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Min-max extrapolation scheme for fast estimation of
3D Potts field partition functions. Application to the
joint detection-estimation of brain activity in fMRI
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Abstract

In this paper, we present a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy
is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint
detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically
recover activated, deactivated and inactivated brain regions and to estimate region-dependent hemodynamic filters. For any brain
region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether
they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain
regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to
approximate a small subset of reference PFs corresponding to prespecified regions. Then, we propose an extrapolation method
that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with
preexisting methods either based on a path-sampling strategy or mean-field approximations, our contribution strongly alleviates
the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against
grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions.
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I. INTRODUCTION

In medical image analysis, one is often interested in recovering spatial structures. A simple but suboptimal approach to
enhance signal-to-noise ratios (SNR) consists in filtering the datasets at the expense of a loss of spatial resolution. A more
challenging approach works on the unsmoothed data by introducing some prior knowledge on the sought spatial structures.
Spatial information is usually embedded in local interaction models such as Markov Random Fields (MRFs), which depend
on a set of hyper-parameters. For instance, the temperature level controls the amount of spatial correlation in symmetric Potts
models. In the considered fMRI application [1, 2], which aims to analyze 4D signals to jointly perform dynamics estimation
and activation detection, the MRF definition is region-specific. Indeed, the Hemodynamic Filter (HF) modeling the impulse
response of a brain activation in the fMRI signal, is assumed to be invariant only locally. Neuroimaging data is accordingly
segmented into Γ functionally homogeneous irregular parcels [3], the order of Γ being several hundreds. This leads to a region-
based analysis where Γ independent HFs have to be identified. Each model yields a HF shape estimate and spatial mixture
models (SMM) are jointly expressed on the amplitude of the HF for every stimulus type to perform activation detection. SMMs
in turn imply the involvement of discrete Potts fields to model spatial correlation. Therefore, several hundreds of temperature
levels have to be estimated. Since optimal setting of such parameters may be different when considering different regions of
the brain, all temperature levels cannot be fixed to the same value. Moreover, the hand-tuning of several hundreds of values
is unachievable. In [4], an unsupervised and adaptive regularization scheme dedicated to two-class Potts fields and SMMs has
been developed. Here, we extend this framework to L-class Potts fields with a direct application in functional brain imaging
that aims at segregating activating, non-activating and deactivating voxels.

Section II is dedicated to the formulation of the partition function (PF) estimation problem for Potts fields. In Section III
several techniques of PF estimation are presented. The main contribution of this paper lies in Section IV where a fast
extrapolation technique to PF estimation of 3D Potts fields is proposed and validated both in the 2D and 3D context. The 2D
situation offers the opportunity to provide a ground truth to the PF computation for the two-class Potts fields. The 3D extension
is of particular importance since it matches our application setting. The application to the Joint Detection Estimation (JDE) of
brain activity in fMRI is presented in Section V. Conclusions are drawn in Section VI.
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II. PROBLEM STATEMENT

Let us consider a grid characterized by a set of sites s = {i = 1, · · · , n}. A label qi ∈ {1, , . . . , L} is associated to each
site i ∈ s where L denotes the number of classes. A pair of adjacent sites i and j (i 6= j) is denoted by i ∼ j and is called
a clique c. Equivalently, we denote the neighborhood of i as the set Ni = {j ∈ s/i ∼ j and i 6= j}. The set of all cliques
allows us to define an undirected graph denoted by G. Let q = (q1, q2, · · · , qn) ∈ {1, . . . , L}n be the set of labels associated
to s. In what follows, we assume q to be distributed according to a symmetric Potts model:

Pr(q|β) = Z(β)−1 exp (βU(q)) , (1)

where U(q) =
∑
i∼j I(qi = qj) is the global “negative energy” and I(A) = 1 whenever A is true and 0 otherwise. The Gibbs

distribution (1) defines a Markov random field (Hammersley-Clifford theorem) and thus satisfies the two properties:

∀q, Pr(qi|qs\{i}) = Pr(qi|qj , j ∈ Ni) and ∀q,Pr(q|β) > 0.

The inverse temperature β ≥ 0 controls the amount of spatial correlation between the components of q according to G.
The partition function (PF) Z(β) reads

∑
q∈{1,··· ,L}n exp (β U(q)) and depends on the geometry of G. Its exact evaluation

in a reasonable amount of time is impossible except on tiny grids. Robust and fast estimation of Z(β) is thus a key issue for
numerous 3D medical imaging problems involving Potts models and more generally discrete MRFs. Due to our application,
we applied the methods we present using 2 and 3-class Potts fields on 3D grids having a 6-connectivity system. The formula
we present can however be used on general L-class Potts fields.

III. PARTITION FUNCTION ESTIMATION

Several approaches have been designed to estimate a single PF [5–7]. Path-sampling [6] is an extension of importance
sampling for estimating ratios of normalizing constants, by considering series of easy-to-sample unormalized intermediate
densities. Such a strategy was proven efficient to tabulate the PF for 2-class Potts fields; see [8] for details. Algorithms with
polynomial time complexity [7, 9] provide efficient alternatives to a single PF estimation. However, none of them is able to
perform numerous PFs estimation for Potts fields of variable size and shape in a reasonable amount of time. Since several
hundreds of such grids are manipulated in our fMRI application, fast estimation of multiple PFs is necessary. To this end,
after presenting some PF estimation techniques in this section, we propose in section IV, a hybrid scheme which consists in
resorting to path-sampling to get log-scale estimates (log ẐGp(β))p=1:P in a small subset of reference graphs (Gp)p=1:P out
of the brain regions to be analyzed and then in using extrapolation formulas to obtain log Z̃T (β) for the large remaining set
of regions, each of them referenced by a test graph T for the sake of notational simplicity.

A. path-sampling method

The path-sampling method is based on an importance sampling strategy [6]. This kind of strategies consists in studying
distributions of interest using samples generated from other well-chosen distributions, called importance distributions. In the
context of L-class Potts fields, we can use path-sampling to estimate Z(β) for β around β0 using:

Z(β) ' Z(β0)
1
M

M∑
m=1

exp (βU(qm))
exp (β0U(qm))

. (2)

where Z(β0) is considered already known and the {qm,m = 1...M} are distributed according to P(q |β0) and sampled using
the Swendsen-Wang algorithm [10]. Note that, to avoid numerical overflow, eq. 2 is usually used in logarithmic scale. In what
follow, log-PF refers to the logarithm of a partition function. The PF of a Potts field can then be estimated robustly on a dense
grid of β values by estimating iteratively the values of Z(βk) using Z(βk−1), where βk = k∆β, k ∈ {0, · · · ,K}, the first
value Z(0) being explicitly given by Z(0) = Ln, where n is the number of sites in the field. More details are given in [8].

B. Partition function estimation using the Mean-field theory

For comparison purpose, we recall here the background theory of mean-field approximation, developed for the general case
of non-symmetric Potts fields, into a set of equations for the estimation of partition functions of symmetric Potts models. For
a thorough analysis of the general framework the reader may refer to [9]. In this context, we use the following notations. The
negative energy of a symmetric Potts model is equivalently defined by: U(q) = U(w) =

∑
i∼j w

t
iwj where each wi is a

binary vector of length L having only one non-zero component corresponding to the value of qi (e.g., qi = l implies wil = 1
and wil′ = 0 for l′ 6= l). The negative energy can then be written as:

U(q) = U(w) =
1
2

n∑
i=1

wt
i

∑
j∈Ni

wj . (3)



JOURNAL OF SIGNAL PROCESSING SYSTEMS, VOL. XX, NO. X, MONTH 2010 4

Let ω = {ωi, i ∈ s}, where
∑
l ωil = 1, be the mean field associated to variables W = {Wi, i ∈ s} at a given inverse

temperature β. The mean field approximation Pr mf(w) of the Gibbs distribution (1) is defined as:

Pr mf(w |β) =
n∏
i=1

Pr
i

mf(wi |β) (4)

where Pri mf(wi |β) = Pr(wi |β, ωNi) and Pr i mf(wi |β) denotes the conditional probability of wi given ωj = ωj for
all j ∈ Ni. It follows straightforwardly an expression of Pr mf as a Gibbs distribution of the form (1): Pr mf(w|β) =
exp

(
βU mf(w)

)
/Zmf(β), where U mf and Zmf denote the energy and the partition function, respectively, and are easy to

compute given the factorization property (4). Their expressions are given in Appendix C. Using symmetries for all i = 1, . . . , n
and considering the ω = {ωi, i ∈ s} as the means of the variables W = {Wi, i ∈ s} in a L-class Potts model and at a given
inverse temperature β , we can write:

ωil =

exp(β
∑
j∈Ni

ωjl)∑
l′

exp(β
∑
j∈Ni

ωjl′)
, ∀i ∈ 1, · · · , n and ∀l ∈ 1, · · · , L (5)

The mean field approximation consists in solving this fixed point equation iteratively. Note that this equation can be solved
sequentially over the sites. After convergence we use the solution ω to define (4). Interestingly, as developed in [9] and shown
in the equations (17) and (20) of Appendix C, the mean field allows us to estimate the PF:

Zmf =
n∏
i=1

L∑
l=1

exp(β
∑
j∈Ni

ωjl), (6)

It can be shown (see Appendix C) that a better approximation is given by:

ZGBF = Zmf exp(−β
2

n∑
i=1

L∑
l=1

ωil
∑
j∈Ni

ωjl), (7)

The corresponding log-PF estimates logZmf and logZGBF are defined by directly taking the log in the above equations.

C. Linear/bilinear regression schemes for Potts fields

In [8], the authors have proposed a linear regression procedure to estimate quickly the log-PFs of 2-class Potts models for test
grids, each of them being refered by T . This approach consists in estimating, first, the log-PFs of P reference Potts fields defined
on the grids Gp using a robust approach such as the path-sampling. The log-PFs are computed for values of β: βk = k∆β. A
linear regressor âk of the log-PF as a function of the number of cliques in T is then computed, for every regularization level
βk. Estimates of log Z̃T (β) are then linearly computed using the estimated regression coefficients and the number of cliques
in T : log Z̃T (βk) = âkcT at each βk regularization level. A bilinear extension of this technique, which takes both the number
of cliques cGp and sites sGp in the grid into account, has been developed in [11]. The regression coefficients (âk, b̂k and
ĉk) are obtained by minimizing the least square criterion

∑P
p=1 ‖ log ẐGp(βk)− akcGp − bksGp − ck‖2. Then, βk-dependent

bilinear extrapolation formula applied to any 3D Potts field defined on a test grid T : log Z̃T (βk) = âkcT + b̂ksT + ĉk. Note
that the log-PF estimates for β values outside the β-grid are obtained using linear interpolation between its two closest values
on the β-grid. This extension was shown efficient to provide accurate extrapolation results for small and irregular graphs1

such as those appearing in our fMRI application. Indeed, as illustrated in Fig. 1, at a fixed number of cliques, the higher the
number of sites, the higher the log-PF whatever the regularity of the reference graphs. This dependence of logZGp on sGp
at constant values of cGp becomes much more important at small β values. Hence, our bilinear extension of [8] significantly
improved estimation performance for small and irregular grids. However, the accuracy of linear/bilinear log-PF extrapolations
strongly depends on the homogeneity and the number of reference grids: the less homogeneous the reference set, the larger
the approximation error. These reasons motivate the development of a more reliable and versatile approach.

IV. FAST AND ROBUST EXTRAPOLATION TECHNIQUE

A. Method

Our extrapolation technique proceeds in two steps: 1) Akin to [8], reference log-PFs log ẐGp(βk) are estimated using path-
sampling. The topological configurations of the reference grids (Gp)p=1:P can be inhomogeneous to cover a maximum of
situations that may occur when dealing with a brain parcellation. 2) For any test grid T , the quantity logZT is approximated

1Here, irregular refers to equally spaced Cartesian graphs of non-parallepipedic shape.
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Fig. 1. Examples of log-PF values for β = 0.5 as functions of the number of cliques c and sites s. The projection onto a plane c = constant is depicted to
show the dependence on s.

from a single reference log-PF estimated out of (log ẐGp(β))p=1:P selected by an appropriate criterion. Let ni be the number
of neighbors for the site si of T . We then define rT = σn,T /µn,T as a measure of grid homogeneity where µn,T is the
mean of the si over T and σn,T is the corresponding standard deviation: the smaller rT the more regular T . Our topological
similarity measure, given by LT (Gp) = ‖rT − rGp‖2, helps us choosing the closest reference grid Gref to T in combination
with the approximation error criterion AT (β,Gp) defined by:

AT (β,Gp) = ‖ logZT (β)− log Z̃T (β,Gp)‖2/‖ logZT (β)‖2

with log Z̃T (β,Gp) =
( cT
cGp

(log ẐGp(β)−logL)+logL
)
, (8)

where (cT , cGp) and (nT , nGp) are the number of cliques and sites of the L-color Potts fields defined over T and Gp, respectively.
The reference grid Gref is exhibited using a min-max principle, which consists in minimizing the maximal approximation error
A(β,Gp) with respect to all reference grids (Gp)p=1:P . In Appendix B, it is shown that A(0,Gp) = maxβ A(β,Gp),∀Gp,
whenever the grid homogeneity in Gp and T is similar. Hence, we get:

Gref = arg min
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp) ≤ ε (9)

and AT (0,Gp)
∆= ‖(nT − 1)−cT (nGp−1)/cGp‖2/n2

T (10)

where ε > 0 is a positive threshold fixed by hand. Once Gref has been identified, the log-PF estimate in T is thus given by
log Z̃T (β,Gref) according to Eq. (8). Our extrapolation formula (8) is interestingly built up according to two principles: i.)
an unbiased asymptotic approximation error2 and ii.) an exact approximation of (logZT (β))′ for β → 0+. These principles
are summarized in Appendix A. The choice of Gref can then be seen as the choice of the grid, out of Gp, for which the
approximation error at β = 0 and β close to the phase change will be minimized using Eq. (8). The method is illustrated
in Fig. 2 with P = 4 reference log-PFs of 3-class Potts fields and one test field. It appears that log Ẑref is the closest curve
above the ground truth log ẐT (in red) and that our log-PF estimate log Z̃T represented by crosses (+) is superimposed on
the path-sampled curve.

←− log Ẑref

β
Fig. 2. Path-sampled estimates of the reference log-PFs log bZGp (βk), p = 1 : 4 in green. Log-PF estimate found by path-sampling for the test field log bZT
in red (ground truth). Our extrapolation method based on Eq. (8) provides a log-PF estimate log eZT represented by crosses-line (+) and superimposed with
the ground truth.

2limβ→+∞AT (β,Gp) = 0.



JOURNAL OF SIGNAL PROCESSING SYSTEMS, VOL. XX, NO. X, MONTH 2010 6

B. Assessment of the method

1) Binary 2D fields: We first validate our approach in a situation where the log-PF admits a closed form expression. This
situation exists thanks to the Onsager’s contribution [12], who derived a closed form expression for the log-PF of the 2-class
Potts model on any 2D square grid under cyclic boundary constraints:

logZ(β) = n(β + log [2 coshβ] + ψ [u(β)]) (11)

where u(β) = 2 sinhβ/ cosh2 β and the ψ function is a one dimensional log-elliptic integral:

ψ(u) = 1
2π

∫ π

0

log
[(

1 +
√

1− u2 sin2 x
)
/2
]
dx (12)

Therefore, the huge summation in Eq. (1) is equivalent to this far simpler one dimensional equation. Note that Onsager
formulation depends on the graph through the number of sites n. This suggests than another possible way to compute the
log-PF is to determine for a small grid, say the 3 x 3 grid, the log-PF logZ9(β) and then set, for all N > 9, logZ(β)
to logZ(β) = N/9 logZ9(β). This latter log-PF can be computed exactly by enumerating all possible configurations and is
provided in [9]. It follows that the log-PF of a square 2-class Potts fields having cyclic boundary constraints can be written as:

logZ(β) =
n

9
log (102 exp (6β) + 144 exp (8β) + 198 exp (10β) + 48 exp (12β) + 18 exp (14β) + 2 exp (18β)) (13)

This expression presents the advantage to be much easier to estimate than the formulation of Onsager and provides a good
approximation to the log-PF when comparing to Onsager formula

In Fig. 3, we compare the exact calculation provided by Eq. (11) with the path-sampling and extrapolation approaches on a
2-class Potts field defined over a 30x30 regular grid having cyclic boundary constraints. We also compare the log-PF estimates
obtained using the mean field and GBF approximations. It is shown that our extrapolation technique (red) is as accurate as
possible since our estimate is superimposed on the estimate obtained using the path-sampling, considered as the ground truth (in
blue). Moreover, it appears that these numerical approaches are very close to the accurate log-PFs given by Eqs (11) and (13).
One can note that the log-PFs estimation obtained Eq. 13 is very close to the one obtained using Onsager’s approach but
is not equal. This could be due to approximation errors in Onsager’s formula in very small fields. As explained in [9], the
mean field approximation of the log-PF is not accurate, but its GBF generalization is below and close to the ground truth.
Small oscillations of this latter approximation for large values of β are due to mean field approximation having not completely
converged.

lo
g
Z

(β
)

β

Fig. 3. Red: True logZ(β) computed by Eqs. (11)-(12) for a 2D 2-class Potts field defined over a 30x30 cyclic regular grid. Blue: path-
sampling estimate i.e., log bZ(β). Yellow: log-PF obtained using the sum of exponentials (Eq. 13). Crosses (×): Extrapolation estimates
log eZ(β) from a reference set made up by 250 grids of various size and shape. Dashed line: log-PF obtained using the GBF approximation
of Eq. 7. Crosses (+): log-PF obtained using the mean field approximation of Eq. 6.

2) 2- and 3-class 3D Potts fields: For validation purpose, we compared in [1] the log-PF estimates of 2-class Potts fields
computed using our extrapolation techniques with those obtained using path-sampling, considered as the ground truth. This
clearly shows that the bilinear and extrapolation methods outperform the linear one and that the extrapolation technique allows
to mix successfully a much larger range of reference grids than linear and bilinear techniques. The extrapolation techniques
provided indeed accurate log-PF approximations for a large range of grids by always using the same reference grids. Here,
we show in table I, that using the same experimental protocol, the extrapolation technique also provides accurate log-PF
approximations for 3-class Potts fields such as those used in our application.

Reference and test graphs are either regular or irregular. A total of 15 regular and large (more than 103 sites) reference
graphs are considered with cubic, planar and curvilinear shapes. Irregular grids were extracted from regular bounding boxes in
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which Potts field configurations were drawn using the β dependent Swendsen-Wang algorithm [13]. In each bounding box, we
considered the largest connected component of sites having the same label as an irregular graph so that, the larger β the more
regular and larger the created graphs. Irregular reference graphs were then computed using 170 bounding boxes of increasing
size (from 103 to 153 sites) and regularization levels β within the range [0.2, 0.7]. Regular test graphs are divided into three
subsets: 30 of them are small (less than 103 sites), 30 are medium size (between 103 and 153 sites) and 30 are large (more than
153 sites). Irregular test graphs are also subdivided into three subsets. Each of them contains 30 graphs obtained from bounding
boxes of 163 sites, for β = 0.2, 0.4 and 0.5, respectively. For each graph T , the difference between our approximation and
the PS estimate | log Z̃T (β)− logZPS(β)|/ logZPS(β) is computed for each value of β. The maximum of these differences
is considered and the average of such maxima is given in Table I using percentages.

TABLE I
MEAN MAXIMAL RELATIVE APPROXIMATION ERROR OVER REGULAR AND IRREGULAR TEST GRAPHS USING THE EXTRAPOLATION TECHNIQUE ON 2-

AND 3-CLASS POTTS FIELDS. ERRORS ARE GIVEN IN PERCENTS.

Test grid 2-class 3-class

re
gu

la
r small 0.639 2.76

medium 2.77 2.80
large 3.68 3.70

ir
re

gu
la

r β = 0.2 0.375 0.633
β = 0.3 0.281 0.959
β = 0.4 0.621 0.747
β = 0.5 0.693 1.80

Both for 2- and 3-class Potts fields the log-PF approximations are accurate. They are however slightly better for 2-class
Potts fields than 3-class Potts fields in general. Note that in both cases, these results can be still improved by adding reference
grids very close to the test grids in the database of reference grids. Similarly if no reference grid of the database is adapted
to a test grid, this can be detected immediately by a large approximation error at β = 0 or too different grid homogeneities.
Note that we also computed the log-PF estimates on the test grids using GBF approximations. In comparison with the ground
truth, we obtained generaly 6% and 10% of maximum relative approximation error for 2- and 3-class Potts fields respectively.
These maximum approximation errors were mostly observed for β values around the phase change, as presented in Fig.3.

C. A Monte Carlo study to hyper-parameter estimation

The last validation we examined addresses the estimation of the inverse temperature level (i.e., β-estimation) in the Maximum
Likelihood (ML) sense either from our log-PF estimate or from its path-sampled counterpart. This study has been conducted
directly on observed 2D 2-class Potts fields. At each temperature level βk = k∆β with ∆β = 0.1, we generated independently
100 2D Potts fields defined over the same grid. We tested different grid sizes (from 102 to 502) and showed that the number
of voxels only influences the error bars on the β estimate. For a Potts field defined by Eq. (1), the ML estimate β̂ ML is given
by β̂ ML = arg maxβ [βU(q)− logZ(β)]. In Fig. 4, we compared two ML estimators corresponding to the path-sampling and
extrapolation method for estimating the log-PFs. As illustrated in Fig. 4, our extrapolation technique (red curve) retrieves the
true regularization parameter for β < 0.7. For 0.7 < β < 1, a very small bias is observed while for larger values, a more
significant error occurs in comparison to a more precise path-sampling scheme (blue curve).

b βM
L

es
tim

at
e

b βM
L

es
tim

at
e

(a) (b)

Simulated β Simulated β
Fig. 4. Monte Carlo validation (100 realizations) for β-estimation on observed 2D 2-class Potts fields defined over (a) 10x10 and (b) 50x50
grids. Black: the ground truth is given by the first bisector. Red: ML estimate bβ ML relying on our log-PF extrapolation method. Blue: ML
path-sampled estimate bβ ML.
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V. APPLICATION TO FMRI DATA ANALYSIS

A. Problem statement

1) Parcel-based BOLD signal modeling: Our extrapolation algorithm was applied to the spatially adaptative regularization
of the region-based Joint Detection-Estimation (JDE) of brain activity introduced in [14, 15]. The JDE approach relies on a
prior parcellation of the brain into P = (Pγ)γ=1:Γ functionally homogeneous and connected parcels [3] illustrated in Fig. 5.
Every parcel Pγ comprising voxels (Vj)j=1:J is characterized by a single hemodynamic filter hγ . Within a given parcel Pγ ,
voxel-dependent and stimulus-related fluctuations of the BOLD signal magnitude are encoded by a = (amj )j=1:J,m=1:M , the
response levels (m stands for the stimulus type index). The fMRI time course measured in voxel Vj then reads:

yj =
M∑
m=1

amj x
m ? hγ + bj ,

where xm stands for the mth binary stimuli vector and bj stands for the noise component [14]. Within the Bayesian framework,
prior probability density functions (pdfs) are introduced on (a,h) [14].

Fig. 5. Parcel-based regional BOLD model. The size of each parcel Pγ varies typically between by a few tens and a few hundreds of voxels: 80 6 Jγ 6 350.
The number M of experimental conditions involved in the model usually varies from 1 to 5. In our example, M = 2, the NRLs (a1

j ,a
2
j ) corresponding to

the first and the second conditions are surrounded by circles and squares, respectively. Note that our model accounts for asynchronous paradigms in which the
onsets do not necessarily match acquisition time points. As illustrated, the NRLs take different values from one voxel to another. The HRF hγ can be sampled
at a period of 1s and estimated on a range of 20 to 25s (e.g., D = 25). Most often, the LFD coefficients `j are estimated on a few components (Q = 4).

2) Bayesian inference: The Bayesian approach developed in [15] introduces proper priors on the unknown parameters
(hγ ,a) in order to recover a robust estimate of brain activity (localization and activation profile). Akin to [15, 16], the prior
density for the HRF remains Gaussian, hγ ∼ N (0, vhR) with R = (Dt

2D2)−1, which allows us to estimate a smooth HRF
shape since D2 is the second-order finite difference matrix penalizing therefore abrupt changes. Moreover, the extreme time
points of the HRF can be constrained to zero if necessary [16].

Regarding the NRLs a, according to the maximum entropy principle we assume that different types of stimulus induce
statistically independent NRLs i.e., p(A |θa) =

∏
m p(a

m |θm) with θa = (θm)m=1:M . Vector θm denotes the set of
unknown hyperparameters related to the mth stimulus type. However, for certain classes of paradigms (e.g.,, attention and
motor dual tasks; priming effects, ...) this assumption may potentially be unlikely. In such cases, a between-condition prior
covariance matrix could be introduced, the difficulty lying in the choice of a relevant and know correlation model to limit the
computational complexity.

Let qmj be the allocation variable that states whether voxel Vj is activating (qmj = 1), deactivating (qmj = −1) or non-
activating (qmj = 0) in response to stimulus m. The NRLs still remains independent conditionally upon qm. This means
that p(am | qm,θm) =

∏
j p(a

m
j | qmj ,θ

m) for every condition m. Spatial mixture models (SMM) are introduced to favor the
recovery of activating and deactivating clusters. In this case, the marginal density p(am) does not factorize over voxels and
reads:

p(am |θm) =
∑
qm

[ Jγ∏
j=1

f(amj | qmj ,θ
m)
]

Pr(qm |θm). (14)

Spatial correlation is directly incorporated in the probabilities of activation through a hidden three-class Potts MRF Pr(qm |θm),
as already done in image analysis [17, 18] or in neuroimaging [19, 20]. For mathematical convenience, Gaussian densities are
considered for modeling the conditional distribution of the NRLs: f(amj | qmj = i) ∼ N (µi,m, vi,m). Parameters µi,m and vi,m
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define the prior mean and variance of class i = 0,±1, respectively for the stimulus type m. The set θm comprises four prior
mixture parameters θm = {µ0,m, µ±1,m, v0,m, v±1,m, βm}.

Samples of the full posterior pdf p(h,a,q,Θ |y) are simulated using a Gibbs sampler algorithm and posterior mean estimates
are then computed from these samples. Here, we introduce the sampling of parameter βm, which is achieved using a symmetric
random walk Metropolis-Hasting step: At iteration k, a candidate β(k+1/2)

m ∼ N (β(k)
m , σ2

ε ) is generated and is accepted (i.e.,
β

(k+1)
m = β

(k+1/2)
m ) with probability: α(β(k)

m → β
(k+1/2)
m ) = min(1, Ak,k+1/2), where the acceptation ratio Ak,k+1/2 follows

from Eq. (1):

Ak,k+1/2 =
p(β(k+1/2)

m |q(k)
m )

p(β(k)
m |q(k)

m )
=
p(q(k)

m |β(k+1/2)
m )p(β(k+1/2)

m )

p(q(k)
m |β(k)

m )p(β(k)
m )

=
Z(β(k)

m )

Z(β(k+1/2)
m )

exp
(

(β(k+1/2)
m − β(k)

m )U(q(k)
m )
)
,

using Bayes’ rule and considering a uniform prior for βm. The βm sampling step then requires to estimate ratios of Z(.) or
log-PF differences for all Pγ parcels prior to exploring the full posterior pdf.

B. Results on synthetic fMRI data

In the context of the joint detection-estimation of brain activity, here we compare the supervised SMM (SSMM) to its
unsupervised extension (USMM). Our synthetic fMRI time series have been generated at low signal-to-noise ratio considering
true activation maps that do not derive from the Potts model . The underlying paradigm consisted of two stimulus types (M = 2)
whose activation patterns are shown in Fig. 6(a)-(d), respectively.

Fig. 6(b)-(e) illustrates that a wrong choice of β-value (β = 0.2) in the supervised case (SSMM) induces a misspecification
between the activating and deactivating voxels for the first experimental condition (m = 1) and between deactivating and
non-activating voxels as the background is almost classified into deactivating and the non-activating class is almost empty.
For m = 2, the situation is better but still noisy under SSMM. The situation is properly regularized by resorting to USMM:
Fig. 6(c-f) yield estimated labels matching exactly the true ones for m = 1, 2.

These results are enforced by the estimates of the prior mixture components shown in Fig. 7 for the two conditions. In the
SSMM case, we observed a degeneracy regarding the activating class for m = 1 (Fig. 7(a)), since the three Gaussian densities
are superimposed. For m = 2, the mixture parameters of the SSMM are also problematic while less degenerated. Since we
obtained µ̂2

−1 ≈ 0 = µ2
0, this directly impacts the posterior classification towards the presence of false negatives. On the other

hand, Fig. 7(b)-(d) illustrate a better distinction between the three components in the prior mixtures whatever the condition
at hand (m = 1, 2). For m = 1, 2, we noticed that the distributions do not overlap (see Fig. 7(b)) with the USMM setting.
Hence, we found an exact posterior classification.(a) (b) (c)

(d) (e) (f)

Fig. 6. Estimated labels in the Maximum A Posteriori sense. Top row: (bq1)MAP. Bottom row: (bq2)MAP. (a)-(c): Label maps obtained using the supervised
SMM (SSMM) for m = 1 and m = 2, respectively with β(1) = β(2) = 0.2. (b)-(d): Label maps obtained using the unsupervised SMM (USMM) approach.
Deactivating, non-activating and activating voxels are color coded in red, blue and green, respectively.

Fig. 8 illustrates the behaviour of the SSMM when varying the fixed β value. A wrong tuning yields a significant decrease
in the right classification rate of non-activating (blue) and deactivating labels (red) for β 6 0.8 et β > 1.2 whereas an optimal
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tuning of β lies in the range [0.8 − 1.5]. The unsupervised version provides an estimate β̂ = 0.92 (see �) which is in this
optimal range and yields optimal classification rates.

(a) (b)

(c) (d)

Fig. 7. Estimated components of the three-class Gaussian prior mixture. Top row: first experimental condition (m = 1). Bottom row: second experimental
condition (m = 2). (a)-(c): Mixture components yielded by the SSMM approach for m = 1 and m = 2, with β(1) = β(2) = 0.2; (b)-(d): Mixture
components given by the USMM approach. Deactivating, non-activating and activating voxels are color coded in red, blue and green, respectively.

�

Fig. 8. Rate of right classification of (bq1)MAP and (bq2)MAP in the supervised case for different fixed β-values. Activating, non-activating and deacctivating
classes are color coded in red, blue and green, respectively.

C. Results on real fMRI data

We applied the JDE procedure to real fMRI data recorded during an experiment designed to map auditory, visual and motor
brain functions, which consisted of a single session of N = 125 scans lasting TR = 2.4 s each, yielding 3-D volumes composed
of 64 × 64 × 32 voxels. The paradigm was a fast event-related design comprising sixty auditory, visual and motor stimuli,
declined in 10 experimental conditions (auditory phrase, visual phrase, left auditory or visual clic ...).

We compare three versions of the JDE procedure: Independent Mixture Models (IMM), Supervised SMM (SSMM, β = 0.8)
and unsupervised SMM (USMM), in order to assess the impact of the adaptive spatial correlation model. We also assess the
behaviour of a 3-color compared to a 2-color Potts prior on labels. Fig. 9 shows normalized contrast maps (âLAC−âRAC) of
auditory induced left versus right clic (LAC vs. RAC). As expected, the activations lie in the contralateral right motor cortex.
Here, only USMM is more sensitive illustrating thus the advantage of an adaptive spatial correlation model. The same constrat
maps are observed whether we resort to a 2-color or 3-color prior Potts field. Indeed, we do not expect any deactivation arising
from these data. The purpose is only illustrative so as to show that our spatially adaptive approach may generalize from a
2-color to a 3-color Potts prior.

For the 2-color prior, β̂PM estimates for the left auditory clic was 0.56 so that the supervised setting of SSMM with
β = 0.8, L = 2 leads to too much correlation and less sensitive results. Interestingly, still for the 2-color prior, Fig. 9 also
depicts the parcel-dependent maps of the PM β̂ estimates for the RAC and LAC experimental conditions. The gain in sensitivity
in the USMM contrast map (âLAC−âRAC) may be explained by a difference in the amount of spatial regularization introduced
between the two conditions involved in the contrast. A lower regularization level is estimated (β̂LAC ≈ 0.5 vs. β̂RAC ≈ 0.75)
in parcels located in the right motor cortex since the BOLD signal is stronger for the LAC than for the RAC condition in
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IMM SSSM β = 0.8, L = 2 USMM

β̂RAC, L = 2 β̂LAC, L = 2 β̂RAC, L = 3 β̂LAC, L = 3

Fig. 9. Comparison of the IMM, SSMM and USMM models wrt the estimated normalized constrat maps: left auditory clic (LAC) versus
right auditory clic (RAC): baLAC − baRAC. bβ parcel-dependent maps computed for the LAC and RAC conditions and for 2-color (L = 2)
and 3-color L = 3 Potts fields.

these regions. For the 3-color Potts prior the interpretation of β̂PM estimates is more delicate as the regularization impacts 3
states. Still we can notice that USMM-L = 3 is able to spatially adapt the amount of spatial regularization.

On these real fMRI data, our extrapolation scheme provides log-PFs estimate for a brain parcellation (Pγ)γ=1:300 and
(Gp)p=1:50 reference grids. In terms of computational complexity, these log-PF estimates were computed in about ten seconds,
a very appealing approach in comparison to path-sampling, which requires about one hour for estimating all log-PF estimates
for a negligable gain in accuracy (less than 3%). Finally, we did not observe any significant difference between the USSM
effect maps derived using path-sampling and our extrapolation scheme (results not shown).

VI. CONCLUSION

In this work, we extended a joint detection-estimation of brain activity framework which enables the processing of unsmoothed
fMRI data, described in [1, 2]. The latter approach considers two possible states at each voxel: activating or non-activating.
Here, we generalize the model to consider a third state: de-activation, in order to take into account putativve negative BOLD
effects. The spatial regularization that was performed by using 2-colors Potts fields then requires 3-colors Potts fields. In
order to make spatially adaptive regularization feasible, the joint detection-estimation technique requires a reliable and fast
estimation of 3D Potts field partition function. The problem of joint detection-estimation is indeed solved independently in
a large number of pre-defined brain regions of different shape, each region requiring the estimation of a partition function,
referred as test partition function. Therefore, we extended the extrapolation algorithm dedicated to the approximation of partition
functions of 2-colors Potts fields to 3-colors Potts fields. This extension is the heart of the paper. The extrapolation algorithm
exploits a set of reference log-PF estimates on reference grids, robustly pre-computed using path-sampling. Interestingly, the
maximum approximation error of every test log-PF is controlled using the extrapolation technique so that a robust estimation
can be performed whenever no suitable reference candidate is found in the set of reference log-PFs. Obviously, efficiency is
conditionned by the number of reference grids, and more importantly by their similarity to the topologies encountered in the
conducted analysis. The technique were shown accurate on 2D and 3D grids as well as regular or non-regular grids. It were
also compared with a PF estimation technique based on the mean field theory [9]. In general, for the estimation of the log-PFs
on grids of a similar type (2D, 3D, regular, irregular, small, large,...), about ten problem-specific reference grids are enough to
provide good log-PF estimates. In the end, using our fast extrapolation technique, the computational burden remains acceptable
since a whole brain data analysis at the subject level takes about 1h30. The application to real fMRI data showed a gain in
statistical sensitivity for the unsupervised version whether we resort to 3-color or 2-color Potts priors. In order to test their
reproducibility, the promising subject-level results have to be confirmed in group studies. The technique will also be performed
on epileptic fMRI datasets, for which we expect de-activations. This will emphasize and assess the usefullness of the 3-color
Potts prior model compared to the 2-color prior.
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APPENDIX

A. Properties of our log-PF estimate
The first property deals with the asymptotic behavior (β →∞) of the log-PF of a symmetric L-color Potts field:

lim
β→∞

(logZ(β)− βc) = logL (15)

It is quite straightforward to demonstrate that when β →∞ only homogeneous configurations of q have a significant weight
in the evaluation of Z(β). In Potts MRFs, such configurations arise whenever all sites are equal to a given label leading first
to
∑
k∼j I(qjk = qj) = c and finally to Eq. (15). Applying Eq. (15) to the extrapolation context allows one to derive the

following proposition.

Proposition 1 limβ→∞AT (β,Gp) = 0, so log Z̃T (β,Gp) defined in Eq. (8) provides an asymptotically unbiased estimate of
logZT (β), ∀Gp.

Proof: First, applying Eq. (15) to Gp and using Eq. (8), we get:

lim
β→∞

cT
cGp

[
logZGp(β)− βcGp

]
=

cT
cGp

logL

⇔ lim
β→∞

[ cT
cGp

(
logZGp(β)− logL

)
− βcT

]
= 0

⇔ lim
β→∞

[
log Z̃T (β,Gp)− βcT

]
= logL.

Applying Eq. (15) to logZT (β), we obtain limβ→∞
[
logZT (β)− log Z̃Gp(β,Gp)

]
= 0 ∀Gp.

The second property gives us the expression of the first-order derivative of the log-PF at β = 0. On the one hand,
following [13], it can be shown that (logZ(β))′ = E [U(q)|β]. On the other hand, for β = 0, all sites are independent
and follow a uniform Bernoulli distribution. Hence, for each clique j ∼ k the L-homogeneous configurations (qj , qk) = (l, l)
for l ∈ {1, . . . , L} contribute to U with the same weight of 1/(2L). We therefore obtain E(U(q) |β = 0) =

∑
k∼j 1/L.

Finally, by equating the two expressions, we get:

(logZ(0))′ ∆= d logZ(β)/dβ|β=0 = c/L . (16)

From Eq. (8), we get
(
log Z̃T (β,Gp)

)′ = cT
cGp

(
logZGp(β)

)′
, hence Eq. (16) allows us to derive that ∀Gp, (log Z̃T (0,Gp))′

provides an unbiased estimate of (logZT (0))′.



JOURNAL OF SIGNAL PROCESSING SYSTEMS, VOL. XX, NO. X, MONTH 2010 13

B. Maximal Approximation Error

We give here a sufficient condition involving that the approximation errors AT (β,Gp) of 2-class Potts fields defined over
T and Gp achieve their largest value at β = 0.

Proposition 2 ∀Gp, if (sT − 1)/cT 6= (sGp − 1)/cGp (Hyp. 1) and ET (U(q) |β)/cT 6= EGp(U(q) |β)/cGp , ∀β > 0 (Hyp. 2)
then AT (0,Gp) = maxβ∈R+ AT (β,Gp), which expression is given by Eq. (10).

Proof:Let errT (β,Gp) be the unnormalized approximation error: ET (β,Gp) = (logZT (β) − log Z̃T (β,Gp))2. We prove that
ET (0,Gp) = maxβ∈R+ errT (β,Gp) by showing that ET (β,Gp) is a strictly decreasing function on R+:

dET (β,Gp)
dβ

= L
(
logZT (β)− cT

cGp
(logZGp(β)−logL)−logL

)
︸ ︷︷ ︸

f1(β)

×
(
ET (U |β)− cT

cGp
EGp(U |β)

)
︸ ︷︷ ︸

f2(β)

ET (β,Gp) is strictly monotonous on R+ if f1,2(β) 6= 0 ∀β > 0. According to Hyp. 2, we directly obtain f2(β) 6= 0. Moreover,
it is easy to notice that f1(β) = ±

√
ET (β,Gp). Hence, f1(0) 6= 0 according to Hyp. 1 and limβ→∞ f1(β) = 0 by definition

of ET (β,Gp). Furthermore, according to the value of (logZ(β))′ and Hyp. 2, we get: f ′1(β) = f2(β) 6= 0, ∀β > 0 . Function
f1 being continue, its sign is then contant over R+ and then f1(β) 6= 0, ∀β > 0. As a consequence, ET (β,Gp) is then stricly
monotonous for β > 0. Again, according to Hyp. 1, we obtain ET (0,Gp) > 0.

Since by definition limβ→∞ ET (β,Gp) = 0, function ET (β,Gp) is therefore strictly decreasing on R+ and finally
ET (0,Gp) = maxβ∈R+ ET (β,Gp). Since logZ(β) is a strictly increasing function of β, its inverse is strictly decreasing
on R+, so AT (0,Gp) = maxβ∈R+ AT (β,Gp). Note finally that Hyp. 2 were empirically observed on numerous graphs of
different size and shape. The only exceptions were found when the topological similarity measure LT (Gp) was large.

C. Mean field-based partition function estimates

Following [9], from the mean-field theory we recall here how to derive the zeroth and first order approximations for the
partition function with a special concern to the L-color symmetric Potts model.

The negative energy U mf(w) actually reads U mf(w) =
∑n
i=1 w

t
i

∑
j∈Ni w̄j with w̄j = Emf

[
Wj

]
. Hence,

Emf
[
U mf(W )

]
=

1
2

n∑
i=1

wt
i

∑
j∈Ni

wj =
1
2

Emf
[
U mf(W )

]
so that the zeroth order PF approximation based on the the mean field approximation is given by:

Zmf =
∑
w

exp(βU mf(w)) (17)

=
n∏
i=1

∑
wi

exp(βwt
i

∑
j∈Ni

w̄j) (18)

The first order approximation is based upon the Gibbs-Bogoliubov-Feynman [21] inequality that states:

Z > Zmf exp(Emf
[
U(W )− U mf(W )

]
). (19)

The mean field model (4) is optimal among models with factorization property in the sense that it maximizes the lower bound
in inequality (19) for such models. When considering the Taylor expansion around zero of exp(−Emf

[
U(W ) − U mf(W )

]
),

the right hand side of inequality (19) denoted by ZGBF in what follows

ZGBF = Zmf exp(−Emf
[
U(W )− U mf(W )

]
)

can be seen as a first order approximation of Z and so much closer than the zeroth order approximation Zmf. From Eq. (17),
the first order approximation of Z can be deduced:

ZGBF = Zmf exp(−β
2

n∑
i=1

w̄i
∑
j∈Ni

w̄j). (20)


