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High dimensional regression

Given two r.v. Y ∈ R and X ∈ Rp, estimate G : Rp → R such
that

Y = G(X) + ξ where ξ is independent of X.

When p is large, curse of dimensionality.

Natural solution : reduce the dimension of X with a PCA on X
but does not take Y into account
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Sufficient dimension reduction

Given two r.v. Y ∈ R and X ∈ Rp, G : Rp → R such that

Y = G(X) + ξ where ξ is independent of X.

Sufficient dimension reduction aims at replacing X by its
projection onto a subspace of smaller dimension without loss
of information on the distribution of Y given X.
The central subspace is the smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent : Y ⊥ X | πS(X)
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Dimension reduction principle

Assume dim(S) = 1 for the sake of simplicity, i.e.
S =span(b), with b ∈ Rp =⇒ Single index model :

Y = g(btX) + ξ where ξ is independent of X.
The estimation of a p− variate function G is replaced by the
estimation of a univariate function g and of an axis b.

Goal of SIR [Li, 1991] : to estimate a basis of the central
subspace (i.e. b in this case).
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SIR : Basic principle

Idea :
Find the direction b such that btX best explains Y .
Conversely, when Y is fixed, btX should not vary.
Find the direction b minimizing the variations of btX given Y .

In practice :
The range of Y is partitioned into h slices Sj .
Minimize the within slice variance of btX under the
normalization constraint var(btX) = 1.
Equivalent to maximizing the between slice variance under the
same constraint.

=⇒ intuitively PCA on E[X|Y = y] the inverse regression curve
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SIR : Illustration
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SIR : Estimation procedure

Given a sample {(X1, Y1), . . . , (Xn, Yn)}, the direction b is
estimated by

b̂ = argmax
b

btΓ̂b u.c. btΣ̂b = 1. (1)

where Σ̂ is the estimated covariance matrix of X and Γ̂ is the
between slice covariance matrix defined by

Γ̂ =
h∑
j=1

nj
n

(X̄j − X̄)(X̄j − X̄)t, X̄j = 1
nj

∑
Yi∈Sj

Xi,

with nj is proportion of observations in slice Sj . The optimization
problem (1) has an explicit solution : b̂ is the eigenvector of Σ̂−1Γ̂
associated to its largest eigenvalue.
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SIR : Illustration

Experimental set-up : {(X1, Y1), . . . , (Xn, Yn)} with n = 100
Xi ∼ Np(0,Σ) and Yi = g(btXi) + ξ where g is the link function
g(t) = sin(πt/2), b is the true direction, ξ ∼ N1(0, 9.10−4)

Blue : Projections btXi on the true
direction b versus Yi,
Red : Projections b̂tXi on the esti-
mated direction b̂ versus Yi,
Green : btXi versus b̂tXi.

Note : Once b is estimated, use your favorite regression method to estimate g
=⇒ SIR is a "model free" method
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Single-index inverse regression model
Model introduced in [Cook, 2007].

X = µ+ c(Y )V b+ ε, (2)

where
µ and b are non-random Rp− vectors,
ε ∼ Np(0, V ), independent of Y ,
c : R→ R is a nonrandom coordinate function.

If c(.) is decomposed on h basis functions sj(.),

c(.) =
h∑
j=1

cjsj(.) = st(.)c,

where c = (c1, . . . , ch)t is unknown and s(.) = (s1(.), . . . , sh(.))t,
it follows

X = µ+ st(Y )cV b+ ε, ε ∼ Np(0, V ),
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Maximum Likelihood estimation of {µ, c, V, b}

Notation :
W : the h× h empirical covariance matrix of s(Y ) defined by

W = 1
n

n∑
i=1

(s(Yi)− s̄)(s(Yi)− s̄)t with s̄ = 1
n

n∑
i=1

s(Yi).

M : the h× p matrix defined by M = 1
n

∑n

i=1(s(Yi)− s̄)(Xi − X̄)t,

If W and Σ̂ are regular, then the ML estimators are :
Direction : b̂ is the eigenvector associated to the largest eigenvalue λ̂ of
Σ̂−1M tW−1M ,
Coordinate : ĉ = W−1Mb̂/b̂tV̂ b̂,
Location parameter : µ̂ = X̄ − s̄tĉV̂ b̂,
Covariance matrix : V̂ = Σ̂− λ̂Σ̂b̂b̂tΣ̂/b̂tΣ̂b̂,
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SIR : A particular case

In the particular case of piecewise constant basis functions

sj(.) = I{. ∈ Sj}, j = 1, . . . , h,

standard calculations show that

M tW−1M = Γ̂

and thus the ML estimator b̂ of b is the eigenvector associated
to the largest eigenvalue of Σ̂−1Γ̂.

=⇒ SIR method.
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Student distributed error

Standard SIR is intrinsically Gaussian
−→ sensitive to outliers due to light tails

Increase robustness by considering an heavy tailed error term ε :
Generalized Student distribution

Sp(ε;µ, V, α) = Γ(α+p/2)
|Σ|1/2 Γ(α) (2π)p/2 [1 + δ(ε, µ,Σ)/(2)]−(α+p/2)

heavy tailed
tractable via a hierarchical representation (Gaussian scale
mixture) and EM algorithm
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Multi-index Student inverse regression model

X = µ+ V Bc(Y ) + ε, (3)

µ ∈ Rp and B a p× d matrix with BBT = Id ,
ε ∼ Sp(0, V, α), independent of Y ,
c : R→ Rd is a nonrandom coordinate function.

Proposition : B corresponds to the direction of the central
subspace (up to a linear full rank transformation).

c(.) = (c1(.) . . . cd(.)), with ck(.) =
∑h
j=1 cjksj(.) = st(.)c

=⇒ C is a h× d matrix and (3) can be rewritten as

X = µ+ V BCT s(Y ) + ε with ε ∼ Sp(0, V, α)

θ = {µ, V,B,C, α} to be estimated
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Maximum likelihood via EM algorithm

Given a sample {(X1, Y1), . . . , (Xn, Yn)}
Use Gaussian scale mixture representation of the t-distribution,
introducing additional latent variables U1, . . . , Un,

(Xi|Yi) ∼ Sp(µ+ V BCT si, V, α)

where si=s(Yi)
is equivalent to

Xi|Ui = ui, Yi = yi ∼ Np(µ+ V BCT si, V/ui),
Ui|Yi = yi ∼ G(α, 1).
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EM algorithm

Alternate E and M steps.

E-step : ūi
(t) = EUi [Ui|Xi, Yi; θ(t−1)] and ũi

(t) = EUi [logUi|Xi, Yi; θ(t−1)]

ū
(t)
i acts as a weight for Xi, Yi.

M-step : use "weighted versions" of matrices Σ̂, W , etc. If W and Σ̂ regular,
Directions : B̂ is the eigenvectors associated to the largest eigenvalues of
Σ̂−1M tW−1M ,
Covariance matrix :
V̂ = Σ̂− (MTW−1MB̂)(B̂TMTW−1MB̂)−1(MTW−1MB̂)T ,
Coordinates : Ĉ = W−1MB̂(B̂T V̂ B̂)−1 and
Location parameter : µ̂ = X̄ − V̂ B̂ĈT s̄.

When : sj(.) = I{. ∈ Sj}, j = 1, . . . , h, =⇒ Student SIR algorithm
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EM algorithm : notation

W : the h× h weighted covariance matrix W of s(Y )

W = 1
n

n∑
i=1

ūi (si − s̄)(si − s̄)T ,

M : the h× p weighted covariance matrix M of (s,X)

M = 1
n

n∑
i=1

ūi (si − s̄)(Xi − X̄)T ,

and Σ the p× p weighted covariance matrix of X

Σ̂ = 1
n

n∑
i=1

ūi (Xi − X̄)(Xi − X̄)T ,

with X̄ = 1∑n

i=1 ūi

∑n
i=1 ūiXi and s̄ = 1∑n

i=1 ūi

∑n
i=1 ūisi.
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Determination of the central subspace dimension

Graphical considerations, e.g. [Liquet et al 2012] : not quantitative.
Cross validation : d may vary depending on the regression approach
selected.
Tests : most approaches.
Penalized likelihood criterion [Zhu et al. 2006] : the most natural in our
setting.

Bayesian information criterion :

BIC(d) = −2L(d) + η logn ,

where η = p(p+3)
2 + 1 + d(2p−d−1+2h)

2

BIC provides correct selections but requires large enough sample sizes
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Validation on simulations

Proximity criterion between the true directions B and the estimated ones B̂ :

r(B, B̂) = trace(BBT B̂B̂T )
d

evaluates the distance between the subspaces spanned by the columns of B
and B̂

0 ≤ r ≤ 1,
a value close to 0 implies a low proximity. If d = 1, r is the squared cosine
between the two spanning vectors : b̂ is nearly orthogonal to b,
a value close to 1 implies a high proximity.

Results : Student SIR shows good performance, outperforming SIR when the
distribution of X is heavy-tailed and preserving good properties such as
insensitivity to the number of slices
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Galaxy data

Data :

n = 362, 887 different galaxies (all the original observations
are considered)
The response variable Y is the stellar formation rate.
The predictor X is made of spectral characteristics of the
galaxies and is of dimension p = 46.
True central space unknown

Evaluation setting :

1000 random subsets of X of size n = 30, 000
h = 100
Reference results computed on the whole data set with d = 3
(BIC) : B̂SIR, B̂st-SIR

with r(B̂SIR, B̂st-SIR) = 0.95 (almost same central space)
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Galaxy data

rSIR
i vs. rst-SIR

i : almost all points are lying above the line y = x indicating that
Student SIR improves SIR results and significantly so for the subsets in the
upper left corner
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Conclusion and future work

Non Gaussian SIR based on intrinsic inverse regression
representation of SIR

Maximum likelihood setting
Alternative to robust estimators (Median, etc.)
Higher computational cost than SIR due to EM iterations

Future work :
Case p > n still problematic due to inversion of large
covariance matrices −→ regularization possible
Selection of the central subspace dimension d when n is not
large enough
Extension to multivariate responses

Paper & Matlab code available at https://hal.inria.fr/hal-01294982
A. Chiancone, F. Forbes, S. Girard. Student Sliced Inverse Regression. Computational Statistics and Data Analysis,
To appear 2016.

https://hal.inria.fr/hal-01294982
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