Student Sliced Inverse Regression

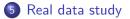
Florence Forbes

Team Mistis, INRIA Rhône-Alpes, France http://mistis.inrialpes.fr/~forbes

December 2016

Joint work with Alessandro Chiancone and Stéphane Girard

- Student inverse regression
- 4 Validation on simulations



1 Sliced Inverse Regression (SIR)

- 2 Gaussian inverse regression
- 3 Student inverse regression
- 4 Validation on simulations
- 5 Real data study

• Given two r.v. $Y\in\mathbb{R}$ and $X\in\mathbb{R}^p,$ estimate $G:\mathbb{R}^p\to\mathbb{R}$ such that

 $Y = G(X) + \xi$ where ξ is independent of X.

• When p is large, curse of dimensionality.

Natural solution : reduce the dimension of X with a PCA on X but does not take Y into account

• Given two r.v. $Y \in \mathbb{R}$ and $X \in \mathbb{R}^p$, $G : \mathbb{R}^p \to \mathbb{R}$ such that

 $Y = G(X) + \xi$ where ξ is independent of X.

- Sufficient dimension reduction aims at replacing X by its projection onto a subspace of smaller dimension without loss of information on the distribution of Y given X.
- The central subspace is the smallest subspace S such that, conditionally on the projection of X on S, Y and X are independent : Y ⊥ X | π_S(X)

Dimension reduction principle

- Assume dim(S) = 1 for the sake of simplicity, *i.e.* S = span(b), with $b \in \mathbb{R}^p \implies$ Single index model : $Y = q(b^t X) + \xi$ where ξ is independent of X.
- The estimation of a p- variate function G is replaced by the estimation of a univariate function g and of an axis b.
- **Goal of SIR** [Li, 1991] : to estimate a basis of the central subspace (*i.e. b in this case*).

SIR : Basic principle

Idea :

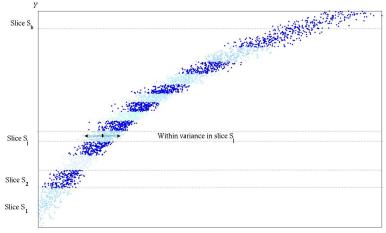
- Find the direction b such that $b^t X$ best explains Y.
- Conversely, when Y is fixed, $b^t X$ should not vary.
- Find the direction b minimizing the variations of $b^t X$ given Y.

In practice :

- The range of Y is partitioned into h slices S_j .
- Minimize the within slice variance of $b^t X$ under the normalization constraint $var(b^t X) = 1$.
- Equivalent to maximizing the between slice variance under the same constraint.

 \implies intuitively PCA on E[X|Y = y] the inverse regression curve

SIR : Illustration



Given a sample $\{(X_1,Y_1),\ldots,(X_n,Y_n)\},$ the direction b is estimated by

$$\hat{b} = \operatorname*{argmax}_{b} b^{t} \hat{\Gamma} b \quad \text{u.c.} \quad b^{t} \hat{\Sigma} b = 1.$$
(1)

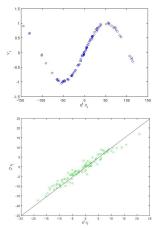
where $\hat{\Sigma}$ is the estimated covariance matrix of X and $\hat{\Gamma}$ is the between slice covariance matrix defined by

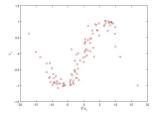
$$\hat{\Gamma} = \sum_{j=1}^{h} \frac{n_j}{n} (\bar{X}_j - \bar{X}) (\bar{X}_j - \bar{X})^t, \quad \bar{X}_j = \frac{1}{n_j} \sum_{Y_i \in S_j} X_i,$$

with n_j is proportion of observations in slice S_j . The optimization problem (1) has an explicit solution : \hat{b} is the eigenvector of $\hat{\Sigma}^{-1}\hat{\Gamma}$ associated to its largest eigenvalue.

SIR : Illustration

Experimental set-up : $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ with n = 100 $X_i \sim \mathcal{N}_p(0, \Sigma)$ and $Y_i = g(b^t X_i) + \xi$ where g is the link function $g(t) = \sin(\pi t/2)$, b is the true direction, $\xi \sim \mathcal{N}_1(0, 9.10^{-4})$





Note : Once b is estimated, use your favorite regression method to estimate $g \implies$ SIR is a "model free" method

3 Student inverse regression

4 Validation on simulations

Single-index inverse regression model

Model introduced in [Cook, 2007].

$$X = \mu + c(Y)Vb + \varepsilon, \tag{2}$$

where

- μ and b are non-random \mathbb{R}^p- vectors,
- $\varepsilon \sim \mathcal{N}_p(0,V)$, independent of Y,
- $c: \mathbb{R} \to \mathbb{R}$ is a nonrandom coordinate function.

If c(.) is decomposed on h basis functions $s_j(.)$,

$$c(.) = \sum_{j=1}^{h} c_j s_j(.) = s^t(.)c,$$

where $c = (c_1, \ldots, c_h)^t$ is unknown and $s(.) = (s_1(.), \ldots, s_h(.))^t$, it follows

$$X = \mu + s^t(Y)cVb + \varepsilon, \ \varepsilon \sim \mathcal{N}_p(0, V),$$

Maximum Likelihood estimation of $\{\mu, c, V, b\}$

Notation :

W : the $h \times h$ empirical covariance matrix of s(Y) defined by

$$W = rac{1}{n} \sum_{i=1}^n (s(Y_i) - \bar{s}) (s(Y_i) - \bar{s})^t \; \; ext{with} \; \; ar{s} = rac{1}{n} \sum_{i=1}^n s(Y_i).$$

M : the $h \times p$ matrix defined by $M = \frac{1}{n} \sum_{i=1}^{n} (s(Y_i) - \bar{s})(X_i - \bar{X})^t$,

If W and $\hat{\Sigma}$ are regular, then the ML estimators are :

- Direction : \hat{b} is the eigenvector associated to the largest eigenvalue $\hat{\lambda}$ of $\hat{\Sigma}^{-1}M^tW^{-1}M$,
- Coordinate : $\hat{c} = W^{-1}M\hat{b}/\hat{b}^t\hat{V}\hat{b}$,
- Location parameter : $\hat{\mu} = \bar{X} \bar{s}^t \hat{c} \hat{V} \hat{b}$,
- Covariance matrix : $\hat{V} = \hat{\Sigma} \hat{\lambda}\hat{\Sigma}\hat{b}\hat{b}^t\hat{\Sigma}/\hat{b}^t\hat{\Sigma}\hat{b}$,

In the particular case of piecewise constant basis functions

$$s_j(.) = \mathbb{I}\{. \in S_j\}, \quad j = 1, \dots, h,$$

standard calculations show that

 $M^t W^{-1} M = \hat{\Gamma}$

and thus the **ML estimator** \hat{b} of b is the eigenvector associated to the largest eigenvalue of $\hat{\Sigma}^{-1}\hat{\Gamma}$.

 \Longrightarrow SIR method.

- 2 Gaussian inverse regression
- 3 Student inverse regression
- 4 Validation on simulations
- 5 Real data study

Standard SIR is intrinsically Gaussian

 \longrightarrow sensitive to outliers due to light tails

Increase robustness by considering an heavy tailed error term ε : Generalized Student distribution

•
$$S_p(\varepsilon;\mu,V,\alpha) = \frac{\Gamma(\alpha+p/2)}{|\Sigma|^{1/2} \Gamma(\alpha) (2\pi)^{p/2}} [1 + \delta(\varepsilon,\mu,\Sigma)/(2)]^{-(\alpha+p/2)}$$

- heavy tailed
- tractable via a hierarchical representation (Gaussian scale mixture) and EM algorithm

Multi-index Student inverse regression model

$$X = \mu + VBc(Y) + \varepsilon, \tag{3}$$

- $\mu \in \mathbb{R}^p$ and \underline{B} a p imes d matrix with $BB^T = I_d$,
- $\varepsilon \sim S_p(0, V, \alpha)$, independent of Y,
- $c: \mathbb{R} \to \mathbb{R}^d$ is a nonrandom coordinate function.

Proposition : *B* corresponds to the direction of the central subspace (up to a linear full rank transformation).

 $c(.) = (c_1(.) \dots c_d(.))$, with $c_k(.) = \sum_{j=1}^h c_{jk}s_j(.) = s^t(.)c$ $\implies C$ is a $h \times d$ matrix and (3) can be rewritten as

 $X = \mu + VBC^T s(Y) + \varepsilon$ with $\varepsilon \sim \mathcal{S}_p(0, V, \alpha)$

 $heta = \{\mu, V, B, C, \alpha\}$ to be estimated

Maximum likelihood via EM algorithm

Given a sample $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ Use Gaussian scale mixture representation of the *t*-distribution, introducing additional latent variables U_1, \ldots, U_n ,

$$(X_i|Y_i) \sim \mathcal{S}_p(\mu + VBC^T s_i, V, \alpha)$$

where $s_i = s(Y_i)$

is equivalent to

$$X_i | U_i = u_i, Y_i = y_i \sim \mathcal{N}_p(\mu + VBC^T s_i, V/u_i),$$
$$U_i | Y_i = y_i \sim \mathcal{G}(\alpha, 1).$$

EM algorithm

Alternate E and M steps.

E-step : $\bar{u_i}^{(t)} = E_{U_i}[U_i|X_i, Y_i; \theta^{(t-1)}]$ and $\tilde{u_i}^{(t)} = E_{U_i}[\log U_i|X_i, Y_i; \theta^{(t-1)}]$

 $\bar{u}_i^{(t)}$ acts as a weight for X_i, Y_i .

M-step : use "weighted versions" of matrices $\hat{\Sigma}$, W, etc. If W and $\hat{\Sigma}$ regular,

- Directions : \hat{B} is the eigenvectors associated to the largest eigenvalues of $\hat{\Sigma}^{-1}M^tW^{-1}M$,
- Covariance matrix : $\hat{V} = \hat{\Sigma} - (M^T W^{-1} M \hat{B}) (\hat{B}^T M^T W^{-1} M \hat{B})^{-1} (M^T W^{-1} M \hat{B})^T,$
- Coordinates : $\hat{C} = W^{-1}M\hat{B}(\hat{B}^T\hat{V}\hat{B})^{-1}$ and
- Location parameter : $\hat{\mu} = \bar{X} \hat{V}\hat{B}\hat{C}^T\bar{s}$.

When : $s_j(.) = \mathbb{I}\{. \in S_j\}, j = 1, ..., h, \Longrightarrow$ Student SIR algorithm

EM algorithm : notation

• W : the $h \times h$ weighted covariance matrix W of s(Y)

$$W = \frac{1}{n} \sum_{i=1}^{n} \bar{u_i} (s_i - \bar{s})(s_i - \bar{s})^T,$$

• M : the $h \times p$ weighted covariance matrix M of (s, X)

$$M = \frac{1}{n} \sum_{i=1}^{n} \bar{u}_{i} (s_{i} - \bar{s}) (X_{i} - \bar{X})^{T},$$

• and Σ the $p \times p$ weighted covariance matrix of X

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \bar{\boldsymbol{u}}_{i} (X_{i} - \bar{X}) (X_{i} - \bar{X})^{T},$$

with
$$\bar{X} = \frac{1}{\sum_{i=1}^{n} \bar{u_i}} \sum_{i=1}^{n} \bar{u_i} X_i$$
 and $\bar{s} = \frac{1}{\sum_{i=1}^{n} \bar{u_i}} \sum_{i=1}^{n} \bar{u_i} s_i$.

Determination of the central subspace dimension

- Graphical considerations, *e.g.* [Liquet et al 2012] : not quantitative.
- Cross validation : *d* may vary depending on the regression approach selected.
- Tests : most approaches.
- Penalized likelihood criterion [Zhu et al. 2006] : the most natural in our setting.

Bayesian information criterion :

$$BIC(d) = -2L(d) + \eta \log n \;,$$
 where $\eta = \frac{p(p+3)}{2} + 1 + \frac{d(2p-d-1+2h)}{2}$

BIC provides correct selections but requires large enough sample sizes

- 2 Gaussian inverse regression
- 3 Student inverse regression
- 4 Validation on simulations

5 Real data study

Proximity criterion between the true directions B and the estimated ones \hat{B} :

$$r(B, \hat{B}) = \frac{trace(BB^T \hat{B} \hat{B}^T)}{d}$$

evaluates the distance between the subspaces spanned by the columns of B and \hat{B}

- $0 \le \mathsf{r} \le 1$,
- a value close to 0 implies a low proximity. If d = 1, r is the squared cosine between the two spanning vectors : \hat{b} is nearly orthogonal to b,
- a value close to 1 implies a high proximity.

Results : Student SIR shows good performance, outperforming SIR when the distribution of X is heavy-tailed and preserving good properties such as insensitivity to the number of slices

1 Sliced Inverse Regression (SIR)

- 2 Gaussian inverse regression
- 3 Student inverse regression
- 4 Validation on simulations
- 5 Real data study

Galaxy data

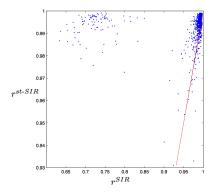
Data :

- n = 362,887 different galaxies (all the original observations are considered)
- The response variable Y is the stellar formation rate.
- The predictor X is made of spectral characteristics of the galaxies and is of dimension p = 46.
- True central space unknown

Evaluation setting :

- 1000 random subsets of X of size n = 30,000
- h = 100
- Reference results computed on the whole data set with d = 3(BIC) : \hat{B}^{SIR} , $\hat{B}^{\text{st-SIR}}$ with $r(\hat{B}^{\text{SIR}}, \hat{B}^{\text{st-SIR}}) = 0.95$ (almost same central space)

Galaxy data



 $r_i^{\rm SIR}$ vs. $r_i^{\rm st-SIR}$: almost all points are lying above the line y=x indicating that Student SIR improves SIR results and significantly so for the subsets in the upper left corner

Conclusion and future work

Non Gaussian SIR based on intrinsic inverse regression representation of SIR

- Maximum likelihood setting
- Alternative to robust estimators (Median, etc.)
- Higher computational cost than SIR due to EM iterations

Future work :

- Case p > n still problematic due to inversion of large covariance matrices \longrightarrow regularization possible
- Selection of the central subspace dimension d when n is not large enough
- Extension to multivariate responses

Paper & Matlab code available at https://hal.inria.fr/hal-01294982 A. Chiancone, F. Forbes, S. Girard. Student Sliced Inverse Regression. Computational Statistics and Data Analysis, To appear 2016.

SIR and regularized SIR references

- Li, K.C. (1991). Sliced inverse regression for dimension reduction. *Journal* of the American Statistical Association, **86**, 316–327.
- Cook, R.D. (2007). Fisher lecture : Dimension reduction in regression. *Statistical Science*, **22**(1), 1–26.
- Zhong, W., Zeng, P., Ma, P., Liu, J.S. and Zhu, Y. (2005). RSIR : Regularized Sliced Inverse Regression for motif discovery. *Bioinformatics*, 21(22), 4169–4175.
- Chiaromonte, F. and Martinelli, J. (2002). Dimension reduction strategies for analyzing global gene expression data with a response. *Mathematical Biosciences*, **176**, 123–144.
- Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L. et Girard, S. (2009). Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression, *Journal* of *Geophysical Research - Planets*, **114**, E06005.
- Bernard-Michel, C., Gardes, L. et Girard, S. (2009). Gaussian Regularized Sliced Inverse Regression, *Statistics and Computing*, **19**, 85–98.
- Bernard-Michel, C., Gardes, L. et Girard, S. (2008). A Note on Sliced Inverse Regression with Regularizations, *Biometrics*, 64, 982–986.