# Estimation of Extreme Risk Measures from Heavy-tailed distributions

BY

# Jonathan EL METHNI

in collaboration with

Stéphane GIRARD & Laurent GARDES

8<sup>th</sup> Conference on Extreme Value Analysis Shanghai 11 July 2013









(□) (@) (E) (E) =





3 Extrapolation



Application

- Tuning parameter selection procedure
- Results

# Definition of risk measures

 Let Y ∈ ℝ be a random loss variable. For α ∈ (0, 1), the Value-at-Risk of level α is the quantity VaR(α) defined by

 $\operatorname{VaR}(\alpha) := \overline{F}^{\leftarrow}(\alpha) = \inf\{t, \overline{F}(t) \leq \alpha\},\$ 

where  $\overline{F}^{\leftarrow}(.)$  is the generalized inverse of the survival function of Y. VaR( $\alpha$ ) is the upper  $\alpha$ -quantile of the loss distribution.

• The Conditional Tail Expectation of level  $lpha \in (0,1)$  is defined by

 $CTE(\alpha) := \mathbb{E}(Y|Y > VaR(\alpha)).$ 

• The Conditional-Value-at-Risk of level  $\alpha \in (0, 1)$  introduced by Rockafellar et Uryasev [2000] is defined by

 $\operatorname{CVaR}_{\lambda}(\alpha) := \lambda \operatorname{VaR}(\alpha) + (1 - \lambda) \operatorname{CTE}(\alpha),$ 

with  $0 \le \lambda \le 1$ .

• The Conditional Tail Variance of level  $\alpha \in (0, 1)$  introduced by Valdez [2005] is defined by

 $\operatorname{CTV}(\alpha) := \mathbb{E}((Y - \operatorname{CTE}(\alpha))^2 | Y > \operatorname{VaR}(\alpha)).$ 

#### A new risk measure : the Conditional Tail Moment

The first purpose of this presentation is to unify the definitions of the previous risk measures. To this end, a new risk measure is introduced. The Conditional Tail Moment of level  $\alpha \in (0, 1)$  is defined by

 $\operatorname{CTM}_{a}(\alpha) := \mathbb{E}(Y^{a}|Y > \operatorname{VaR}(\alpha)),$ 

where  $a \ge 0$  is such that the moment of order a of Y exists.

All the previous risk measures of level  $\alpha$  can be rewritten as

 $\implies$  All the risk measures depend on the VaR and the  $\mathrm{CTM}_{a}$ .

# Framework : extreme losses and regression case

Our second aim is to adapt risk measures to extreme losses and to the case where a covariate  $X \in \mathbb{R}^{p}$  is recorded simultaneously with the loss variable Y.

• We replace the fixed level 
$$\alpha \in (0,1)$$
 by a sequence  $\alpha_n \xrightarrow[n \to \infty]{} 0$ .

Obenoting by F(.|x) the conditional survival distribution function of Y given X = x, we define the Regression Value-at Risk by :

 $\operatorname{RVaR}(\alpha_n|x) := \overline{F}^{\leftarrow}(\alpha|x) = \inf\{t, \overline{F}(t|x) \le \alpha\},\$ 

and the Regression Conditional Tail Moment of order a by :

 $\operatorname{RCTM}_{a}(\alpha_{n}|x) := \mathbb{E}(Y^{a}|Y) > \operatorname{RVaR}(\alpha_{n}|x), X = x),$ 

where a > 0 is such that the moment of order a of Y exists.

# Rewriting risk measures

This yields the following risk measures :

$$\begin{aligned} &\operatorname{RCTE}(\alpha_n|x) &= \operatorname{RCTM}_1(\alpha_n|x), \\ &\operatorname{RCVaR}_{\lambda}(\alpha_n|x) &= \lambda \operatorname{RVaR}(\alpha_n|x) + (1-\lambda)\operatorname{RCTM}_1(\alpha_n|x), \\ &\operatorname{RCTV}_n(\alpha_n|x) &= \operatorname{RCTM}_2(\alpha_n|x) - \operatorname{RCTM}_1^2(\alpha_n|x). \end{aligned}$$

 $\implies$  All the risk measures depend on the RVaR and the RCTM<sub>a</sub>.

We defined the conditional moment of order  $a \ge 0$  of Y given X = x by

 $\varphi_{a}(y|x) = \mathbb{E}\left(Y^{a}\mathbb{I}\{Y > y\}|X = x\right),$ 

where  $\mathbb{I}\{.\}$  is the indicator function. Remarking that  $\varphi_0(y|x) = \overline{F}(y|x)$  we have

$$\begin{aligned} \operatorname{RVaR}(\alpha_n | x) &= \varphi_0^{\leftarrow}(\alpha_n | x), \\ \operatorname{RCTM}_{\mathfrak{a}}(\alpha_n | x) &= \frac{1}{\alpha_n} \varphi_{\mathfrak{a}}(\varphi_0^{\leftarrow}(\alpha_n | x) | x). \end{aligned}$$

Objective : to estimate  $\varphi_a(.|x)$  and  $\varphi_a^{\leftarrow}(.|x)$ .

# Estimator of $\varphi_a(.|x)$ :

We propose to use a classical kernel estimator given by

$$\widehat{\varphi}_{a,n}(y|x) = \sum_{i=1}^{n} K\left(\frac{x-X_i}{h_n}\right) Y_i^a \mathbb{I}\{Y_i > y\} \bigg/ \sum_{i=1}^{n} K\left(\frac{x-X_i}{h_n}\right).$$

• In this context,  $h_n$  is a non-random sequence called the window-width such that  $h_n \to 0$  as  $n \to \infty$  and K is a density on  $\mathbb{R}^p$ .

# Estimator of $\varphi_a^{\leftarrow}(.|x)$ :

Since  $\hat{\varphi}_{a,n}(.|x)$  is a non-increasing function, we can define an estimator of  $\varphi_a^{\leftarrow}(\alpha|x)$  for  $\alpha \in (0,1)$  by

$$\hat{\varphi}_{\mathsf{a},\mathsf{n}}^{\leftarrow}(\alpha|x) = \inf\{t, \hat{\varphi}_{\mathsf{a},\mathsf{n}}(t|x) < \alpha\}$$

# Heavy-tailed distributions

- (F.1) We assume that the conditional survival distribution function of Y given X = x is heavy-tailed and admits a probability density function.
  - It is also equivalent to stating that for all  $\lambda > 0$ ,

$$\lim_{y\to\infty}\frac{\overline{F}(\lambda y|x)}{\overline{F}(y|x)}=\lambda^{-1/\gamma(x)}.$$

In this context,  $\gamma(.)$  is a positive function of the covariate x and is referred to as the conditional tail index since it tunes the tail heaviness of the conditional distribution of Y given X = x.

Condition (F.1) also implies that for  $a \in [0, 1/\gamma(x))$  and for all y > 0,

$$\operatorname{RCTM}_{a}(1/y|x) = y^{a\gamma(x)}\ell_{a}(y|x),$$

where for x fixed,  $\ell_a(.|x)$  is a slowly-varying function at infinity, *i.e* for all  $\lambda > 0$ ,

$$\lim_{y\to\infty}\frac{\ell_a(\lambda y|x)}{\ell_a(y|x)}=1.$$

### Karamata representation

It also appears that, under (F.1), a sufficient condition for the existence of  $\operatorname{RCTM}_a(1/.|x)$  is  $a < 1/\gamma(x)$ .

(F.2)  $\ell_a(.|x)$  is normalized for all  $a \in [0, 1/\gamma(x))$ .

In such a case, the Karamata representation of the slowly-varying function can be written as

$$\ell_a(y|x) = c_a(x) \exp\left(\int_1^y \frac{\varepsilon_a(u|x)}{u} du\right),$$

where  $c_a(.)$  is a positive function and  $\varepsilon_a(y|x) \to 0$  as  $y \to \infty$ .

Here, we limit ourselves to assuming that for all  $a \in (0, 1/\gamma(x))$ ,

(F.3)  $|\varepsilon_a(.|x)|$  is continuous and ultimately non-increasing.

# Others assumptions

A Lipschitz condition on the probability density function g of X is also required. For all  $(x, x') \in \mathbb{R}^p \times \mathbb{R}^p$ , the Euclidean distance between x and x' is denoted by d(x, x') and the following assumption is introduced :

(L) There exists a constant  $c_g > 0$  such that  $|g(x) - g(x')| \le c_g d(x, x')$ .

The next assumption is standard in the kernel estimation framework.

(K) K is a bounded density on  $\mathbb{R}^{p}$ , with support S included in the unit ball of  $\mathbb{R}^{p}$ .

Finally, for y > 0 and  $\xi > 0$ , the largest oscillation of the conditional moment of order  $a \in [0, 1/\gamma(x))$  is given by

$$\omega_n(y,\xi) = \sup\left\{ \left| \frac{\varphi_a(z|x)}{\varphi_a(z|x')} - 1 \right|, \ z \in [(1-\xi)y, (1+\xi)y] \text{ and } d(x,x') \le h \right\}.$$

# Main results

#### Theorem 1 :

Suppose (F.1), (F.2), (L) and (K) hold. Let us introduce  $0 \le a_1 < a_2 < \cdots < a_J$  where J is a positive integer. For all  $x \in \mathbb{R}^p$  such that g(x) > 0 and  $0 < \gamma(x) < 1/(2a_J)$ , let us introduce a sequence  $(\alpha_n)$  with  $\alpha_n \to 0$  and  $nh^p \alpha_n \to \infty$  as  $n \to \infty$ . If there exists  $\xi > 0$  such that  $nh^p \alpha_n (h \lor \omega_n (\varphi_0^{\leftarrow}(\alpha_n | x), \xi))^2 \to 0$ , then, the random vector

$$\sqrt{nh^{p}lpha_{n}}\left\{\left(rac{\widehat{ ext{RCTM}}_{a_{j},n}(lpha_{n}|x)}{\operatorname{RCTM}_{a_{j}}(lpha_{n}|x)}-1
ight)_{j\in\{1,...,J\}},\left(rac{\widehat{ ext{RVaR}}_{n}(lpha_{n}|x)}{\operatorname{RVaR}(lpha_{n}|x)}-1
ight)
ight)$$

is asymptotically Gaussian, centered, with a  $(J+1) \times (J+1)$  covariance matrix  $\|K\|_2^2 \gamma^2(x) \Sigma(x)/g(x)$  where for  $(i,j) \in \{1,\ldots,J\}^2$  we have

$$\Sigma(x) = \begin{pmatrix} a_i a_j \gamma^2(x)(2-(a_i+a_j)\gamma(x)) \\ \hline (1-(a_i+a_j)\gamma(x)) \\ \hline a_1 \gamma^2(x) \cdots a_J \gamma^2(x) \\ \hline \gamma^2(x) \end{pmatrix}$$

# Asymptotic normalities

Suppose the assumptions of Theorem 1 hold. Then, if  $0 < \gamma(x) < 1/2$ , we have

$$\begin{split} \sqrt{nh^{p}\alpha_{n}} \left( \frac{\widehat{\mathrm{RCTE}}_{n}(\alpha_{n}|x)}{\mathrm{RCTE}(\alpha_{n}|x)} - 1 \right) & \stackrel{d}{\longrightarrow} & \mathcal{N}\left( 0, \frac{2(1 - \gamma(x))\gamma^{2}(x)}{1 - 2\gamma(x)} \frac{\|\mathcal{K}\|_{2}^{2}}{g(x)} \right) \\ \sqrt{nh^{p}\alpha_{n}} \left( \frac{\widehat{\mathrm{RCVaR}}_{\lambda,n}(\alpha_{n}|x)}{\mathrm{RCVaR}_{\lambda}(\alpha_{n}|x)} - 1 \right) & \stackrel{d}{\longrightarrow} & \mathcal{N}\left( 0, \frac{\gamma^{2}(x)(\lambda^{2} + 2 - 2\lambda - 2\gamma(x))}{1 - 2\gamma(x)} \frac{\|\mathcal{K}\|_{2}^{2}}{g(x)} \right) \end{split}$$

The  $\operatorname{RCTV}(\alpha_n|x)$  estimator involves the computation of a second order moment, it requires the stronger condition  $0 < \gamma(x) < 1/4$ ,

$$\sqrt{nh^{p}\alpha_{n}}\left(\frac{\widehat{\operatorname{RCTV}}_{n}(\alpha_{n}|x)}{\operatorname{RCTV}(\alpha_{n}|x)}-1\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, V_{\gamma(x)}\frac{\|K\|_{2}^{2}}{g(x)}\right),$$

where

$$V_{\gamma(x)} = rac{8(1-\gamma(x))(1-2\gamma(x))(1+2\gamma(x)+3\gamma^2(x))}{(1-3\gamma(x))(1-4\gamma(x))}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

|      |                     | Estimators and asymptotics results | Extrapolation |  |
|------|---------------------|------------------------------------|---------------|--|
| Weis | sman type estimator |                                    |               |  |
|      |                     |                                    |               |  |

- In Theorem 1, the condition  $nh^p\alpha_n\to\infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of kernel estimator which cannot extrapolate beyond the maximum observation in the ball B(x, h).
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

#### Definition

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$  and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\operatorname{RCTM}}_{a,n}^{W}(\beta_n|x) = \widehat{\operatorname{RCTM}}_{a,n}(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{a\hat{\gamma}_n(x)}$$

| $\cap$  |   | +1 |  |  |
|---------|---|----|--|--|
| $\circ$ | u |    |  |  |

# A Weissman type estimator

- In Theorem 1, the condition  $nh^p \alpha_n \to \infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of kernel estimator which cannot extrapolate beyond the maximum observation in the ball B(x, h).
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

#### Definition

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$  and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\operatorname{RCTM}}_{a,n}^{W}(\beta_{n}|x) = \widehat{\operatorname{RCTM}}_{a,n}(\alpha_{n}|x) \underbrace{\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{a\gamma_{n}(x)}}_{\text{extrapolation}}$$

イロト イポト イヨト イヨト

# A Weissman type estimator

- In Theorem 1, the condition  $nh^p\alpha_n\to\infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of kernel estimator which cannot extrapolate beyond the maximum observation in the ball B(x, h).
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

#### Definition

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$  and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\mathrm{RCTM}}_{a,n}^{W}(\beta_n|x) = \widehat{\mathrm{RCTM}}_{a,n}(\alpha_n|x) \underbrace{\left(\frac{\alpha_n}{\beta_n}\right)^{a\gamma_n(x)}}_{\text{extrapolation}}$$

#### Objective : to estimate $\gamma(x)$ .

# The Hill estimator

# • Without covariate : Hill [1975]

Let  $(k_n)_{n\geq 1}$  be a sequence of integers such that  $k_n \in \{1 \dots n\}$ . The Hill estimator is given by

$$\hat{\gamma}_{n,\alpha_n} = rac{1}{k_n-1}\sum_{i=1}^{k_n-1}\log(Z_{n-i+1,n}) - \log(Z_{n-k_n+1,n}),$$

where  $k_n = \lfloor n\alpha_n \rfloor$  and  $Z_{1,n} \leq \cdots \leq Z_{n,n}$  are the order statistics associated with *i.i.d.* realizations  $Z_1, \ldots, Z_n$  of the random variable Z.

#### • With a covariate : Gardes and Girard [2008]

Let  $(\alpha_n)_{n\geq 1}$  be a positive sequence such that  $\alpha_n \to 0$ . A kernel version of the Hill estimator is given by

$$\hat{\gamma}_{n,\alpha_n}(x) = \sum_{j=1}^{J} (\log(\widehat{\mathrm{RVaR}}_n(\tau_j \alpha_n | x)) - \log(\widehat{\mathrm{RVaR}}_n(\tau_1 \alpha_n | x))) / \sum_{j=1}^{J} \log(\tau_1 / \tau_j),$$

where  $J \ge 1$  and  $(\tau_j)_{j\ge 1}$  is a decreasing sequence of weights.

# Extrapolation

#### Theorem 2 :

Suppose the assumptions of Theorem 1 hold together with (F.3). Let us consider  $\hat{\gamma}_n(x)$  an estimator of the tail index such that

$$\sqrt{nh_n^p\alpha_n}(\hat{\gamma}_n(x)-\gamma(x))\stackrel{d}{
ightarrow}\mathcal{N}\left(0,v^2(x)
ight),$$

with v(x) > 0. If, moreover  $(\beta_n)_{n \ge 1}$  is a positive sequence such that  $\beta_n \to 0$ and  $\beta_n/\alpha_n \to 0$  as  $n \to \infty$ , we then have

$$\frac{\sqrt{nh_n^p\alpha_n}}{\log(\alpha_n/\beta_n)}\left(\frac{\widehat{\operatorname{RCTM}}_{a,n}^W(\beta_n|x)}{\operatorname{RCTM}_a(\beta_n|x)}-1\right) \xrightarrow{d} \mathcal{N}\left(0, (av(x))^2\right).$$

The condition  $\beta_n/\alpha_n \to 0$  allows us to extrapole and choose a level  $\beta_n$  arbitrarily small.

# Extrapolation

Daouia et al. [2011] have established the asymptotic normality of

$$\widehat{\operatorname{RVaR}}_n^W(\beta_n|x) = \widehat{\operatorname{RVaR}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\hat{\gamma}_n(x)}.$$

As a consequence, replacing  $\widehat{\mathrm{RVaR}}_n$  by  $\widehat{\mathrm{RVaR}}_n^W$  and  $\widehat{\mathrm{RCTM}}_{a,n}$  by  $\widehat{\mathrm{RCTM}}_{a,n}^W$  provides estimators for all risk measures considered in this presentation adapted to arbitrarily small levels.

In particular we have  $\operatorname{RCTE}(\alpha_n|x) = \operatorname{RCTM}_1(\alpha_n|x)$ . Consequently we obtain

$$\widehat{\operatorname{RCTE}}_n^W(\beta_n|x) = \widehat{\operatorname{RCTE}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\hat{\gamma}_n(x)}.$$

Application : 
$$\widehat{\mathrm{RVaR}}_n^W$$
 and  $\widehat{\mathrm{RCTE}}_n^W$ .

・ロト ・ 西 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへの

# Problem and data description





イロン イロン イヨン イヨン

Objective : to choose  $(h_n, \alpha_n)$ .

- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, \ldots, N\}$ .

- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, \dots, N\}$ .



- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, \dots, N\}$ .



- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, \ldots, N\}$ .



- Estimate  $\gamma > 0$  using the classical Hill estimator.
- It only depends on  $\alpha_j$ .
- The  $\alpha_j$  are choosen such that we stay in the tail of the distribution  $\max_{j \in \{1,...,R\}} (\alpha_j) < 0.1$

- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, \ldots, N\}$ .



- Estimate  $\gamma > 0$  using the classical Hill estimator.
- It only depends on  $\alpha_j$ .
- The  $\alpha_j$  are choosen such that we stay in the tail of the distribution  $\max_{j \in \{1,...,R\}} (\alpha_j) < 0.1$

 $\implies$  We obtain  $\hat{\gamma}_{n,t,\alpha_i}$ 

Application



Application





- Estimate γ(x) > 0 using the kernel version of the Hill estimator.
- It depends on  $\alpha_i$  and on  $h_i$ .
- The h<sub>i</sub> are choosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.



- Estimate γ(x) > 0 using the kernel version of the Hill estimator.
- It depends on  $\alpha_j$  and on  $h_i$ .
- The h<sub>i</sub> are choosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.

 $\implies$  We obtain  $\hat{\gamma}_{n,h_i,\alpha_i}(x_t)$ 



- Estimate γ(x) > 0 using the kernel version of the Hill estimator.
- It depends on  $\alpha_j$  and on  $h_i$ .
- The h<sub>i</sub> are choosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.

 $\implies$  We obtain  $\hat{\gamma}_{n,h_i,\alpha_i}(x_t)$ 

 $(h_{emp}, \alpha_{emp}) = \operatorname*{arg\,min}_{(h_i, \alpha_j) \in \mathcal{H} \times \mathcal{A}} \operatorname{median} \{ (\hat{\gamma}_{n,t,\alpha_j} - \hat{\gamma}_{n,h_i,\alpha_j}(\mathbf{x}_t))^2, t \in \{1, \dots, N\} \}.$ 

# Kernel interpolation



- Two dimensional covariate X function of the latitude and the longitude.
- Bi-quadratic kernel :  $K(x) = \frac{15}{16}(1-x^2)^2 \mathbb{I}_{\{|x| \le 1\}}$ .
- Harmonic sequence of weights :  $(\tau_j)_{j \in \{1,...,9\}} = 1/j$ .
- Results of the procedure  $(h_{emp}, \alpha_{emp}) = (24, 1/(3 * 365.25)).$

# Non extrapolated risk measures in the Cévennes-Vivarais region





# $\hat{\gamma}_{n,(1/(3*365.25)}(x)$ in the Cévennes-Vivarais region





# $\widehat{\text{RVaR}}_n^W(1/(100 * 365.25)|x)$ *i.e.* a return level of 100 years





# $\widehat{\operatorname{RCTE}}_n^W(1/(100*365.25)|x)$ corresponding to a return level of 100 years





イロト イポト イヨト イヨト

#### References

Daouia, A., Gardes, L., Girard, S. and Lekina, A. (2011). Kernel estimators of extreme level curves, *Test*, 20, 311–333.



Gardes, L. and Girard, S. (2008). A moving window approach for nonparametric estimation of the conditional tail index, *Journal of Multivariate Analysis*, **99**, 2368–2388.

- Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution, *The Annals of Statistics*, **3**, 1163–1174.
- Rockafellar, R.T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. *Journal of Risk*, 2, 21–42.



Valdez, E.A. (2005). Tail conditional variance for elliptically contoured distributions, *Belgian Actuarial Bulletin*, **5**, 26–36.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations, Journal of the American Statistical Association, 73, 812–815.

# Thanks for your attention.