or on the cortical surface, the generic term “position” will be used in place of “voxel” (volume unit) and “node” (surface mesh unit). Position indexes are denoted by $j = 1 : J$ to indicate a range between 1 and J. Data are assumed to be masked to only keep positions within the brain. J is the total number of positions within the functional mask. In addition, when considering parcellated data, this functional mask is divided into a set of Γ parcels denoted $\{P_1, ..., P_{\gamma}, ..., P_{\Gamma}\}$, where P_{γ} is the set of $J_{\gamma} = |P_{\gamma}|$ position indexes belonging to parcel γ.

Functional data We consider the usual case of evoked fMRI data analysis where the experimental paradigm comprising M conditions is known. The signal measured at each time of repetition (TR) is denoted $y_j = \{y_{j,n}\}_{n=1:N}$ where N is the number of scans. Stimulus timing onsets for a given experimental condition $m = 1 : M$ are encoded by variable x^m so that $x^m_t = 1$ if a stimulus occurs at time t up to a time step Δt, else $x^m_t = 0$. The time step is such that $\Delta t \leq TR$ and depends on the actual temporal resolution sought by the analysis method.

2.2 DETECTION/ESTIMATION METHODS

For ease of comparison, the presentation of all methods is immersed in the same formalism where the signal is assumed generated by a linear and time-invariant (convolution) system with additive noise. We also consider the usual case of taking into account a position-specific low frequency drift in the data which is a well known fMRI artifact produced by the aliasing of respiratory and cardiac rhythms into the low frequencies as studied in Yan et al. (2009). The generic forward model, reads:

$$ y_j = \sum_{m=1}^{M} X^m \phi^m_h + P \ell_j + b_j, \quad (1) $$

where:

- P is a fixed orthonormal basis that takes a potential drift and any other nuisance effect (e.g., motion parameters) into account. The low-frequency drift can classically be either polynomial with an order up to 5 or cosine with a cut-off of 0.01Hz,
- ℓ_j are the unknown regression weights associated to P,
- b_j is the noise component,
- ϕ^m_h is a “generic” hemodynamic filter of size D. For a typical duration of 25 sec., $D = 25/TR$ for the GLM and FIR GLM\(^3\) approaches, while $D = 25/(TR/4)$ for the RFIR and JDE approaches considering a typical oversampling factor of 4. In the GLM framework, ϕ^m_h can be fixed to the canonical HRF or parametric when resorting to function bases and we will note R the number of unknown parameters. In non-parametric approaches, all HRF coefficients are estimated as in RFIR or JDE approaches,

\(^3\) Over-sampling could be performed in the case of FIR GLM but is not advisable in terms of estimability since some FIR coefficients may be poorly or even not associated with paradigm covariates in matrix X^m, depending on the paradigm jittering.
2.2.1 basis set General Linear Model

In any position j of the brain, the basis set GLM (BS GLM) allows for some limited hemodynamic fluctuations by modeling the hemodynamic filter function ϕ_h in Eq. (1) as a weighted sum of the fixed canonical HRF denoted h_c and its first and second order derivative h'_c, h''_c as proposed in Friston (1998). The generative model, illustrated in Fig. 1(a), reads:

$$\forall j, \quad y_j = \sum_{m=1}^{M} X^m \left(\beta^m_j h_c + \beta'^m_j h'_c + \beta''^m_j h''_c \right) + P\ell_j + b_j,$$

where β^m_j, β'^m_j, β''^m_j are the unknown effects associated with the m^{th} stimulus-induced regressors constructed with the fixed known vectors h_c, h'_c, h''_c respectively. To obtain the classical GLM with only the canonical HRF, β'_j and β''_j can be set to zero for all positions. It is worth noting that this formulation of

\footnote{Note that the RFIR approach with supervised regularization is much faster with an analysis duration of 20 min. since the maximum a posteriori estimator admits a closed form expression.}
Table 1. Comparative overview for all detection/estimation analysis procedures available in **pyhrf** in terms of model structure and analysis duration. “2nd order deriv.” stands for a penalization on the energy of the HRF which penalizes abrupt shape changes. The number of nuisance parameters was considered the same for all models, so that only the modeling of the stimulus-induced component is relevant to assess model parsimony. The ratio “unknowns / data” is given for a typical fMRI data analysis with $J = 4 \times 10^4$, $R = 3$, $D = 40$, $M = 10$, $\Gamma = 400$ and $N = 128$ (total number of data points: $N \times J$). The analysis duration is for a whole brain data treatment on an Intel Core i5 (M480 2.67Ghz).

<table>
<thead>
<tr>
<th>Spatial regularization</th>
<th>BS GLM smoothing</th>
<th>FIR GLM smoothing</th>
<th>RFIR smoothing</th>
<th>JDE adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal regularization</td>
<td>none</td>
<td>none</td>
<td>2nd order deriv.</td>
<td>2nd order deriv.</td>
</tr>
<tr>
<td>HRF shape constraint</td>
<td>function basis</td>
<td>free</td>
<td>smooth</td>
<td>smooth</td>
</tr>
<tr>
<td>Number of unknowns for the stimulus-induced component</td>
<td>$J \times R \times M$</td>
<td>$J \times D \times M$</td>
<td>$J \times M \times (D+1)$</td>
<td>$2 \times J \times M + \Gamma \times (D+4M+1)$</td>
</tr>
<tr>
<td>Typical ratio of unknowns / data</td>
<td>0.23</td>
<td>0.78</td>
<td>3.4</td>
<td>0.16</td>
</tr>
<tr>
<td>Analysis duration</td>
<td>3 min.</td>
<td>5 min.</td>
<td>30 h.</td>
<td>8 h.</td>
</tr>
</tbody>
</table>

Figure 1. Forward models generating the stimulus-induced components for the methods available in **pyhrf**. In all cases, the scheme involves two experimental conditions colored in blue and yellow with four stimulation events as depicted by vertical bars over the TR-sampled grid. (a): General Linear Model (GLM). For a given condition in a given voxel, the stimulus event sequence is convolved with the fixed canonical HRF resulting in a fixed stimulus-induced regressor. This regressor is then multiplied by an unknown effect β_{mj}. All the condition-specific regressors are then summed to form the final stimulus-induced signal s_j. (b): Finite Impulse Response (FIR) Model. In a given voxel, the stimulus event-sequence is convolved with an unknown FIR vector h_m for each condition to yield a condition-specific component. All components are then summed to form the final stimulus-induced signal s_j. (c): Joint Detection-Estimation (JDE). For a given voxel in a given parcel P_γ, the stimulus sequence gathering all experimental conditions is multiplied by the response levels $\{a_{mj}\}$. Then, this spike signal is convolved with an unknown spatially-invariant HRF h to form the stimulus-induced signal s_j. The forward model is equivalent to the classical one where all regressors are gathered in the design matrix (noted \tilde{X}) and all corresponding effects gathered in a single vector $\tilde{\beta}$. Eq. (2) reads:

$$\forall j, \quad y_j = \tilde{X} \tilde{\beta}_j + b_j,$$

with:

$$\tilde{X} = \begin{bmatrix} X^1_{hc} & \cdots & X^m_{hc} & X^1_{hc}' & \cdots & X^m_{hc}' & X^1_{hc}'' & \cdots & X^m_{hc}'' & | P \end{bmatrix}^T,$$

$$\tilde{\beta}_j = \begin{bmatrix} \beta^1_j & \cdots & \beta^m_j & \beta^1_j' & \cdots & \beta^m_j' & \beta^1_j'' & \cdots & \beta^m_j'' & | \ell_j \end{bmatrix}^T.$$
The hemodynamics fluctuations caught by such a model are limited to \(\sim 1\) second around the peak of the canonical HRF which is at 5 sec, see Calhoun et al. (2004). This model is massively univariate since every position \(j\) is analyzed independently, i.e., no correlation between neighboring signals is considered. It works well on spatially smoothed data to counterbalanced the low signal-to-noise ratio, at the expense of blurred activation clusters. In the nipy implementation of the GLM, the fitting process can be performed using ordinary least square in the case of white Gaussian noise or using Kalman filtering in the case of an \(AR(1)\) Gaussian noise process.

2.2.2 FIR GLM and Regularized FIR

The generative BOLD signal modeling in the FIR context encodes all HRF coefficients as unknown variables:

\[
\forall j, \quad y_j = \sum_{m=1}^{M} X^m h^m_j + P \ell_j + b_j
\]

Here, vector \(h^m_j = (h^m_{j,0\Delta t}, \ldots, h^m_{j,D\Delta t})\) represents the unknown HRF time course in voxel \(j\) which is associated with the \(m\)th experimental condition and sampled every \(\Delta t\). In its un-regularized version, the FIR model can be expressed in the GLM framework and hence its implementation in pyhrf relies on nipy.

In the case of the Regularized FIR (Ciuciu et al. (2003)), the problem is placed in the Bayesian formalism in order to inject regularity on the recovered HRF coefficients \(h_j\). More specifically, \(h^m_j \sim \mathcal{N}(0, v_{h^m_j} R)\) with \(R = (D^2_2 D^2_2)^{-1}\) where \(D^2_2\) is the second-order finite difference matrix enforcing local smoothness by penalizing abrupt changes quadratically and \(v_{h^m_j}\) is the unknown HRF prior variance which is jointly estimated. Computational and inference details are given in Ciuciu et al. (2003).

2.2.3 Joint Detection-Estimation

The functional mask of a given subject’s brain is a priori divided in \(\Gamma\) functionally homogeneous parcels using methods described in subsection 2.3.2. In each parcel \(P_{\gamma}\), the shape of the HRF \(h_{\gamma}\) is assumed constant and the parcel-specific generative model reads:

\[
\forall j \in P_{\gamma}, \quad y_j = \sum_{m=1}^{M} a^m_j X^m h_{\gamma} + P \ell_j + b_j
\]

where \(y_j, X^m, P, \ell_j\) and \(b_j\) match the variables introduced in subsection 2.2.1. As shown in Fig. 1(c) which illustrates this forward model, the \(a^m_j\) variables encode fluctuations that occur before the application of the hemodynamic filter. Therefore, they are assimilated to neural effects and referred to as “Neural Response Levels” (NRL). However, this term, which is historical, might be misleading as it is difficult to disentangle the contribution of the neural and the vascular components from single BOLD fMRI data. These variables can be more simply identified to the voxel- and condition-specific response amplitudes.

In contrast to Eq. (2) for the GLM forward model, the fixed HRF components \(h_{\gamma}\) and \(h'_\gamma\) are replaced by an unknown parcel-based HRF \(h_{\gamma}\). Similarly, each unknown NRL \(a^m_j\) embodies a single magnitude parameter per regressor whereas the GLM formulation implies that the magnitude is distributed between weights \(\beta_{m,j}\), \(\beta'_{m,j}\) and \(\beta''_{m,j}\). To summarize, the HRF shape and the BOLD response magnitude are coupled in the GLM formulation whereas they are decoupled in the JDE formulation.

In the Bayesian framework, priors are formulated to (i) enforce temporal smoothness on the HRF shape to perform estimation in the same manner as for RFIR and (ii) account for spatial correlations between...
NRLs through spatial mixture models to perform detection, as described in Vincent et al. (2010). The regularization factor that controls the amount of spatial regularization is jointly estimated and optimized wrt parcel topology so as to perform an adaptive spatial smoothing. If the experimenter is not interested in the estimation of the HRF, then the HRF can be fixed typically to its canonical version in the JDE framework which hence amounts to a spatially adaptive GLM. The latter approach enables parcelwise multivariate detection of activations with adaptive regularization across parcels. As shown at the group-level in Badillo et al. (2013b), this strategy retrieves more peaked and less extended activation clusters compared to classical SPM-like analysis.

The inference is performed by a stochastic sampling scheme where posterior mean estimates are computed from Markov Chain Monte Carlo samples. The implementation of the main sampling loop is coded in pure python and some intensive samplers such as the one for the HRF of the NRLs are coded in C. Still, the overall JDE procedure is computationally demanding. However, since there are as many independent models as parcels, the analysis can be split up into parcel-wise parallel analyses (see section 3.3). The efficiency of the inference scheme has also been improved by resorting to a variational formulation of the JDE Chaari et al. (2013) which is also available in pyhrf.

2.3 PARCELLATION

2.3.1 Spatial parcellation

Random Voronoi diagrams A Voronoi diagram consists of a spatial partitioning that builds parcels around predefined control points or seeds. The parcel boundaries are placed so that each point of a given parcel is closer to the associated parcel seed than any other seed in terms of the Euclidean distance, as illustrated in Fig. 2(left). To build a parcellation from such partitioning, i.e., to assign each cerebral position to a parcel identifier, we do not explicitly require the parcel boundaries. Accordingly, there is no need to rely on classical algorithms that precisely compute these boundaries. Instead, a given position is assigned to the closest seed by resorting to a kd-tree (5).

Random Voronoi parcellations are convenient ways to generate samples in the space of sensible parcellations as they produce convex and compact parcels which are physiologically plausible. They have been used in Vincent et al. (2008) to study the sensitivity of the parcel-based JDE method.

Balanced partitioning The goal of balanced partitioning is to build parcels of equal sizes. In the case of a non-regular topology such as the brain, there is no morphological tool to deterministically solve such partitioning problem which is known to be NP-complete as mentioned in Andreev and Räcke (2004). Hence, the algorithm implemented in pyhrf employs a heuristic and relies on a multi-agent system that mimics the inflation of balloons in a fixed volume (Elor and Bruckstein (2009)), as illustrated in Fig. 2(right).

Balanced partitioning is useful to test the effect of parcel size. In pyhrf, balanced partitioning is implemented in pure python with a position-wise main loop and is hence rather slow: ~ 1 minute to split 6000 voxels into 20 parcels. However, this performance is sufficient since we only employ balanced partitioning in the case of small scale testing data sets or when parcels obtained on real data are too big.

2.3.2 Functional parcellation

The main goal of functional parcellation is to provide homogeneous parcels with respect to hemodynamics. It is mainly motivated by the JDE procedure which assumes that the HRF shape is constant within one parcel. To provide such parcellation, results obtained from a GLM analysis, or any given task-specific functional maps are clustered using different available algorithms: K-means, Ward or

5 implemented in scipy.spatial.KDTree
spatially-constrained Ward as provided by scikit-learn\(^6\). To objectively choose an adequate number of parcels, theoretical information criteria have been investigated in Thyreau et al. (2006): converging evidence for \(\Gamma \approx 400\) at a spatial resolution of \(3 \times 3 \times 3\) mm\(^3\) has been shown for a whole brain analysis leading to typical parcel sizes around a few hundreds voxels (\(\approx 2.7\) cm\(^3\)). As the parcel size is not fixed, some big parcels may arise from the parcellation process and may slow down the overall parallel processing. To overcome this, the maximum parcel size was controlled by splitting too big parcels (larger than 1000 voxels) according to the balanced partitioning presented in section 2.3.1, which also guarantees the spatial connexity and thus properly satisfies the JDE assumptions on the HRF.

Such “hard clustering” approach yields sharp parcel boundaries that prevent from capturing smooth transitions between HRF territories. To avoid wrong boundaries, one can resort to over-segmented parcellations (high number of parcels).

3 PYHRF

The installation of pyhrf relies on the setuptools python package and requires the following dependencies: numpy\(^7\) and scipy\(^8\) for core algorithms, nibabel for nifti or gifti input/outputs, nipy for the GLM implementation and parcellation tools, matplotlib for plots and PyQT4 for GUIs. Optional dependencies comprise joblib, scikit-learn and soma-workflow. pyhrf is mainly intended for linux-based distributions as it has especially been developed under Ubuntu. Installation notes and documentation can be found online at http://www.pyhrf.org. Within the package, the following data files\(^9\) are shipped:

- 2 volumic fMRI data sets (paradigm as CSV files, anatomical and BOLD data files). One serves quick testing while the other is intended for validation/demonstration purpose, which is used to generate results in section 4.3,
- 1 surfacic fMRI data set mainly intended for testing,
- several simulation resources in the form of png images to provide 2D maps of various activation labels and HRF territories.

\(^6\) sklearn.cluster.ward
\(^7\) www.numpy.org
\(^8\) www.scipy.org
\(^9\) There is no special licence on the shipped data sets.

Figure 2. Illustration of spatial parcellation methods in pyhrf. Left: Voronoi diagram where seeds are represented as crosses. The red point is assigned to the red seed and verifies that its distance to any other seed is larger (\(d_1 < d_2, d_1 < d_3\)). Right: balanced partitioning performed by patrolling agents, image extracted from Elor and Bruckstein (2009).
The rest of this section is organized as follows. First, the overall workflow of how to use pyhrf is presented, which mainly resorts to command lines and some dedicated GUI tools. Second, to go further into the package architecture and also to address some features available when scripting, the design of pyhrf is introduced. Third, distributed computation is explained in terms of resource handling. Finally, the pyhrf viewer is presented with a focus on ergonomics.

3.1 WORKFLOW

The typical usage of pyhrf relies on shell commands which work on XML files. This XML format was chosen for its hierarchical organization which suits well the nested nature of the algorithm parametrizations. A dedicated XML editor is provided with a PyQt4 graphical interface for a quicker edition and also a better review of the treatment parameters. When such an XML setup file is generated, it defines a default analysis which involves a small volumic real data set shipped with the package. This allows for a quick testing of the algorithms and is also used for demonstration purpose. Here is a typical example of shell commands sequence used to perform a JDE analysis:

```
$ pyhrf_jde_buildcfg -o jde.xml          # generate a default XML file
$ pyhrf_xmledit jde.xml                # set up custom experiment
$ pyhrf_jde_estim -c jde.xml           # run the analysis
$ pyhrf_view *nii                       # view all output nifti files
```

The “buildcfg” command offers various options to define setup items from the command line without having to edit the XML file. For example, the paradigm can be loaded from a CSV or a SPM.mat file. As for the JDE procedure specifically, the option --vem enables the variational EM approach developed in Chaari et al. (2013).

3.2 DESIGN

An overview of the static design of the main package components of the package is shown in Fig. 3. The class FmriData is the within-subject fMRI data representation, for any spatial support: on the cortical surface, in the volume, or from a simulation. This data representation comprises spatially flat data (fMRI time series and parcellation) and a connectivity matrix which holds the data topology. At the centre of the analysis component is the Analyzer class that handles parcelwise data splitting which is done according to the input data parcellation by default, and also takes care of merging parcel-specific outputs at the end of the analysis. This Analyzer class is then specialized into various method-specific analyzers: GLM, RFIR and JDE. Note that the analyzer component is decoupled from the data component, as classically done in scientific programming because they do not have the same life-cycles (e.g., the same model can be applied to various data objects). The FmriTreatment packs the data and analysis definitions together and handles distributed computation across parcels.

In the following sub-sections, two specific components are further explained: XML parametrization through the XmlInitable class, and the handling of arrays with axis semantics through the xndarray class.

3.2.1 XML parametrization

The XML format was chosen for its hierarchical organization which suits the nested nature of the algorithm parametrizations. Indeed, for a JDE analysis, here is an example of such different levels: treatment → analyzer → sampler → hrf sampler. At a given level, different classes may be used as there exist, for example, different sampler types depending on the type of prior expressed in the JDE model, so that we require a seamless parametrization process that avoids rewriting code for the building of parameter files each time a new model is tested. To do so, any object whose initialization has to be exposed in the XML configuration file inherits the XmlInitable class. This system is not a serialization process as the whole python object is not dumped in the XML. Only the
from pyhrf.xmlio import XmlInitable, to_xml
import numpy as np

class FmriTreatment(XmlInitable):
 def __init__(self, input_data=None,
 analysis_parameters=None):
 XmlInitable.__init__(self)
 data = { 'bold_file' : './my_bold.nii',
 'paradigm' : np.array([0,2.3,6.]) }
 analysis = { 'model' : 'JDE_MCMC',
 'mcmc_sampling' : {
 'HRF' : { 'duration' : 25,
 'type' : 'canonical' } }}
 treatment_xml = to_xml(FmriTreatment(data, analysis))
 f = open('./test.xml','w')
 f.write(treatment_xml)
 f.close()
This involves producing convergence tracking, intermediate quantities in addition to the final results of interest. To avoid writing specific saving procedure for such versatile and numerous outputs, the information about the interpretation of the data axes has to be explicit. The class `xndarray` handles any required reorientation prior to saving data arrays into nifti or gifti files. In the volumic data case, the reorientation follows the `nibabel` convention that is sagittal, coronal, axial and time. To store the extra axis information along with the data, a dedicated nifti-extension is also written in the volumic data case or add a “pyhrf_xndarray_data” field in the gifti meta data dictionary in the surfacic data case.

Moreover, outputs are primarily generated at the parcel-level so that they are in a flat shape, i.e., the position axis represent indexes of positions in the spatial domain. To form the final whole brain outputs, the parcel-specific outputs have to be merged together and the position axis, if present, has to be mapped into the final spatial domain. Table 2 shows two examples of parcel-specific outputs that are merged to form whole brain data either by spatial mapping or by parcel stacking. To handle these two merging operations, `stack` and `merge` functions are provided. The reverse process is also available via the method `explode` which allows an array to be split according to a mask composed of integers, i.e. a parcellation. It returns the dictionary of ‘flat’ parcel-specific data arrays associated with each integer label present in the mask.

In terms of data life cycle, `xndarray` objects are used to prepare data before analysis and to pack results after analysis. During the analysis process, it is more convenient to work with `numpy` arrays directly. The following code snippet illustrates the usage of `xndarray` objects: functional and parcellation data are loaded, within-parcel means are computed and the results is saved to nifti:

```python
from pyhrf.ndarray import xndarray, merge
# Data loading
func_data = xndarray.load('./bold.nii')
parcellation = xndarray.load('./parcellation.nii')
# Split functional data into parcel-specific data
parcel_fdata = func_data.explode(parcellation)
# Fill parcel-specific data with spatial means
parcel_means = dict( (parcel_id, d.copy().fill(d.mean('position'))) for parcel_id, d in parcel_fdata.items() )
# Merge parcel-specific means (map 'position' axis onto spatial axes)
parcel_means = merge(parcel_means, parcellation, axis='position')
# Save output
parcel_means.save('./bold_parcel_means.nii')
```

Table 2. Examples of merging operations performed on multiple parcel-specific data arrays, for some JDE outputs: parcel-specific HRFs and condition- and voxel-specific activation labels. If the `xndarray` object contains the “position” axis, as for the “labels” object, then all parcel-specific results are merged into the same target volume and we depict the spatial mapping operation as “→” to map the “position” axis into the spatial axes “axial”, “coronal” and “sagittal”. For other axes aside from “position”, no merging operation is performed (“=” symbol). If the `xndarray` object does not contain the “position” axis, as for the HRF object, then all parcel-specific results are stacked and a new “parcel” axis is created (“∪” symbol).

<table>
<thead>
<tr>
<th>Parcel-specific flat data</th>
<th>Merging operation</th>
<th>Whole brain data</th>
</tr>
</thead>
<tbody>
<tr>
<td>axis label</td>
<td>axis domain</td>
<td>axis label</td>
</tr>
<tr>
<td>time</td>
<td>[0, ..., hrf_duration]</td>
<td>=</td>
</tr>
<tr>
<td>labels</td>
<td>‘activ’, ‘non_activ’</td>
<td>=</td>
</tr>
<tr>
<td>condition</td>
<td>‘audio’, ‘video’</td>
<td>=</td>
</tr>
<tr>
<td>position</td>
<td>[0, ..., pos_max]</td>
<td>→</td>
</tr>
<tr>
<td>axial</td>
<td>[0, ..., axial_max]</td>
<td>=</td>
</tr>
<tr>
<td>coronal</td>
<td>[0, ..., coronal_max]</td>
<td>=</td>
</tr>
<tr>
<td>sagittal</td>
<td>[0, ..., sagittal_max]</td>
<td></td>
</tr>
</tbody>
</table>
3.3 DISTRIBUTED COMPUTING

PyHRF provides parallel processing features by exploiting local resources (multiple processors on a single workstation) as well as remote parallel processing units such as a local grid network or a cluster. A whole brain JDE analysis then boils down from 10 hours to 15 minutes in parallel (on a 100-cores cluster). More precisely the available computing resources are handled as follows:

- **local multiple-cores CPUs**: through the use of joblib parallel features. The latter works by spawning python sub-processes that are then run on the different processing units by the operating system. The number of used CPUs can be setup by the user.

- **machines over a local area network**: through in-house code that relies on paramiko and hence uses ssh connections to distribute jobs on the LAN. A basic scheduler is implemented in pyhrf.grid that can also report faulty remote runs.

- **multiple-cores cluster**: through soma-workflow developed by Laguitton et al. (2011), which relies on paramiko on the client side and on DRMAA on the server side.

The distribution problem addressed here is a so-called embarrassingly parallel problem where the same treatment has to be repeated on several parcel-specific pieces of data. There is no shared memory management between distributed processes here.

To optimize the distribution process, the order in which the parcel-specific treatments are pushed in the process queue is done by pushing the biggest parcels first. In the same optimization purpose, a safeguard is imposed on the maximum parcel size (more than 7 cm3 in the volume or 11 cm2 on the surface). If a parcel exceeds this limit, it is divided up according to the balanced partitioning presented in sub-section 2.3.1.

3.4 VIEWER

pyhrf.view is a dedicated viewer built on PyQt4 which embeds a matplotlib view. The purpose of pyhrf.view is to provide convenient browsing into volumic data. However, it does not provide advanced overlaying features such as the display of functional over anatomical data. Instead, to plot the final “publication-ready” maps after having selected the results of interest with pyhrf.view, one can resort to the command pyhrf.plot.slice to directly generate a slice image of functional rendering along with anatomical overlay. One can also use a third party viewer such as Anatomist, FSL_view or xjview.

pyhrf.view offers n-dimensional browsing while most viewers in neuro-imaging software handle up to 4D volumes. In fact, there is a limit to the number of dimensions inherent to the nifti format which permits 7 axes at maximum. The viewer is composed of two main components (see 5):

- a main window handling object and slice selection,
- plot windows which display the selected slice as curve or image.

The slice selection tools provides sliders to browse through axes domain values and display related information: axis name, current selected domain values and projection states. There can be up to two projected axes (2D), i.e., axes which will mapped to the actual plot axes. When multiple objects are loaded,
slicers are synchronized to plotting views so that click events yield slider updates. This behavior can be modified in two ways. First, the reception combo box toggles whether the slider receives changes from other sliders. This is useful when one wants to prevent a given view from being updated by synchronization events (with reception off), e.g., when a reference slice should be compared to other slices. Second, the emission combo box toggles the spreading of slider changes to all other slicers. This is typically used to control a given axis across all displayed objects with a single slider (with emission on).

Figure 5. Main widget components of pyhrf-view to browse and view n-dimensional data. Left: the list widget on top displays the currently loaded objects. The slicer panel at the bottom allows: projection of axes (combo boxes on the left), domain value slicing (sliders in the middle) and definition of view synchronization (combo boxes on the right). For a given axis slicer, the two combo boxes defining synchronization are: (E) toggle emission of slice change to other slicers, (R) toggle reception from other slicers or from click events on plots. Middle: plot window for the current selected slice. The top part displays the actual plot as produced by matplolib.pylab. The bottom part offers changing the view mode (either curve, image, or histogram), and toggling display of axes, colorbar and mask. The color button pops up a gradient map selector if in image mode or a color picker if in curve mode. Right: other plot window to illustrate curve display.

4 RESULTS

4.1 EXPERIMENTAL PARADIGM

In all presented results, whether they focus on artificial or real data sets, we resorted to the same experimental paradigm. The latter is a multi-functional cognitive localizer paradigm designed in Pinel et al. (2007). This paradigm enables to map cognitive brain functions such as reading, language comprehension and mental calculations as well as primary sensory-motor functions. It consists of a fast event-related design (sixty stimuli, ISI = 3.75 sec.) comprising the following experimental conditions: auditory and visual sentences, auditory and visual calculations, left/right auditory and visual clicks, horizontal and vertical checkerboards.

4.2 ARTIFICIAL DATA GENERATOR

Simulations in pyhrf mainly consists of building a script that defines a pipeline of versatile simulation bricks presented in Table 3. Writing a simulation script as a sequence of functions makes things difficult to read and to reuse. Instead, all simulation bricks are gathered inside a python dictionary that maps a simulation label to its corresponding value. This value can be directly defined as a python object or as a function which can depend on other simulation items and which is called when the simulation pipeline is
evaluated. The pipeline structure arises from the link between simulation labels and function arguments.

An example of such simulation script is given below:

```python
import numpy as np
from pyhrf.ndarray import xndarray
from pyhrf.tools import Pipeline

# Functions used to generate items in the simulation Pipeline
def generate_rls(spatial_shape, mean_rls, var_rls):
    rls = np.random.randn(*spatial_shape) * var_rls**.5 + mean_rls
    return xndarray(rls, ['axial', 'sagittal', 'coronal'])

def generate_noise(stim_induced_signal, noise_var):
    noise = np.random.randn(*stim_induced_signal.data.shape) * noise_var**.5
    return xndarray.xndarray_like(stim_induced_signal, data=noise)

def create_stim_induced_signal(rastered_paradigm, hrf, response_levels):
    signal = np.convolve(rastered_paradigm, hrf)[np.newaxis, :] * 
               response_levels.data[:,:,:,np.newaxis]
    return xndarray(signal, response_levels.axes_names + ['time'])

def create_bold(stim_induced_signal, noise):
    return stim_induced_signal + noise

# Definition of the simulation pipeline
simulation_steps = {
    'spatial_shape': (10,11,12), 'mean_rls': 3., 'var_rls': 0.5,
    'response_levels': generate_rls,
    'rastered_paradigm': np.array([0,0,1,0,0,0,1,0,0,0,1]),
    'hrf': np.array([0., 1., 0.5, 0., 0.]),
    'noise_var': 1.,
    'noise': generate_noise,
    'stim_induced_signal': create_stim_induced_signal,
    'bold': create_bold,
}

simulation = Pipeline(simulation_steps)

# Computation of all quantities in the pipeline and data saving
simulation.resolve()
simulation_items = simulation.get_values()
simulation_items['response_levels'].save('./response_levels.nii')
simulation_items['stim_induced_signal'].save('./stim_induced_signal.nii')
simulation_items['bold'].save('./bold.nii')
```

The artificial data experiment presented here comprises the generation of BOLD time series within the volume and then projected onto the cortical surface. To do so, shipped data defines a volume of 4 HRF territories, as well as the grey/white matter segmentation obtained from real data in the occipital region.

Within the grey matter mask, activation labels are generated and conditionally to them, response levels are simulated according to a bi-Gaussian mixture. For the sake of simplicity, a version of the localizer paradigm presented in the previous section is merged over the auditory and visual modalities so as to obtain only two conditions. In all HRF territories this paradigm is then convolved with HRF generated by Bezier curves that enable the control of the time-to-peak and time-to-undershoot. Finally, nuisance signals are added (Gaussian noise and polynomial drift) to obtain the volume of artificial BOLD data. To generate surfacic data, data are projected on a cortical fold that is also shipped in the package and we resorted to an external projection tool, developed in Operto et al. (2006) but others are available such as Freesurfer.
Fig. 6 presents the results obtained on artificial data using the JDE procedure. HRF estimates recover their respective ground truth profiles with a slightly more deformed curve obtained on the cortical surface for the bottom right (green) HRF territory, compared with the volumic data case. Detection results (response levels maps in Fig. 6) also shows the correct recovery of the simulated ground-truth, in the volume and on the cortical surface.

4.3 WITHIN-SUBJECT METHOD COMPARISON

The analyzed real data set, which is shipped with pyhrf, was a subset of an fMRI acquisition performed on a single healthy subject with a 3-Tesla Tim Trio Siemens scanner using an EPI sequence. The following settings were used for this acquisition: the fMRI session consisted of $N = 128$ scans, each of them being acquired using $TR = 2400$ ms, $TE = 30$ ms, slice thickness: 3 mm, $FOV = 192$ mm2 and spatial in-plane resolution of 2×2 mm2. In order to reduce disk usage and to focus only on areas of the brain which are expected to elicit activity in response to the paradigm, functional data was restricted to selected regions of interest that comprise occipital, temporal, parietal and motor regions. To improve interpretation and data

<table>
<thead>
<tr>
<th>Simulation item</th>
<th>available generation process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental paradigm</td>
<td>localizer, random event-related</td>
</tr>
<tr>
<td>Activation labels</td>
<td>hand-drawn 2D maps, 3D Potts realizations</td>
</tr>
<tr>
<td>Response levels</td>
<td>bi / tri mixture of Gaussian or Gamma components</td>
</tr>
<tr>
<td>Hemodynamic response function</td>
<td>canonical, Bezier curve, Gaussian smooth</td>
</tr>
<tr>
<td>Low frequency drift</td>
<td>polynomial, cosine</td>
</tr>
<tr>
<td>Noise</td>
<td>white, auto-regressive of order p</td>
</tr>
</tbody>
</table>

Table 3. Different types of simulation bricks available in pyhrf. The “localizer” paradigm is described in Pinel et al. (2007). Hand-drawn maps for activation labels are in the form of png images. Gaussian smooth generation of HRFs stands for the regularized prior used in the JDE model.
plot rendering, an anatomical image is also shipped, with an in-plane resolution of $1 \times 1 \text{mm}^2$ and slice thickness of 1.1 mm.

This fMRI data set was analyzed using GLM with a canonical HRF, FIR, RFIR and JDE17. For JDE, the functional parcellation was built according to the method described in section 2.3.2. Fig. 7(a-b) depicts detection results for the auditory effect, obtained by GLM with canonical HRF (see Fig. 7(a)) and JDE (see Fig. 7(b)). Both methods highlight the same activation localization, with a slightly stronger sensitivity for JDE. Fig. 7(c) shows HRF estimation results as obtained by FIR, RFIR and JDE at the same local maximum on the left temporal region. Note that the HRF estimate provided by the JDE procedure is regional. The HRF profile delivered by FIR appears noisier than the JDE and RFIR counterparts. Also the temporal resolution of FIR is limited to the TR of input data. In contrast, RFIR and JDE offer an enhanced temporal resolution of 0.6 sec. In terms of timing, the FIR and JDE methods yield a peak at 5 seconds which is compatible with the canonical HRF that has been fitted on temporal auditory regions (Boynton et al. (1996)). Accordingly, the HRF estimates obtained by RFIR seems over-smoothed. Overall, JDE enables reliable activation maps and HRF profiles which can roughly be obtained by separate GLM and FIR analyses. Fig. 7(d-e) shows results on effect maps for the computation effect, obtained by GLM with canonical HRF (see Fig. 7(d)) and JDE (see Fig. 7(e)). JDE results have a higher sensitivity which can be explained by an estimated HRF that differs from the canonical version (see Fig. 7(f)). More specifically on the HRF estimation results shown in Fig. 7(f), we can draw the same comments as for the auditory results. However, the FIR HRF profile is here more chaotic and its peak is less easy to identify as the curve shows a plateau between 7 and 10 sec.

4.4 GROUP-LEVEL HEMODYNAMICS

Using \texttt{pyhrf}, the hemodynamic variability was also studied on a group of 15 healthy volunteers (average: 23.2 years, std: 2 years). The experimental paradigm is described in Section 4.1 and the fMRI acquisition parameters are similar to those previously mentioned in subsection 4.3. The results presented hereafter have been published in Badillo et al. (2013b). In this work, hemodynamic variability was investigated in four regions of interest, located in the left parietal cortex (P), bilateral temporal (T) and occipital (O) lobes and in the right motor cortex (M), as shown in Fig. 8. These regions were defined after conducting a random-effect analysis to detect activation clusters showing a significant group-level effect. More precisely, we defined four contrasts of interest targeting brain activity in sensory and cognitive regions: a \textbf{Auditory vs. Visual} contrast for which we expect evoked activity in temporal regions in response, a \textbf{Visual vs. Auditory} contrast that induces evoked activity in the occipital cortex, a \textbf{Left vs. Right click} contrast for which we expect evoked activity in the right contralateral motor cortex, and a \textbf{Computation vs. Sentence} contrast which is expected to highlight activity in the frontal and parietal lobes specific to mental calculations. In terms of detection performance, at the group-level, JDE and GLM are comparable in primary sensory regions (where the canonical HRF is appropriate). However, in the parietal region involved in higher cognitive processes, the JDE approach yields more sensitive maps. In what follows, we summarize group-level hemodynamics results obtained in the regions of interest extracted from activated clusters.

The group-level HRF extraction in each ROI involves the following steps: For each subject, we identified the parcel containing the mostly activated voxel across stimulus-dependent response levels. Each individual parcel-based HRF time course is then scaled by the corresponding maximum response level so as to account for the inter-subject variability of the effect size. Last, each group-level HRF profile (see Fig. 8) is computed as the average over the 15 subjects in the corresponding ROI.

One of the main results concerns the spatial gradient of discrepancy to the canonical HRF shape between regions. As shown in Fig. 8, the mean HRF time courses retrieved in occipital and temporal regions are the closest to the canonical shape h_c. In the motor cortex, the HRF deviates a little more from the canonical

17 analysis scripts are available at http://github.com/pyhrf/pyhrf/tree/master/script/frontiersBIM14/
5 PERSPECTIVES

5.1 METHODOLOGICAL PERSPECTIVES

The main methodological developments are currently taking place in the JDE framework. In fMRI activation protocols, the paradigm usually consists of several runs repeating similar sequences of stimuli. For an increased stability of HRF estimates that cope with the between-run variability of the response magnitude, a hierarchical multi-run extension with heteroscedastic noise has been developed in Badillo et al. (2013c). It is particularly useful for pediatric imaging where runs are short in time. In the same vein of improving within-subject analyses, an approach to encode the condition-specificity at the parcel level is being developed to enforce non-relevant conditions to yield null activation, as in Bakhous et al. (2013). The variational EM version of JDE that has been published in Chaari et al. (2013) and that appeared to be 10 to 30 times faster than its MCMC alternative, has allowed us to address Chaari et al. (2012) the additional task of estimating the spatial aggregation support of HRF shapes (parcellation), which
Vincent et al.
fMRI data analyses with PyHRF

Figure 8. Left: Definition of regions of interest to investigate hemodynamics variability from JDE-based group-level analysis. Top: Sagittal view. Bottom: axial/top view. Left parietal area (P) appears in red, left motor area in the pre-central cortex is shown in green, Bilateral temporal regions along auditory cortices and bilateral occipital regions in the visual cortices are shown in blue and cyan, respectively. Right: Group-average HRF estimates for the four regions of interest: h_P, h_M, h_T, h_O stand for HRF means in parietal, motor, temporal and occipital regions, respectively. h_c correspond to the canonical HRF.

is supposed given a priori in the current JDE approach. The so-called joint Parcellation-Detection-Estimation (JPDE) validation is still ongoing. In an attempt to solve the same issue, an alternative based on random parcellations and consensus clustering has been recently proposed in Badillo et al. (2013a).

Closely related to the results presented in Section 4.4, a multi-subject extension of the JDE is currently developed to properly account for the between-subject HRF variability and recover a meaningful and potentially less biased group-level HRF profile. This development trail will bring modification in the core design of pyhrf so as to take into account the new “group” data axis.

Finally, recent works have opened the path to multi-modality by the processing of Arterial Spin Labeling fMRI data Vincent et al. (2013). To analyze such data, physiologically-inspired models are investigated to establish parsimonious and tractable versions of physiological models such as the balloon model described in Friston and Buechel (2000); Buxton et al. (2004). Hence, for validation purpose, the artificial data generator is also being enriched with the simulation of physiological models.

5.2 PACKAGE PERSPECTIVES

In addition to improving the documentation and usability of the current package version, additional developments will be first motivated by the above-mentioned methodological perspectives, namely re-factoring part of the data design to integrate the group-level and multi-session data components. This will mainly involve the modification of the FmriData class and the addition of a new FmriGroupData class. The handling of data input will have to be extended to exploit a hierarchy of subject-specific files.

We also plan to enrich the parcellation component by handling classical atlases such as the Automated Anatomical Labeling (AAL) atlas built by Tzourio-Mazoyer et al. (2002), the Brodmann regions (Brodmann (1909)) and the Harvard-Oxford atlas (Desikan et al. (2006)) available in FSL. The goal is to enable the definition of functional parcels that are consistent with previous studies in the literature and also to further investigate the anatomo-functional link by comparing atlas-driven versus data-driven parcellations.

In order to offer more user-friendliness, the building of a unified graphical user interface is foreseen, which will gather the XML editor and the viewer while also enabling the selection of the analysis.

18 http://http://fsl.fmrib.ox.ac.uk
type. We also envisage resorting to wizard interfaces to guide the setup process and deliver contextual
documentation. In terms of browsing features, tools to properly explore the surface-based results are
currently missing, as we resort to an external tool, anatomist. The goal is not to reproduce all the
features offered by the latter which enable the output of paper-ready figures through joint volume/surface
rendering, data fusion and material handling. We rather think of a simple textured mesh viewer associated
with a picking feature in order to synchronize other views. The main usage is to make the selection of
a mesh node and the corresponding HRF estimate feasible. For making this surface-based rendering av
available, mayavi\(^\text{19}\) is an appealing candidate since it has been already intensively used in the python
community.

Finally, we plan on incorporating GPU parallel computing features. This technology is becoming more
and more available and powerful and may also appear cheaper than CPU computing systems (see Owens
et al. (2008) for a review). Specifically, the NVIDIA chipsets are easily accessible for general
purpose computing through the python package pyCUDA\(^\text{20}\). A simple test on matrix products with a
complexity similar to that of our models showed a gain of one order of magnitude in favor of GPU
computations\(^\text{21}\) (NVIDIA GeForce 435M graphics card) compared to CPU-based computations (Intel
Core M480 @ 2.67GHz) with numpy.

6 CONCLUSION

The pyhrf package provides tools to detect evoked brain activity and estimate the underlying dynamics
from fMRI data in the context of event-related designs. Several “reference” methods are available: the
GLM, FIR and RFIR approaches, and also more flexible models as provided by the JDE framework. The
choice of the analysis tools depends on the experimenter’s question: if simple mappings are required, the
GLM is appropriate provided that the HRF is expected to be close to its canonical version, but for finer
dynamics estimation, the JDE procedure is more suitable. The design of pyhrf allows the handling of
volumic and surfacic data formats and also the utilization of several distributed computing resources. The
main user interface is done by shell commands where the analysis setup is stored in an XML configuration
file. Two graphical components are provided: an XML editor and a n-dimensional volumic data browser.

This package provides valuable insights on the dynamics of the cognitive processes that are not available
in classical software such as SPM or FSL. Hence, it offers interesting perspectives to understand the
differences in the neuro-vascular coupling of different populations (infants, children, adults, patients,
etc.).

ACKNOWLEDGEMENT

The work of Philippe Ciuciu has been partially supported by the CIMI (Centre International de
Mathematiques et d’Informatique) Excellence program during winter and spring 2013.

REFERENCES

ACM symposium on Parallelism in algorithms and architectures (ACM, New York, NY, USA), SPAA
'04, 120–124

\(^{19}\) http://code.enthought.com/projects/mayavi/
\(^{20}\) http://developer.nvidia.com/pycuda
\(^{21}\) benchmark available at http://wiki.tiker.net/PyCuda/examples/DemoMetaMatrixmulCheetah
Vincent et al. fMRI data analyses with PyHRF

Badillo, S., Vincent, T., and Ciuciu, P. (2013c), Multi-session extension of the joint-detection framework in fMRI, in 10th International Symposium on Biomedical Imaging (San Francisco, CA), 1504–1507

Brodmann, K. (1909), Vergleichende Lokalisationslehre der Grosshirnrinde (Barth, Leipzig)

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006), An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest., *Neuroimage*, 31, 3, 968–980

Henson, R., Andersson, J., and Friston, K. (2000), Multivariate SPM application to basis function characterisations of event-related fMRI responses, volume 11, 468

