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Abstract. We address the issue of jointly detecting brain activity and
estimating underlying brain hemodynamics from functional MRI data.
We adopt the so-called Joint Detection Estimation (JDE) framework
that takes spatial dependencies between voxels into account. We re-
cast the JDE into a missing data framework and derive a Variational
Expectation-Maximization (VEM) algorithm for its inference. It follows
a new algorithm that has interesting advantages over the previously used
intensive simulation methods (Markov Chain Monte Carlo, MCMC):
tests on artificial data show that the VEM-JDE is more robust to model
mis-specification while additional tests on real data confirm that it achie-
ves similar performance in much less computation time.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to non-
invasively study the relation between a cognitive task and an evoked neural
activity through neurovascular coupling and the BOLD effect [10]. To localize
which parts of the brain are activated by a given stimulus type, most approaches
assume a single canonical a priori model for the impulse response of the neu-
rovascular coupling also known as the hemodynamic response function (HRF) [5].
However, there has been evidence that this response can vary in space and be-
tween subjects [1, 6] so that both issues of properly detecting evoked activity
and estimating the HRF play a central role in fMRI data analysis. They are
usually dealt with independently with no possible feedback although they are
strongly connected. To account for these sources of hemodynamic variability, a
novel approach referred to as the Joint Detection Estimation (JDE) framework
has been introduced in [9] and extended in [13] to account for spatial correla-
tion between neighboring voxels in the brain volume. Since robust and accurate
HRF estimation can only be achieved in regions that elicit an evoked response
to an experimental condition [7], the JDE approach has been defined at an
intermediate spatial resolution corresponding to parcels in which a fair compro-
mise between homogeneity of the BOLD signal and reproducibility of the HRF
shape is achieved. The JDE approach mainly rests upon: i.) a non-parametric or
FIR modelling of the HRF at this parcel-level for an unconstrained HRF shape;



ii.) prior information about the temporal smoothness of the HRF to guarantee
a physiologically plausible shape; and iii.) the modelling of spatial correlation
between neighboring voxels within each parcel using condition-specific discrete
hidden Markov fields. In [9, 13], posterior inference is carried out in a Bayesian
setting using Markov Chain Monte Carlo (MCMC) methods, which requires fine
tuning and is time consuming. Several other attempts to segregate neurologi-
cal and hemodynamic events from fMRI time series have been proposed (see
references in [13]). Among them lies an interesting bilinear dynamical system
formulation [8] that deals with unknown HRF and uses Variational Bayes (VB)
approximation for tractability. However, from a spatial viewpoint, this work re-
mains univariate and ignores spatial correlation between voxels.

In this paper, we reformulate the complete JDE framework [13] as a missing
data problem and propose a simplification of its estimation procedure. Akin
to [8], we resort to a variational approximation using a Variational Expectation
Maximization (VEM) algorithm in order to derive estimates of the HRF and
stimulus-related activity. Experiments on artificial and real data demonstrate
the good performance of our VEM algorithm. In particular, we provide a com-
parison with its MCMC counterpart and show the advantages of VEM both in
terms of computation time and robustness to noise model deviations. This po-
tentially increases considerably the impact of the JDE framework and makes its
application to fMRI studies in neuroscience easier and more valuable.

2 A joint detection-estimation model

Capital letters indicate random variables and lower case their realizations. Ma-
trices are denoted with bold upper case letters and the transpose with t.
Observed and missing variables. We first recast the parcel-based JDE model
of [9, 13] in a missing data framework. For a given parcel P, the observed data
is denoted by Y = {Yi, i ∈ P} where Yi ∈ RN is the fMRI time series measured
in voxel i ∈ P at times (tn)n=1:N , where tn = nTR, N being the number
of scans and TR, the time of repetition. Additional unobserved variables are
introduced: 1) The Neural Response Levels (NRLs) A = {Am,m = 1 : M} with
Am = {Ami, i ∈ P} and M the number of experimental conditions involved in

the paradigm. We will also make use of Ai = [Ami,m = 1 : M ]
t
. 2) The HRF

shape H = [Hd∆t, d = 0 : D]
t ∈ RD+1; 3) The activation class assignments

Z = {Zm,m = 1 : M} with Zm = {Zmi, i ∈ P} represent the activation classes
for each voxel, in each of the M experimental conditions. Zmi = k means that
voxel i lies in activation class k for the mth experimental condition. The number
of classes is here K = 2 for activating and non activating voxels. An additional
deactivation class (K = 3) may actually be added depending on the experiment
and all provided formulas are general enough to cover this case. The observed
and missing variables are then linked by the following relationship involving
additional parameters to be estimated:

∀i ∈ P, Yi =

M∑
m=1

AmiXmH + P `i + εi, (1)



where Xm = (xmtn−d∆t)n=1:N,d=0:D denotes the N × (D+ 1) binary matrix that

codes the onsets of the mth experimental condition on a ∆t-sampled grid, where
∆t is the sampling period of the HRF (∆t < TR); the εi’s stand for the noise and
are independent and normally distributed in space with εi ∼ N (0,Γ−1

i ), and P
is the low frequency orthogonal N × L matrix which accounts for physiological
artifacts. Let ` = {`i, i ∈ P} be the set of low frequency drifts, where `i ∈ RL
have to be estimated and let Γ = {Γ i, i ∈ P} be the set of all unknown precision
matrices (see Section 4 for its definition).

Hierarchical model of the complete data distribution. Using standard
additional assumptions and omitting the dependence on the parameters, the
distribution of both the observed and unobserved data writes: p(y, a, h, z) =
p(y | a, h) p(a | z) p(h) p(z). To fully define the model, we now specify each term.
The p(y | a, h) term. From (1), it comes that p(y | a, h) =

∏
i∈P

p(yi | ai, h) with

Yi | (Ai = ai, H = h) ∼ N
(∑M

m=1 amiXmh+ P `i,Γ
−1
i

)
.

The p(a | z) term. Akin to [9,13], the NRLs Ami are assumed statistically inde-
pendent across condition types. The allocation variables Zmi are then introduced
to segregate activating voxels from non-activating ones in condition-specific mix-
ture models. Also, the Ami’s are supposed independent in space conditionally on

Zm so that putting together all conditions we get: p(a | z) =
M∏

m=1

∏
i∈P p(ami | zmi),

where we further assume that p(Ami |Zmi = k) = N (µmk, σ
2
mk). The Gaus-

sian parameters are unknown and denoted by µ = {µm,m = 1 : M} with
µm =[µm1 . . . µmK ]

t
and σ ={σm,m = 1 : M} with σm =[σm1 . . . σmK ]

t
. Also,

k=1 is assigned to non-activating voxels with µm1 =0.
The p(h) term. Akin to [9,13], we introduce constraints in the prior that favor
smooth variations in h: H ∼ N (0, σ2

hR) with R = (∆t)4 (Dt
2D2)−1 where

D2 is the second-order finite difference matrix and σ2
h is a parameter to be es-

timated or fixed. Moreover, H0 = HD∆t = 0 as in [9, 13].
The p(z) term. As in [13], we assume prior independence between experi-
mental conditions regarding the activation class assignments. It follows that

p(z) =
M∏

m=1

p(zm;βm) where we assumed in addition that p(zm;βm) is a spatial

Markov prior, namely a K-class Potts model with interaction parameter βm [13].
The unknown parameters are then β = {βm,m = 1 : M}. For the complete
model, the whole set of parameters denoted by θ ∈ Θ is θ = {Γ , `, µ, σ, σh, β}.

3 Estimation by variational EM

We propose to use an Expectation-Maximization (EM) framework to deal with
the missing data namely, A ∈ A, H ∈ H, Z ∈ Z. At iteration (r), denoting cur-
rent parameter values by θ(r), the E-step involves the posterior p(a, h, z | y; θ(r)),
which is intractable for our model. Hence, we resort to a variational EM vari-
ant in which the intractable posterior is approximated as a product of three
pdfs on A, H and Z respectively. Previous attempts to use VB inference [2]



in fMRI [11, 14] have been successful with this type of approximations usually
validated by assessing its fidelity to its MCMC counterpart. In Section 4, we will
also provide such a comparison. It follows then that our E-step becomes an ap-
proximate E-step, which can be further decomposed into three stages consisting
in updating the three pdfs, denoted by qH , qA and qZ , in turn. Let q(r−1)

A , q
(r−1)
Z

and θ(r), be the current estimates at the rth iteration and Eq
[
.
]

denotes the ex-
pectation with respect to (wrt) some pdf q, the first E-H step reads:

E-H: q
(r)
H (h) ∝ exp

(
E

q
(r−1)
A

q
(r−1)
Z

[
log p(h | y,A, Z; θ(r))

])
.

The following E-A and E-Z steps have similar expressions obtained by exchan-
ging the role of H and A (resp. of H and Z) and replacing q

(r−1)
A by q

(r)
H (resp.

q
(r−1)
A q

(r−1)
Z by q

(r)
A q

(r)
H ). For the E-H and E-A steps, it follows from standard

algebra that q
(r)
H and q

(r)
A are both Gaussian pdfs: q(r)H ∼ N (m

(r)
H ,Σ

(r)
H ) and

q
(r)
A =

∏
i∈P
N (m

(r)
Ai
,Σ

(r)
Ai

).

• E-H step. The expressions for m
(r)
H and Σ

(r)
H are similar to those derived in

the MCMC case [9, Eq. (B.1)] with expressions involving the ami’s replaced by

their expectations wrt q(r−1)
Ai

: m
(r)
H = Σ

(r)
H

(∑
i∈P

S
(r−1)
i

t
ỹ
(r)
i

)
and

Σ
(r)−1
H = R−1/σ

2(r)
h +

∑
i∈P

( ∑
m,m′

σ
(r−1)
AmiAm′i

Xt
mΓ

(r)
i Xm′ + S

(r−1)
i

t
Γ

(r)
i S

(r−1)
i

)
,

with S(r−1)
i =

M∑
m=1

m
(r−1)
Ami

Xm and ỹ(r)i = Γ
(r)
i (yi−P `(r)i ). Here, m(r−1)

Ami
and σ(r−1)

AmiAm′i

denote the mth and (m,m′)th entries of the mean vector and covariance matrix

of the current q
(r−1)
Ai

, respectively.

• E-A step. Here, the relationship with the MCMC update of a is not straight-
forward. In [9,13], the ami’s are sampled independently and conditionally on the
zmi’s. This is not the case in the VEM framework while some similarity appears
if we set the probabilities qZmi(k)’s either to 0 or 1 and consider only the diagonal
part of ΣAi . The update of qA reads:

m
(r)
Ai

= Σ
(r)
Ai

( K∑
k=1

∆
(r)
ki µ

(r)
k + X̃

(r)t

i m
(r)
H

)
and Σ

(r)
Ai

=
( K∑
k=1

∆
(r)
ki + H̃

(r)
i

)−1

where µ(r)
k =

[
µ
(r)
1k . . . µ

(r)
Mk

]t
, X̃

(r)
i is a D+1×M matrix whose mth column is Xt

mỹ
(r)
i ,

∆
(r)
ki is a M×M diagonal matrix whose (m,m)th entry is q(r−1)

Zmi
(k)/σ

2(r)
mk and H̃(r)

i

is a M×M matrix whose (m,m′)th entry is tr
((
Σ

(r)
H +m

(r)
H m

(r)t

H

)
Xm

tΓ
(r)
i Xm′

)
.

• E-Z step. From p(a|z) and p(z) in Section 2, the (Am, Zm) couples corre-
spond to independent hidden Potts models with Gaussian class distributions.

It comes an approximation that factorizes over conditions: q(r)Z (z) =
M∏

m=1

q
(r)
Zm

(zm)

where q
(r)
Zm

(zm) = pm(zm |Am = m
(r)
Am

;µ
(r)
m , σ

(r)
m , β

(r)
m ) is the posterior of Zm in a

modified hidden Potts model, pm, in which the observations ami’s are replaced by

their mean values m
(r)
Ami

and an external field {σ(r)
AimAim

[
1/σ

2(r)
m1 . . . 1/σ

2(r)
mK

]t
, i ∈

P} is added to the prior Potts model p(zm;β
(r)
m ). The Potts expression above is

intractable but we use a mean field-like technique (see [4] for details) to approx-
imate q(r)Zm

(zm) by a factorized pdf q̃(r)Zm
(zm) =

∏
i∈P

q̃
(r)
Zmi

(zmi).



M-step. It is also divided into four sub-steps involving separately (µ, σ), σh, β
and (`,Γ ). The first two maximizers admit closed-form expressions:

• M-(µ, σ) step: Let q̄(r)mk =
∑
i∈P

q
(r)
Zmi

(k), then µ
(r+1)
mk =

∑
i∈P

q
(r)
Zmi

(k) m
(r)
Ami

/q̄
(r)
mk

and σ
2(r+1)
mk =

∑
i∈P

q
(r)
Zmi

(k)
(
(m

(r)
Ami
− µ(r+1)

mk )2 + σ
(r)
AimAim

)
/q̄

(r)
mk.

• M-σ2
h step: σ

2(r+1)
h = (D − 1)−1tr ((Σ

(r)
H +m

(r)
H m

(r)
H

t
)R−1).

The two other M-steps require iterative maximization procedures. Updating β
consists in making further use of a mean field-like approximation [4]. Regarding
the pair (`,Γ ), it satisfies some fixed point equation, which simplifies in case
of white noise. For autoregressive (AR) noise models, we found some similarity
with [9, Eq. (B.2)] when replacing h and a by mH and mA, respectively.

4 Experiments

Simulation results. We simulated data according to Eq. (1)5 and p(a | z) with
a white Gaussian noise Γ−1

i = 0.5 IN (IN is the N×N identity matrix), M = 2
experimental conditions and stimulus-varying contrast-to-noise ratios (CNR):
µ12 = 2.8, σ12 = 0.5 and µ22 = 1.8, σ22 = 0.6 so that µ12/σ12 > µ22/σ22. The
initial artificial paradigm comprised 15 stimulus events for each condition. The
simulation process finally yielded time-series lasting 152 scans. Condition-specific
activating and non-activating voxels were defined as 20×20 2D slices shown in
Fig. 1 (right) and superimposed to the estimated label probabilities in white
solid line. The parameters β1 and β2 had been set to fixed values (β1 = β2 = 0.8
for the two algorithms). Γ and ` are estimated as in [9].

NRLs Labels

Ground Truth MCMC/VEM MCMC (PPM) VEM (PPM)

m = 1

m = 2

Fig. 1. Left: Ground truth and estimated Neural Response Levels (NRLs) by MCMC
and VEM (same results); Right: Posterior probability maps (PPM) given by the
approximation qZm (VEM) and by the MMSE estimator (MCMC).

In Fig. 1, the VEM is compared to the MCMC alternative developed in [13]:
both algorithms report similar NRL maps while some difference is exhibited
on the posterior activation probability map (PPM) for the low CNR condi-
tion (m = 2, bottom row). This illustrates the gain in robustness achieved using
the variational approximation under the true noise model.

To perform a quantitative comparison, several experiments with different
stimuli densities (from 5 to 30), noise variance and autocorrelation (Γ−1

i ) have

5 P was defined from a cosine transform basis.



been conducted. Fig. 2(a) illustrates the evolution of the Mean Square Er-
ror (MSE) of NRL estimates wrt the stimulus density in the experimental para-
digm when a second order autoregressive noise (AR(2)) is considered. This figure
shows that at low stimulus density (i.e. low Signal to Noise Ratio (SNR)6), the
proposed VEM algorithm is more robust than the MCMC one to model discre-
pancy. Indeed, here the two inference algorithms were compared for a white and
Gaussian noise modelling in Eq. (1). In contrast, at high stimulus density (≥ 20),
the two methods perform similarly. Interestingly, Fig. 2(b)-(c) depict the shapes
of the ground truth and estimated HRF shapes inferred by the VEM and MCMC
schemes wrt the stimulus density: Note that the main HRF features (peak
value (PV), time-to-peak (TTP) and time-to-undershoot (TTU)) remain well
estimated by both methods. However, at low stimulus density, Fig. 2(b) shows
that the VEM algorithm is less accurate than its MCMC counterpart close to the
undershoot position. Similar experiments have been conducted while changing
the ground truth HRF properties (PV, TTP, TTU), and coherent results have
been obtained. Other comparisons performed under the true noise model did not
reveal any significant difference between VEM and MCMC.
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Fig. 2. (a): MSE evolution of estimated NRLs wrt stimuli number. (b)-(c): Ground
truth and HRF estimates inferred by the VEM and MCMC schemes for two stimulus
densities corrupted by AR(2) noise.

In Fig. 3(a)-(b) the output MSE is plotted against the input SNR when
varying the noise variance and its amount of autocorrelation, respectively. In the
latter case, the two AR parameters are varied while maintaining a stable AR(2)
process. As already observed in [3], at fixed input SNR, the impact of large
autocorrelation is stronger than that of large noise variance irrespective of the
inference scheme. Moreover, the two inference methods perform very similarly
on a large scale of input SNR (SNR > 5 dB). In terms of computational time,
VEM results have been obtained 30 times faster than with MCMC on an Intel
Core 2 - 2.26 GHz - 2 Gb RAM architecture.

Real data processing. fMRI data were recorded at 3 T (Siemens Trio) using
a gradient-echo EPI sequence (TE=30 ms/TR=2.4 s/FOV=192 mm2) during a
Localizer experiment [12]. The acquisition consisted of a single session of N =
128 scans, yielding 3-D volumes with a spatial resolution of 2 × 2 × 3 mm3.
The paradigm was a fast event-related design comprising sixty auditory, visual

6 The SNR is given by: SNR = 10 log
∑
i∈P
‖

M∑
m=1

AmiXmh‖2/
∑
i∈P
‖εi‖2.
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Fig. 3. MSE evolution of NRL estimates wrt input SNR (AR(2) noise) by varying the
noise variance (a) and the amount of AR(2) noise autocorrelation (b).

and motor stimuli, defined in ten experimental conditions (auditory and visual
sentences, auditory and visual calculations, left/right auditory and visual clicks,
horizontal and vertical checkerboards).

We focused on the Computation-Sentences contrast differentiating the ac-
tivations induced by the calculation and sentence conditions in the left intra-
parietal sulcus, a region known to elicit hemodynamic response that departs
from the canonical HRF. As shown in Fig. 4, the contrasted NRL estimates for
the MCMC and VEM inference schemes are very similar and follow the under-
lying sulco-gyral anatomy. Note that only the most activating slice is considered
for visualization purpose. The corresponding HRF estimates in the most acti-
vating parcel of about 200 voxels are also depicted in Fig. 4: they appear very
similar and both quite different from the canonical shape regarding the TTP
and TTU parameters. More oscillations arise in the VEM inference close to the
undershoot, however we may have less confidence in the HRF tail than in its
peak since it involves less signal strength. Moreover, the event-related nature of
the paradigm is not suited to properly study the undershoot properties. Finally,
in terms of computational efficiency, the variational approximation runs also 30
times faster than the MCMC inference in this parcel.
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Fig. 4. Left: Estimated contrast Computation-Sentences by MCMC and VEM;
Right: HRF estimates by MCMC (green) and VEM (blue) at maximum intensity
peak (top) and in a neighboring parcel (bottom). Canonical HRF with dashed line.



5 Conclusion

We proposed a Variational EM algorithm as an alternative solution to intensive
stochastic sampling for inferring upon the JDE parameters. Illustrations on si-
mulated data showed that our approach achieved similar and even better results
than the MCMC-based inference scheme at low input SNR or stimuli density
and was more robust to noise model mismatch. Also, in contrast to the hybrid
MCMC in [13], the VEM algorithm only requires a simple stopping criterion
as convergence diagnosis tool. Another advantage of the variational approach
lies in its flexibility to adapt to more complex situations such as accounting for
higher AR noise order, habituation modelling or including model selection steps
using the log-evidence as information criterion. Other future work will focus on
analyzing the impact of the VEM-JDE to group-level analysis as done in [1].
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