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A: Multiple Scaled Generalised Hyperbolic distributions (MSGH)

Standard Generalised Hyperbolic distributions can be seen as location and scale mixtures where the
weight variable follows a Generalized Inverse Gaussian (GIG) distribution. The GIG distribution
depends on three parameters and is given by

fW (w;λ, γ, δ) = GIG(w;λ, γ, δ)

=
(γ

δ

)λ wλ−1

2Kλ(δγ)
exp(−1

2
(δ2/w + γ2w)) , (36)

whereKr(x) is the modified Bessel function of the third kind of order r evaluated at x 1. Depending
on the parameter choice for the GIG, special cases of the GH family include: the multivariate GH
distribution with hyperbolic margins (λ = 1) [Schmidt et al., 2006]; the Normal Inverse Gaussian
(λ = −1/2) distribution [Barndorff-Nielsen et al., 1982]; the multivariate hyperbolic (λ = M+1

2 )
distribution [Barndorff-Nielsen, 1977]; the hyperboloid (λ = 0) distribution [Jensen, 1981]; the
hyperbolic skew-t (λ = −ν, γ = 0) distribution [Aas et al., 2005]; and the Normal Gamma (λ >
0,µ = 0, δ = 0) distribution [Griffin and Brown, 2010] amongst others.

The standard location and scale representation (1) is generalised into a multiple scale version

p(y;µ,D,A,β,θ) =

∫

∞

0
. . .

∫

∞

0
NM(y;µ +D∆wAD

Tβ,D∆wAD
T )

× fw(w1 . . . wM ;θ) dw1 . . . dwM , (37)

where D is the matrix of eigenvectors of the scale matrix Σ, A is a diagonal matrix with the
corresponding eigenvalues, ∆w = diag(w1, . . . wM ), and the weights are assumed to be independent
i.e. fw(w1 . . . , wM ;θ) = fW1

(w1;θ1) . . . fWM
(wM ;θM ).

1The modified Bessel function (see Appendix in Jorgensen [1982]) is Kr(x) = 1/2
∫

∞

0
yr−1 exp(− 1

2
x(y + y−1)) dy
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Equation (37) can be equivalently written as

p(y;µ,D,A,β,θ) =
M
∏

m=1

∫

∞

0
N1([D

T (y − µ)]m;wmAm[DTβ]m, wmAm)

× fWm
(wm) dwm (38)

where [DT (y − µ)]m denotes the mth component of vector DT (y − µ) and Am the mth diagonal
element of the diagonal matrix A (or equivalently the mth eigenvalue of Σ).

To simulate from the MSGH distribution, it is possible to use eq. (12) in the manuscript or

Y = µ+D∆wAD
Tβ +DA1/2[X1

√

W1, . . . ,XM

√

WM ]T (39)

where X ∼ N (0, IM ) and Wm ∼ GIG(λm, γm, δm) (for m = 1, . . . ,M).

B: Multiple Scaled Normal Inverse Gaussian distribution (MSNIG)

By setting λ = −1/2 in the GIG distribution we recover the Inverse Gaussian (IG) distribution,

fW (w; γ, δ) = IG(w; γ, δ) (40)

=
δ

w3/2
√
2π

exp(δγ) exp(−1

2
(δ2/w + γ2w)) , (41)

which (when used as the mixing distribution) leads to the NIG distribution

p(y;µ,Σ,β, γ, δ) = NIG(y;µ,Σ,β, γ, δ)

=

∫

∞

0
NM(y;µ + wΣβ, wΣ) IG(w; γ, δ)dw

=
δ

2
M−1

2

exp(δγ + (y − µ)Tβ)
(

α

πq(y)

)
M+1

2

KM+1
2

(αq(y))

where α and q are defined as in definitions (4) and (3) in the manuscript.

Therefore, in the case of the MSNIG where Wm ∼ GIG(λm = −1/2, γm, δm) = IG(γm, δm), expres-
sions (12) and (13) simplify into

E[YMSNIG] = µ+DE[∆W ]ADTβ

= µ+Ddiag

(

δ1
γ1

, . . . ,
δM
γM

)

ADTβ (42)

V ar[YMSNIG] =Ddiag

(

δ1
γ1

, . . . ,
δM
γM

)

ADT (43)

+Ddiag

(

δ1
γ31

[DTβ]21, . . . ,
δM
γ3M

[DTβ]2M

)

ADT

=Ddiag

(

δmAm

γm

)(

1 +
[DTβ]2mAm

γ2m

)

DT (44)
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C: Tail behaviour of the multiple scaled GH

The tail behaviour of the multiple scaled GH is similar to the GH with tails governed by a combined
algebraic and exponential form. Let us assume that D = IM for simplification. Such a case can
be easily recovered after a rotation. Then, it is straightforward to see (e.g. Aas and Hobaek Haff
[2006]) that the density function of the MSGH distribution is equivalent to:

MSGH(y;µ,D,A,β,λ,γ, δ) ∼const |ym|λm−1 exp(ymβm − αmA−1/2
m |ym|) , as |ym| → ∞ (45)

where α2
m = γ2m +Amβ2

m (Equation (8) of the manuscript).

Hence, the multiple scaled GH, like the GH distribution, is said to be semi-heavy tailed, which
means that its tail behaviour is characterized by exponential instead of power decay. Alternative
parameterisations of the GH permit the possibility of heavier tails [Aas and Hobaek Haff, 2006].
The parameters γ and β govern the tail behaviour of the density with smaller values of γ implying
heavier tails, and larger values lighter tails. For our multiple scaled GH distributions, when all
δm, γm tend to infinity with δm/γm tending to 1, the distribution tends to the multivariate Gaussian
N (µ+Σβ,Σ). This is easily seen from the characteristic function (see Section D).

A difference between the tail behaviour of the GH and the multiple scaled GH can also be seen
in measures of the tail dependency [Coles et al., 1999]. In applications, strong tail dependence is
important for modelling the dependency/association of potentially extreme events (e.g. in finance,
meteorology). In Figure 1 we compare the tail dependency of the Gaussian, t-distribution, standard
GH and multiple scaled GH using a χ(q) plot [Coles et al., 1999] and simulated values from each

distribution with µ = [0, 0]T ,Σ =

(

1 0.5
0.5 1

)

(equivalently A = diag(3/2, 1/2) and ξ = π/4) ,

β = [0, 0]T ,γ = δ = [1, 1]T (or ν = 1) and λ = [−1/2,−1/2]T (NIG). The function χ(q) can be
interpreted as a quantile dependent measure of dependence with χ(q) = 0 indicating independence
and χ(q) = 1 perfect dependence. Tail dependence is determined by the limit of χ(q) when q tends
to 1. In particular, the sign of χ(q) determines whether the variables are positively or negatively
associated at quantile level q.

To compute χ(q), we used Coles et al. [1999] and the R package ‘evd’ [Team, 2011]. We assume
that the data are i.i.d. random vectors with common bivariate distribution function G, and we
define the random vector [X,Y ]T to be distributed according to G.

The χ(q) plot is a plot of q in (0,1) (interpreted as a quantile level) against empirical estimates of
function

χ(q) = 2− log(p(FX(X) < q,FY (Y ) < q))/log(q) (46)

where FX and FY are the marginal distribution functions. The quantity χ(q) is bounded by

2− log(2q − 1)/log(q) ≤ χ(q) ≤ 1

where the lower bound is interpreted as −∞ for q ≤ 1/2 and zero for q = 1.

From Figure 1, we see that the multiple scaled NIG has stronger tail dependence than the standard
NIG. By comparison (and for reference), it is well known that the Gaussian distribution has no
tail dependence, and the t-distribution has a stronger tail dependence than both the Gaussian, the
standard NIG and multiple scaled NIG. We also computed for illustration the empirical upper tail
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Figure 1: Comparison of tail dependence using χ(q). X-axis: quantiles levels. Y-axis: Estimate of χ(q). Gaussian
distribution (Green), Standard NIG distribution (black), Multiple scaled NIG distribution (blue), t distribution (Red)

dependence coefficient (as in Coles et al. [1999]) for each distribution and obtained 0.50, 0.42, 0.24
for the Student, MSNIG and NIG distribution respectively. The theoretical upper tail coefficient
is 0 in the Gaussian case.

D: MSGH Characteristic function and marginals

Characteristic function

Denote by φY the characteristic function of a random vector Y. It follows from (39) that, ∀t ∈
R
M , φY(t) = E[exp(itTY)] = E[E[exp(itTY)|W ]] = exp(itTµ)

M
∏

m=1
φWm

(um(t)) .

where um(t) = [A1/2DT t]m([A1/2DTβ]m + i
2 [A

1/2DT t]m) and φWm
is the characteristic function

of Wm.

In the Generalised Hyperbolic case φWm
is the characteristic function of a 1-dimensional GIG(λm, γm, δm)

distribution, which is

φWm
(t) =

(

γm
γm − 2it

)λm Kλm
(δm

√

γ2m − 2it)

Kλm
(δmγm)

. (47)

The particular case of the multiple scaled NIG follows easily by setting λm = −1/2, which permits
a simpler form

φWm
(t) = exp(δmγm − δm

√

γ2m − 2it) . (48)
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The characteristic function is useful in practice for the computation of marginals as detailed in the
next paragraph.

Marginals

Using (9), marginals are easy to sample from but computing their pdfs involves, in general, numer-
ical integration. An efficient and simple algorithm to compute such marginal pdfs in most cases
can be derived according to Shephard [1991]. The derivation in Shephard [1991] is based on the
inversion formula of the characteristic function which in the univariate case is:

fY (y) =
1

2π

∞
∫

0

(exp(ity)φY (−t) + exp(−ity)φY (t))dt (49)

=
1

π

∞
∫

0

Re(exp(−ity)φY (t))dt

using the hermitian property of characteristic functions φY (−t) = φY (t) (the over line means the
complex conjugate).

As an illustration, Figure 2 shows plots of the pdf of some 1-D marginals and a comparison with
1-D NIG distributions. From Figure 2 we can see that the marginals of the proposed multiple
scaled NIG (MSNIG) distribution deviate slightly from the standard NIG distribution according
to the specification of Σ. The marginals of the MSNIG distribution are exactly 1-D standard NIG
distributions in the diagonal scale matrix case.
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Figure 2: Histogram and density plots of the marginal Y1 of a bivariate NIG distribution with µ = [0, 0]T ,
γ = δ = β = [2, 2]T , and (left) diagonal Σ with diagonal entries equal to 1 or (right) Σ with diagonal entries equal
to 1 and other entries to 0.5. Histograms and blue solid lines denote the multiple scaled NIG and red dashed lines
the standard NIG.

For marginals of dimension greater than 1, we can also easily derive the characteristic function
and use a simple multidimensional inversion formula. Let I be a subset of {1, . . . ,M} of size I
and write YI = {Ym,m ∈ I} and tI = {tm,m ∈ I}. The characteristic function of the marginal
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variable YI is

φYI
(tI) =

∏

m∈I

exp(itmµm)
M
∏

d=1

φWd
(ud(tI)) , (50)

with ud(tI) = (
∑

m∈I

tm[DA1/2]md [A1/2DTβ]d) +
i
2(

∑

m∈I

tm[DA1/2]md)
2 .

It follows that the density of YI via the multidimensional inversion formula (see e.g. Shephard
[1991]) is:

fYI
(yI) = (2π)−I

∞
∫

−∞

. . .

∞
∫

−∞

exp(−itTI yI) φYI
(tI) dtI (51)

When I = 2, and decomposing R
2 into four quadrants,

fYI
(yI) = 2 (2π)−2

∞
∫

0

∞
∫

−∞

Re(exp(−itTI yI) φYI
(tI)) dtI . (52)

This formula also generalizes easily in higher dimensions.

For illustration, Figure 3 shows the bivariate marginal [Y1, Y2]
T for a 3 dimensional [Y1, Y2, Y3]

T

following a MSNIG distribution with µ = [0, 0, 0]T , γ = δ = [3, 3, 3]T , β = [−6, 2, 2]T and Σ so
that its diagonal entries are 1 and other entries are 0.5.
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Figure 3: [Y1, Y2]
T distribution when [Y1, Y2, Y3]

T follows a multiple scaled trivariate NIG distribution with µ =
[0, 0, 0]T , γ = δ = [3, 3, 3]T , β = [−6, 2, 2]T and Σ so that its diagonal entries are 1 and other entries are 0.5. Contours
are superimposed on points sampled from the distribution using equation (9).
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E: Algorithm for updating D in the EM algorithm (computing
D(r+1))

Using the equivalent parameterization (16), the goal is to minimize with respect to D the following
quantity, where Ã, µ and β̃ have been fixed to current estimations namely Ã(r), µ(r+1) and β̃(r+1),

D(r+1) =argmin
D

f(D)

where f(D) =

N
∑

i=1

trace(DT
(r)
i Ã−1(r)DTVi) +

N
∑

i=1

trace(DS
(r)
i Ã−1(r)DTBi)

− 2(

N
∑

i=1

trace(DÃ−1DTCi)

where Vi = (yi − µ(r+1))(yi − µ(r+1))T ,Bi = β̃(r+1)β̃T (r+1), Ci = (yi − µ(r+1))β̃T (r+1). Similarly
to Celeux and Govaert [1995, see Appendix 2], we can derive from Flury and Gautschi [1986] the
algorithm below.

Step 1. We start from an initial solution D0 = [d01, . . . ,d
0
M ] where the d0m’s are M -dimensional

orthonormal vectors.
Step 2. For any couple (l,m) ∈ {1, . . . ,M}2 with l 6= m, the couple of vectors (dl,dm) is replaced
with (δl, δm) where δl = [dl,dm]v1 and δm = [dl,dm]v2 with v1 and v2 two orthonormal vectors
of R2 such that v1 is the eigenvector associated to the smallest eigenvalue of the matrix

M =
N
∑

i=1

(
t
(r)
il

A
(r)
l

− t
(r)
im

A
(r)
m

)[dl, dm]TVi[dl, dm] +
N
∑

i=1

(
s
(r)
il

A
(r)
l

− s
(r)
im

A
(r)
m

)[dl, dm]TBi[dl, dm]

−2

N
∑

i=1

(
1

A
(r)
l

− 1

A
(r)
m

)[dl, dm]TCi[dl, dm]

Step 2 is repeated until it produces no decrease of the criterion f(D).

Although not considered in this work, in a model-based clustering context, additional information
for an efficient implementation can be found in Lin [2014].
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F: Details and corollary for the update of A in the EM algorithm

To update Ã we have to minimize the following quantity

Ã(r+1) =argmin
Ã

{ N
∑

i=1

trace(D(r+1)T
(r)
i Ã−1D(r+1)TVi)

+

N
∑

i=1

trace(D(r+1)S
(r)
i Ã−1D(r+1)TB

(r)
i )−

2

N
∑

i=1

trace(D(r+1)Ã−1D(r+1)TCi) +N log |Ã|
}

=argmin
Ã

{

trace

[

N
∑

i=1

(T
(r)1/2
i D(r+1)TViD

(r+1)T
(r)1/2
i +

S
(r)1/2
i D(r+1)TBiD

(r+1)S
(r)1/2
i −D(r+1)T (Ci +C

T
i )D

(r+1))Ã−1
]

+N log|Ã|
}

=argmin
Ã

{

trace((

N
∑

i=1

Mi) Ã
−1) +N logÃ

}

whereMi = T
(r)1/2
i D(r+1)TViD

(r+1)T
(r)1/2
i +S

(r)1/2
i D(r+1)TBiD

(r+1)S
(r)1/2
i −D(r+1)T (Ci+C

T
i )D

(r+1)

and Mi is a symmetric positive definite matrix.

For the update of Ã, we can then use the following corollary (see Corollary A-2 in Celeux and

Govaert [1995]) with S =
N
∑

i=1
Mi.

Corollary 3.2: The M ×M diagonal matrix A minimizing trace(SA−1) + αlog|A| where S is a

M ×M symmetric definite positive matrix and α is a positive real number is A = diag(S)
α

By setting D and µ to their current estimations D(r+1) and µ(r+1) we then get,

Ã(r+1) =
diag(S)

N
(53)

where

S =

N
∑

i=1

(T
(r)1/2
i D(r+1)TViD

(r+1)T
(r)1/2
i + S

(r)1/2
i D(r+1)TBiD

(r+1)S
(r)1/2
i (54)

−D(r+1)T (Ci +C
T
i )D

(r+1)) .

G: Mixture setting and estimation

The results in sections 3.1 and 3.2 of the manuscript can be extended to cover the case of K-
component mixture of multiple scaled NIG distributions. With the usual notation for the propor-
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tions π = {π1, . . . , πK} and ψk = {µk,Dk,Ak,βk,γk, δk} for k = 1 . . . K, we consider,

p(y;φ) =
K
∑

k=1

πkMSNIG(y;µk ,Dk,Ak,βk,γk, δk)

where k indicates the kth component of the mixture and φ = {π,ψ} with ψ = {ψ1, . . .ψK} the
mixture parameters. In the EM framework, an additional variable Z is introduced to identify the
missing class labels, where {Z1, . . . , ZN} define the component of origin of the data {y1, . . . ,yN}.
In the light of the characterization of multiple scaled distributions, an equivalent modelling is:
∀i ∈ {1 . . . N},
Yi|Wi = wi, Zi = k ∼ NM (µk +Dk∆wi

AkD
T
k βk,Dk∆wi

AkD
T
k ) and Wi|Zi = k ∼ IG(γ1k, δk)⊗

· · · ⊗ IG(γMk, δk) , where ∆wi
= diag(wi1, . . . , wiM ). Inference using the EM algorithm with two

sets of missing variables Z = {Z1, . . . , ZN} andW = {W1, . . . ,WN} to fit such mixtures, is similar
to the individual ML estimation.

Denote the parameters of the mixture in the equivalent parameterization (16) by φ = {π, ψ̃} with
ψ̃ = {ψ̃1, . . . ψ̃K} the mixture parameters with ψ̃k = {µk,Dk, Ãk, β̃k, γ̃k} for k = 1 . . . K. For
mixtures the EM algorithm iterates over the following two steps.

E-step

We denote by τ
(r)
ik the posterior probability that yi belongs to the kth component of the mixture

given the current estimates of the mixture parameters φ(r),

τ
(r)
ik =

π
(r)
k MSNIG(yi;ψ

(r)
k )

p(y;φ(r))
(55)

The conditional expectation of the complete data log-likelihood Q(φ,φ(r)) decomposes into three
parts

Q(φ,φ(r)) = Q1(π;φ
(r)) +Q2(γ̃;φ

(r)) +Q3(µ,D, Ã, β̃, ;φ(r)) (56)

with

Q1(π;φ
(r)) =

N
∑

i=1

K
∑

k=1

τ
(r)
ik logπk (57)

Q2(γ̃;φ
(r)) =

N
∑

i=1

K
∑

k=1

τ
(r)
ik

M
∑

m=1

EWim
[logIG(Wim; γ̃km, 1)|yi,φ

(r)] (58)

and
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Q3(γ̃;φ
(r)) =

N
∑

i=1

K
∑

k=1

τ
(r)
ik EWi

[logNM (µk+ (59)

Dk∆wi
ÃkD

T
k β̃k,Dk∆wi

ÃkD
T
k )|Zi = k,yi,φ

(r)]

=
N
∑

i=1

K
∑

k=1

τ
(r)
ik EWi

[−1

2
(yi − µk −Dk∆wi

DT
k β̃k)

TDkÃ
−1∆−1

wi
DT

k

× (yi − µk −Dk∆wi
DT

k β̃k)|Zi = k,yi,φ
(r)]− 1

2
log|Ãk|

ignoring constants.

Similarly to the E-step in Section 3.1, the quantities required for the E-step are given by,

s
(r)
ikm = E[Wim|Zi = k,yi;φ

(r))] =
φ
(r)
ikmK0(φ

(r)
ikmα̂

(r)
km)

α̂
(r)
kmK−1(φ

(r)
ikmα̂

(r)
km)

t
(r)
ikm = E[W−1

im |Zi = k,yi;φ
(r))] =

α̂
(r)
kmK−2(φ

(r)
ikmα̂

(r)
km)

φ
(r)
ikmK−1(φ

(r)
ikmα̂

(r)
km)

where

φ
(r)
ikm =

√

√

√

√1 +
[D

(r)T
k (yi − µ(r)

k )]2m

Ã
(r)
km

α̂
(r)
km =

√

√

√

√γ̃
2(r)
km +

[D
(r)T
k β̃

(r)
k ]2m

Ã
(r)
km

M-step

Updating the πk’s. The update of π is standard: for k ∈ {1, . . . ,K}, π
(r+1)
k =

nk

N
where

nk =
N
∑

i=1
τ
(r)
ik .

Updating the µk’s. It follows from the expression of Q3 that for k ∈ {1, . . . ,K}, fixing Dk to

the current estimation D
(r)
k , leads for all m = 1, . . . ,M to

µ
(r+1)
km =

(
∑N

i=1 τikT
(r)
ik D

(r)T
k

nk
− nk (

N
∑

i=1

τikS
(r)
ik )−1

)−1

(
∑N

i=1 τikT
(r)
ik D

(r)T
k yi

nk
−

N
∑

i=1

τikyi (
N
∑

i=1

τikS
(r)
ik )−1

)

where T
(r)
ik = diag(t

(r)
ik1, ..., t

(r)
ikM ) and S

(r)
ik = diag(s

(r)
ik1, . . . , s

(r)
ikM).
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Updating the β̃k’s. Similarly, it follows from the expression of Q3 that for k ∈ {1, . . . ,K}, fixing
Dk and µk to their current estimation D

(r)
k and µ

(r)
k , leads to

β̃
(r+1)
k =D

(r)
k (

N
∑

i=1

τ
(r)
ik S

(r)
ik )−1D

(r)T
k

N
∑

i=1

τ
(r)
ik (yi − µ(r+1)

k )

Updating the Dk’s

The parameter Dk is obtained by minimizing

D
(r+1)
k =argmin

Dk

( N
∑

i=1

trace(DkT
(r)
ik Ã

(r)−1
k DT

k Vik)

+

N
∑

i=1

trace(DkS
(r)
ik Ã

(r)−1
k DT

kBik)− 2(

N
∑

i=1

trace(DkÃ
(r)−1
k DT

k Cik)

)

where Vik = τ
(r)
ik (yi−µ(r+1)

k )(yi−µ(r+1)
k )T ,Bik = τ

(r)
ik β̃

(r+1)
k β̃

(r+1)T
k andCik = τ

(r)
ik (yi−µ(r+1)

k )β̃
(r+1)T
k

The parameter Dk can be updated using an algorithm derived from Flury and Gautschi [see Flury
and Gautschi, 1986, and section C].

Updating the Ãk’s. We have to minimize the following quantity:

Ãk
(r+1)

= argmin
Ãk

(trace(

N
∑

i=1

MikÃ
−1
k ) + αk log|Ãk|)

where Mik = T
(r)1/2
ik D

(r+1)T
k VikD

(r+1)
k T

(r)1/2
ik + S

(r)1/2
ik D

(r+1)T
k BikD

(r+1)
k S

(r)1/2
ik −D(r+1)T

k (Cik +

CT
ik)D

(r+1)
k is a symmetric positive definite matrix and αk =

∑N
i=1 τ

(r)
ik

Using Corollary (see Section 3) leads for all m = 1, . . . ,M to

Ã
(r+1)
km =

1
N
∑

i=1
τ
(r)
ik

N
∑

i=1

τ
(r)
ik

(

[D
(r+1)T
k (yi − µ(r+1)

k )]2mt
(r)
ikm + [D

(r+1)T
k β̃

(r+1)
k ]2ms

(r)
ikm

− 2[D
(r+1)T
k (yi − µ(r+1)

k )]m[D
(r+1)T
k β̃

(r+1)
k ]m

)

Updating the γ̃k’s. To update γ̃k we have to minimize,

γ̃
(r+1)
k = argmin

γ̃

{ N
∑

i=1

τ
(r)
ik

M
∑

m=1

1

2
γ̃2kms

(r)
ikm − γ̃km)

}
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which leads for all m = 1, . . . ,M to

γ̃
(r+1)
km =

nk
∑N

i=1 τiksikm

To transform the estimated parameters back to the original ones, δk = |Ãk|
1

2M , γkm = γ̃km/δk,βk =

DkÃ
−1
k D

T
k β̃k,Ak = Ãk/|Ãk|

1
M

H: Simulated Data - Clusters of MSNIG distributions

In this section, we assess the classification performance of a mixture of MSNIG distributions using
a simulated dataset and compare the results to estimation using mixtures of respectively standard
multivariate NIG, MSGHTFBM and Coalesced GH distributions. We consider the case of two
clusters each sampled from a 2-dimensional MSNIG distribution which are slightly separated from
each other, using the parameter values outlined in Table 1. For both clusters the sample size is
500. A plot of the simulated data is shown in Figure 4 with the observations belonging to each
cluster labelled by different colours.

Table 1: Parameter values for simulated dataset

Parameters Cluster 1 Cluster 2

µ (0.0, 0.0) (-4.0, 0.0)

β (0.0, -10.0) (-3.0, -5.0)

D

(

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

) (

cos(3π/8) − sin(3π/8)
sin(3π/8) cos(3π/8)

)

A diag(3/2, 2/3) diag(3/2, 2/3)

γ (2.0, 2.0) (2.0, 2.0)

δ 1.0 1.0

The classification results for the MSNIG, NIG, MSGHTFBM and Coalesced GH mixtures over 30
simulated datasets (using the parameters in Table 1) are summarized in Table 2 where we report the
Adjusted Rand Indices (ARI) [Hubert and Arabie, 1985] and Brier [Brier, 1950] scores. In contrast
to the ARI, the Brier score incorporates the uncertainty of the classification and lower values
represent a better classification. Figure 5 also shows the box plots for the Adjusted Rand Index
of NIG, MSNIG, MSGHTFBM , and Coalesced GH mixtures. The fitted contour and observations
assigned to each cluster for MSNIG and NIG for one of the simulated datasets are shown in Figure 6.
From these results we can see quite clearly that the classification performance of the MSNIG is
very good with an ARI of 0.89. Compared to the results of the NIG (ARI=0.79), the difference
in the classification performance appears to be in the tails of the two clusters with the MSNIG
better capturing the heavy tails of both clusters. The results for MSGHTFBM and Coalesced GH
appeared to be worse than for the NIG (ARI=0.70 and 0.74, respectively). Similar results to the
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Figure 4: Simulated data showing the true classes

NIG were found for the skew-t and skew normal [Sahu et al., 2003, Lee and McLachlan, 2012, Lin,
2010] using the R package mixsmsn [Cabral et al., 2012].

In general, the results can be used to demonstrate that small changes in the tail behaviour of the
true clusters can have a significant effect on the ability to accurately classify observations.

Table 2: Classification results for the MSNIG, NIG, MSGHTFBM and Coalesced GH mixtures for
30 simulated datasets. The average ARI and Brier score are reported with their standard deviations
in parenthesis.

Measure MSNIG NIG MSGHTFBM Coalesced GH

ARI 0.89 (0.02) 0.79 (0.03) 0.70 (0.09) 0.74 (0.12)

Brier score 0.04 (0.01) 0.09 (0.01) 0.15 (0.05) 0.12 (0.07)

I: Petroleum data

This data consists of 655 petroleum samples collected from the Montrose quadrangle of Western
Colorado. The samples consist of log-concentration readings for a number of chemical elements,
and are part of a multivariate dataset originally described by Cook and Johnson [1981]. The dataset
is often used to compare and contrast different copula approaches [Genest and Rivest, 1993]. For
ease of analysis and presentation we concentrate on two of the elements Cobalt (Co) and Uranium
(U). Figure 7 provides a scatterplot of the data overlaid with contour lines for the standard NIG
(red dashed) and multiple scaled NIG (blue) displayed. From the contour lines we can see that
the multiple scaled NIG provides a better fit to the data and this is also evidenced by significantly
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Figure 5: Boxplots of the ARI for 30 simulated datasets fitted respectively with a 2 component
NIG, MSNIG, MSGHTFBM , and Coalesced GH mixture.
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Figure 6: Plot of fitted contour and estimated classes for MSNIG (left) and NIG (right) from one
of the simulated datasets
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higher likelihood and BIC estimates for the multiple scaled NIG (L = 207.5, BIC = -357) compared
to the standard NIG (L = 168.4, BIC = -331).

Table 3: Estimated parameters for MSNIG and NIG on the Petroleum data
(Co v. U)

Parameters MSNIG NIG

µ (0.96,0.35) (0.99,0.46)

β (2.73,13.57) (2.10,5.25)

D

(

0.06 −0.99
0.99 0.06

)

-

A diag(1.08, 0.93) -

Σ -

(

0.51 −0.01
−0.01 1.97

)

γ (8.17,14.69) 8.77

δ 0.28 0.33

Log-like 207.6 168.4
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Figure 7: Scatterplot of petroleum data (Co v. U). Right panel: Comparison of standard NIG
(red, dashed line) versus MSNIG (blue).

J: Mixture of coalesced GH distributions

In this section, we provide further results obtained on the Lymphoma data set (Section 4.3 of
the manuscript) using the MixGHD R package [Tortora et al., 2014a] implementing the model
described in the arXiv paper [Tortora et al., 2014b]. The contour plots are shown in Figures 5 and
6 (e,f) of the manuscript. Figure 8 (d,e) below shows the corresponding classification results for
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the plots in the manuscript Figure 5 (e,f). For comparison we provide classifications for the models
in Figure 5 (a,b,d) of the manuscript. The coalesced GH mixture is clearly providing less satisfying
classification results.

(a) Standard NIG (b) Unrestricted Skew-t (c) Multiple scaled NIG

(d) Coalesced GH (e) MSGHTFBM

Figure 8: Lymphoma data, CD4 v. ZAP70. Classification results for: (a) Standard NIG [Karlis
and Santourian, 2009]; (b) Unrestricted Skew-t [Sahu et al., 2003]; (c) Multiple scaled NIG; (d)
Coalesced GH [Tortora et al., 2014b] and (e) Multiple scaled GH [Tortora et al., 2014b].

For the second Lymphoma data sets (Figure 6 in the manuscript), we also provide a complementary
plot below showing that the coalesced GH mixture starts from a reasonable initialization of the
cluster centers (a). This suggests that initialization issues were probably not responsible for the
not very satisfying results obtained in (b) and shown in Figure 6 (e) of the manuscript.

Then, we ran the MixGHD package with λ set to -1/2, which corresponds to NIG distribu-
tions. The resulting MSNIGTFBM distribution (Figure 10) does not behave much better than its
MSGHTFBM generalization. Also we observed (Figure 11) that the GH parameterization proposed
in [Browne and McNicholas, 2013] provided results very close to the standard NIG distribution.

K: Application in flow cytometry: Lymphoma

In this section, we compare the classification performance of the different approaches on a flow
cytometry problem using lymphoma data where the true group labels are known (through manual
gating). This data set is different from the lymphoma data set used in section 4.1 of the manuscript.
The data is available in the R package EMMIXuskew and is a sample from the Diffuse Large
B-cell Lymphoma (DLBCL) dataset from [Aghaeepour et al, 2013]. The original data contained
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Figure 9: Lymphoma data, CD45 v. CD4. (a) Initial cluster centers for the mixture of coalesced
GH distributions [Tortora et al., 2014b] leading to the results in (b).
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Figure 10: Lymphoma data results for mixture of MSNIGTFBM distributions (λ = −1/2 in [Tortora
et al., 2014b]).
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Figure 11: Lymphoma data results for the mixture of GH distributions proposed in [Browne and
McNicholas, 2013].

measurements from biopsies of 30 DLBCL patients with each sample stained with three antibodies,
CD3, CD5, and CD19. The data is a subset from one patient and we compare the classifica-
tion performance of the different approaches on two of the more difficult groups to identify (See
Figure 12).

Table 4: Classification results for Diffuse Large B-cell Lym-
phoma (DLBCL) data

Model Log-likelihood BIC ARIc Brier score

MSNIG -51,694 103,667 0.80 0.08
NIG -51,607 103,457 0.73 0.11
Skew-t (U) -51,792 103,827 0.66 0.13
Skew-t -51,655 103,544 0.72 NAa

Skew-normal -51,688 103,577 0.72 NAa

Coalesced GH NAb NA 0.77 0.11
MSGHTFBM NAb NA 0.80 0.10
a These values were not able to be evaluated from the output of the R package mixsmsn

b The log-likelihood values from the output of the R package MixGHD are based on a

rescaled version of the data and thus are not comparable to the results from the other

approaches. Attempts to use the original scale of the data for MixGHD appeared to

cause problems in the algorithm.

c Although the above results are based on the best results from 10 different initialisations,

all of the approaches displayed some sensitivity to the initial values chosen and more

accurate results may be possible.

In this example, both the MSNIG and the MSGHTFBM appear to provide the best classification
performance (ARI=0.80), with the MSNIG having a slightly lower Brier score, indicating less
uncertainty about the classification (Brier score = 0.08).
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Figure 12: Manual gating of two groups (red (group 1) and blue (group 2)) for Diffuse Large B-cell
Lymphoma (DLBCL) data [Aghaeepour et al, 2013]
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