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Nonparametric extreme risks measure

Definition of risk measures

Let Y € R be a random loss variable. For o € (0, 1), the Value-at-Risk of
level « is the quantity VaR(«) defined by

VaR(a) = F (a) = inf{t, F(t) < a},

where fg(.) is the generalized inverse of the survival function of Y.
VaR(«) is the upper a-quantile of the loss distribution.

The Conditional Tail Expectation of level a € (0, 1) is defined by
CTE(«) := E(Y]Y > VaR(«)).

The Conditional-Value-at-Risk of level o € (0, 1) introduced by Rockafellar
et Uryasev [2000] is defined by

CVaRi(a) := AVaR(«a) + (1 — A\)CTE(w),

with 0 < A < 1.

The Conditional Tail Variance of level a € (0, 1) introduced by Valdez
[2005] is defined by

CTV(a) := E((Y — CTE(a))’|Y > VaR(a)).



A new risk measure : the Conditional Tail Moment

The first purpose of this presentation is to unify the definitions of the previous
risk measures. To this end, a new risk measure is introduced. The Conditional
Tail Moment of level « € (0,1) is defined by

CTM.,(a) := E(Y?]Y > VaR(a)),

where a > 0 is such that the moment of order a of Y exists.

All the previous risk measures of level a can be rewritten as

VaR(a) = F (a),
CTE(a) = CTM;i(a),
CVaR(a) = AVaR(a)+ (1 —A)CTM;(w),
CTV(a) = CTMy(a)— CTMi(a).
= All the risk measures depend on the VaR and the CTM,. )




Framework : extreme losses and regression case

Our second aim is to adapt risk measures to extreme losses and to the case
where a covariate X € R” is recorded simultaneously with the loss variable Y.

Q We replace the fixed level o € (0,1) by a sequence ay, — 0.

n— oo

Q Denoting by F(.|x) the conditional survival distribution function of Y
given X = x, we define the Regression Value-at Risk by :

RVaR(au|x) := F (a|x) = inf{t, F(t|x) < a},
and the Regression Conditional Tail Moment of order a by :
RCTM.,(an|x) :=E(Y?|Y > RVaR(an|x), X = x),

where a > 0 is such that the moment of order a of Y exists.



Nonparametric extreme ri

Rewriting risk measures

This yields the following risk measures :
RCTE(an|x)

RCVaR (an|x)
RCTV,(an|x)

RCTM:1(anl|x),
ARVaR(an|x) + (1 — A)RCTMi(an|x),
RCTM:(an|x) — RCTM3 (an|x).

= All the risk measures depend on the RVaR and the RCTM,. J

We defined the conditional moment of order a > 0 of Y given X = x by
Pa(ylx) = E(YI{Y > y}X =x),

where 1{.} is the indicator function. Remarking that wo(y|x) = F(y|x) we have

RVaR(an|x)
RCTM.,(an|x)

o (anlx),

1 -
sl (@nlx).

Objective : to estimate @,(.|x) and 5 (.|x). J




Inference

Estimator of ¢a.(.|x) :

We propose to use a classical kernel estimator given by

~ - x — X; 2 “ x — X;
Buntyi) = Lok (22 vrvs 1/ Sk (250).
i=1 " i=1 n

o In this context, h, is a non-random sequence called the window-width such
that h, — 0 as n — oo and K is a density on R”.
Estimator of ¢ (.|x) :

Since @a,n(.|x) is a non-increasing function, we can define an estimator of
o5 (a|x) for a € (0,1) by

Ganlalx) = inf{t, @.n(t|x) < a}.



Estimators and a

Heavy-tailed distributions

(F.1) We assume that the conditional survival distribution function of Y given
X = x is heavy-tailed and admits a probability density function.

It is also equivalent to stating that for all A > 0,

In this context, (.) is a positive function of the covariate x and is referred to
as the conditional tail index since it tunes the tail heaviness of the conditional
distribution of Y given X = x.

Condition (F.1) also implies that for a € [0,1/~(x)) and for all y > 0,
RCTM, (1/y|x) =y a(y[x),
where for x fixed, £,(.|x) is a slowly-varying function at infinity, i.e for all A > 0,
||m Ka()\y\x) _

y=oo Lo(ylx)



Karamata representation

It also appears that, under (F.1), a sufficient condition for the existence of
RCTM,(1/.|x) is a < 1/7(x).

(F.2) £,(.|x) is normalized for all a € [0,1/v(x)).

In such a case, the Karamata representation of the slowly-varying function can

be written as y
L) = et ([ =0a),

1

where ¢,(.) is a positive function and £,(y|x) — 0 as y — oo.

Here, we limit ourselves to assuming that for all a € (0,1/~v(x)),

(F.3) |ea(.|x)] is continuous and ultimately non-increasing.



Estimators and a

Others assumptions

A Lipschitz condition on the probability density function g of X is also
required. For all (x,x’) € R x RP, the Euclidean distance between x and x’ is
denoted by d(x,x’) and the following assumption is introduced :

(L) There exists a constant ¢, > 0 such that |g(x) — g(x')| < c;d(x, x').

The next assumption is standard in the kernel estimation framework.
(K) K is a bounded density on R”, with support S included in the unit ball of

RP.

Finally, for y > 0 and £ > 0, the largest oscillation of the conditional moment
of order a € [0,1/7(x)) is given by

wn(y,€) Isup{’% .

L ze[- Oy (146 and d(x.x) < h} .
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Estimators

Main results

Suppose (F.1), (F.2), (L) and (K) hold. Let us introduce

0<a; <ax<---<aywhere Jis a positive integer. For all x € RP such that
g(x) >0 and 0 < v(x) < 1/(2ay), let us introduce a sequence () with

an — 0 and nh?a, — oo as n — oo. If there exists £ > 0 such that

nhPa, (hV wa(pg (aa|x), €))> — 0, then, the random vector

RCTM,, n(ctn|x) RVaR, (0| )
hPou, 3 s 1 n\&n -
VihPan \ | ROTM, (an]x) , '\ RVaR(anx)
2 je{1,...,J}

is asymptotically Gaussian, centered, with a (J + 1) x (J 4+ 1) covariance
matrix || K||37%(x)X(x)/g(x) where for (i,j) € {1,...,J}* we have

217 (x))
2127200 (2= (3r+2,)7(x)
T(x) = A=)

a7 (x)
ay’(x)--a(x) | 77 (%)
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Estimators and asympto

Asymptotic normalities

Suppose the assumptions of Theorem 1 hold. Then, if 0 < v(x) < 1/2, we have

e (ROTE (k) |\ o, 201 — (V) IKIB
nh "(RCTE(anX) 1) N<0’ 1—2y(x) g(X))

wra, | BCVaRn(onb) 1) o PO +2 = 2) — 29(x)) K13
VnhPa, ( RCVaRa (|x) 1) N (O’ 1-2y(x) g(x) >

The RCTV(ap|x) estimator involves the computation of a second order
moment, it requires the stronger condition 0 < ~(x) < 1/4,

SO 2
\/M (RCTVn(Oén|X) . 1) i} N (0’ V,Y(X) ||K||2) 7

RCTV (an|x) g(x)

where
_ 8(1 = (x))(1 = 29(x))(L + 27(x) + 3+*(x))
(1= 37(x))(1 — 4v(x)) ‘

VW(X)



A Weissman type estimator

@ In Theorem 1, the condition nh”a, — oo provides a lower bound on the
level of the risk measure to estimate.

@ This restriction is a consequence of the use of kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x, h).

@ In consequence, a, must be an order of an extreme quantile within the
sample.

Definition

Let us consider (an)n>1 and (Bn)n>1 two positives sequences such that o, — 0,
Bn — 0 and 0 < 8, < an. A kernel adaptation of Weissman’s estimator [1978]
is given by

W e @ aAn(x)
ROTM. o (Bu]x) = ROTM,,»(nlx) (?) .

13 /25



A Weissman type estimator

@ In Theorem 1, the condition nh”«, — oo provides a lower bound on the
level of the risk measure to estimate.

@ This restriction is a consequence of the use of kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x, h).

@ In consequence, a, must be an order of an extreme quantile within the
sample.

Definition

Let us consider (an)n>1 and (Bn)s>1 two positives sequences such that a, — 0,
Bn — 0 and 0 < B, < an. A kernel adaptation of Weissman's estimator [1978]
is given by

— W — s\ )
RCTM, ,(8alx) = RCTM.,n(cn|x) (?)

extrapolation
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A Weissman type estimator

@ In Theorem 1, the condition nh”«, — oo provides a lower bound on the
level of the risk measure to estimate.

@ This restriction is a consequence of the use of kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x, h).

@ In consequence, a, must be an order of an extreme quantile within the
sample.

Definition
Let us consider (an)n>1 and (Bn)s>1 two positives sequences such that a, — 0,
Bn — 0 and 0 < B, < ap. A kernel adaptation of Weissman's estimator [1978]
is given by

— W S a ayn(x)

RCTM, ,(8a|x) = RCTM,,n(cn|x) (#)

n

extrapolation

Objective : to estimate y(x). )
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The Hill estimator

o Without covariate : Hill [1975]

Let (kn)n>1 be a sequence of integers such that k, € {1...n}. The Hill
estimator is given by

kp—1
Tnan = 7 Zl log(Zn—i+1.n) — l0g(Zn—k,+1.0),

where k, = | nan] and Zy, < -+ < Z, , are the order statistics associated
with i.i.d. realizations Zi, ..., Z, of the random variable Z.

o With a covariate : Gardes and Girard [2008]

Let (a,,),,zl be a positive sequence such that a, — 0. A kernel version of
the Hill estimator is given by

J
Anyan(X) = Z(Iog(RVaR,,(Tja,Jx)) - Iog(RVaRn T1n|x))) Z log(m1/75),

j=1
where J > 1 and (7});>1 is a decreasing sequence of weights.
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Extrapolation

Theorem 2 :

Suppose the assumptions of Theorem 1 hold together with (F.3). Let us
consider 9,(x) an estimator of the tail index such that

Vihian(3n(x) = 1(x)) % N (0,v3(x)) ,

with v(x) > 0. If, moreover (3,),>1 is a positive sequence such that 8, — 0
and 3,/an — 0 as n — oo, we then have

Vi, [ ROTMo(Balx) . i
gty | RO (A ~ L) N (0 ve0y).

The condition 3,/a, — 0 allows us to extrapole and choose a level 3,
arbitrarily small.



Extrapolation

Daouia et al. [2011] have established the asymptotic normality of
— W An(x)
RVaR, (Bn|x) = RVaR,,(oz,,|X) <ﬁ—> .

— —w — — W

As a consequence, replacing RVaR, by RVaR,, and RCTM,,, by RCTM, ,
provides estimators for all risk measures considered in this presentation adapted
to arbitrarily small levels.

In particular we have RCTE(a,|x) = RCTM; (a,|x). Consequently we obtain

— W Fn(x)
RCTE, (Bnlx) = RCTE, (an|x) (ﬁ ) .

— W W
Application : RVaR, and RCTE,

16 / 25



Application

Problem and data description

2050

2000

2000

2000

1500

1950
1950

1000

1900
1900

1850
L

1800
L

Objective : to choose (hn, an). )




ApE
[ 1e}

A leave-one-out cross validation procedure to choose h, and «, : Step 1

e Double loopon H = {h;;i=1,...,M}andon A= {aj;j=1,...,R}.
o Loop on all stations {x;;t =1,..., N}. J
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Application

e0

A leave-one-out cross validation procedure to choose h, and «, : Step 1

o Double loopon H = {h;;i=1,...,M} and on A ={aj;j=1,...,R}. J

@ Loop on all stations {x;;t =1,...,N}.

1900 1950 2000 2050

1850
L

1800




A leave-one-out cross validation procedure to choose h, and «, : Step 1

@ Double loopon H={h;;i=1,...,M} andon A= {aj;j=1,...,R}.
o Loop on all stations {x;;t =1,..., N}. J
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Application

e0

A leave-one-out cross validation procedure to choose h, and «, : Step 1

o Double loopon H = {h;;i=1,...,M} and on A ={aj;j=1,...,R}.
o Loop on all stations {x;;t =1,..., N}. J

2050

o Estimate v > 0 using the
classical Hill estimator.

2000

@ It only depends on a;.

1950

@ The ¢; are choosen such that
we stay in the tail of the

distribution max (e;) < 0.1
je{l,..,R}

1200
.

1850
L

1800
L

650 700 750 800 850




Application

e0

A leave-one-out cross validation procedure to choose h, and «, : Step 1

o Double loopon H = {h;;i=1,...,M} and on A ={aj;j=1,...,R}.
o Loop on all stations {x;;t =1,..., N}. J

2050

o Estimate v > 0 using the
classical Hill estimator.

2000

@ It only depends on a;.

1950

@ The ¢; are choosen such that
we stay in the tail of the

distribution max (e;) < 0.1
je{l,..,R}

1200
.

1850
L

—> We obtain 'Ayn,t,aj

650 700 750 800 850




Application
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A leave-one-out cross validation procedure to choose h, and «, : Step 2

1900 1950 2000 2050

1850
L

1800
L
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A leave-one-out cross validation procedure to choose h, and «, : Step 2
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A leave-one-out cross validation procedure to choose h, and «, : Step 2

o Estimate y(x) > 0 using the
kernel version of the Hill
estimator.

2050

2000

o It depends on ¢ and on h;.

1950

@ The h; are choosen such that
there is at least one station
in B(xt, hi) \ {xt}.

1900

1850
L

1800
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A leave-one-out cross validation procedure to choose h, and «, : Step 2

o Estimate y(x) > 0 using the
kernel version of the Hill
estimator.

2050

2000

o It depends on ¢ and on h;.

1950

@ The h; are choosen such that
there is at least one station
in B(xt, hi) \ {xt}.

1900

1850
L

= We obtain ’?n,hi,aj(xt)

1800
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A leave-one-out cross validation procedure to choose h, and «, : Step 2

o Estimate y(x) > 0 using the
kernel version of the Hill
estimator.

2050

2000

o It depends on ¢ and on h;.

1950

@ The h; are choosen such that
there is at least one station
in B(xt, hi) \ {xt}.

1900

1850

= We obtain ’?n,hi,aj(xt)

1800

(hemp, Qtemp) = argmin median{(’%,t,aj = n,hjsa) (Xt))27 te{l,...,N}}.
(hivo ) EH XA
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Kernel interpolation
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@ Two dimensional covariate X function of the latitude and the longitude.
e Bi-quadratic kernel : K(x) = (1 — x*)’I{jxj<1}-

@ Harmonic sequence of weights : (7j)jeq1,....0p = 1/J.

@ Results of the procedure (hemp, demp) = (24,1/(3 * 365.25)).
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Non extrapolated risk measures in the Cévennes-Vivarais region

RVaR,(1/(3 * 365.25)|x) RCTE,(1/(3 * 365.25)|x)




An,(1/(3+365.25)(x) in the Cévennes-Vivarais region
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Application
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R, (1/(100 % 365.25)|x) i.e. a return level of 100 years
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RCTE,, (1/(100 % 365.25)|x) corresponding to a return level of 100 years
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