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Definition of risk measures

Let Y ∈ R be a random loss variable. For α ∈ (0, 1), the Value-at-Risk of
level α is the quantity VaR(α) defined by

VaR(α) := F
←

(α) = inf{t,F (t) ≤ α},

where F
←

(.) is the generalized inverse of the survival function of Y .
VaR(α) is the upper α-quantile of the loss distribution.

The Conditional Tail Expectation of level α ∈ (0, 1) is defined by

CTE(α) := E(Y |Y > VaR(α)).

The Conditional-Value-at-Risk of level α ∈ (0, 1) introduced by Rockafellar
et Uryasev [2000] is defined by

CVaRλ(α) := λVaR(α) + (1− λ)CTE(α),

with 0 ≤ λ ≤ 1.

The Conditional Tail Variance of level α ∈ (0, 1) introduced by Valdez
[2005] is defined by

CTV(α) := E((Y − CTE(α))2|Y > VaR(α)).

3 / 25



Outline Nonparametric extreme risks measures Estimators and asymptotics results Extrapolation Application

A new risk measure : the Conditional Tail Moment

The first purpose of this presentation is to unify the definitions of the previous
risk measures. To this end, a new risk measure is introduced. The Conditional
Tail Moment of level α ∈ (0, 1) is defined by

CTMa(α) := E(Y a|Y > VaR(α)),

where a ≥ 0 is such that the moment of order a of Y exists.

All the previous risk measures of level α can be rewritten as

VaR(α) = F
←

(α),

CTE(α) = CTM1(α),

CVaR(α) = λVaR(α) + (1− λ)CTM1(α),

CTV(α) = CTM2(α)− CTM2
1(α).

=⇒ All the risk measures depend on the VaR and the CTMa.
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Framework : extreme losses and regression case

Our second aim is to adapt risk measures to extreme losses and to the case
where a covariate X ∈ Rp is recorded simultaneously with the loss variable Y .

1 We replace the fixed level α ∈ (0, 1) by a sequence αn →
n→∞

0.

2 Denoting by F (.|x) the conditional survival distribution function of Y
given X = x , we define the Regression Value-at Risk by :

RVaR(αn|x) := F
←

(α|x) = inf{t,F (t|x) ≤ α},

and the Regression Conditional Tail Moment of order a by :

RCTMa(αn|x) := E(Y a|Y > RVaR(αn|x),X = x),

where a > 0 is such that the moment of order a of Y exists.
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Rewriting risk measures

This yields the following risk measures :

RCTE(αn|x) = RCTM1(αn|x),

RCVaRλ(αn|x) = λRVaR(αn|x) + (1− λ)RCTM1(αn|x),

RCTVn(αn|x) = RCTM2(αn|x)− RCTM2
1(αn|x).

=⇒ All the risk measures depend on the RVaR and the RCTMa.

We defined the conditional moment of order a ≥ 0 of Y given X = x by

ϕa(y |x) = E (Y aI{Y > y}|X = x) ,

where I{.} is the indicator function. Remarking that ϕ0(y |x) = F (y |x) we have

RVaR(αn|x) = ϕ←0 (αn|x),

RCTMa(αn|x) =
1

αn
ϕa(ϕ←0 (αn|x)|x).

Objective : to estimate ϕa(.|x) and ϕ←a (.|x).
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Inference

Estimator of ϕa(.|x) :

We propose to use a classical kernel estimator given by

bϕa,n(y |x) =
nX

i=1

K

„
x − Xi

hn

«
Y a

i I{Yi > y}

,
nX

i=1

K

„
x − Xi

hn

«
.

In this context, hn is a non-random sequence called the window-width such
that hn → 0 as n→∞ and K is a density on Rp.

Estimator of ϕ←a (.|x) :

Since ϕ̂a,n(.|x) is a non-increasing function, we can define an estimator of
ϕ←a (α|x) for α ∈ (0, 1) by

ϕ̂←a,n(α|x) = inf{t, ϕ̂a,n(t|x) < α}.
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Heavy-tailed distributions

(F.1) We assume that the conditional survival distribution function of Y given
X = x is heavy-tailed and admits a probability density function.

It is also equivalent to stating that for all λ > 0,

lim
y→∞

F (λy |x)

F (y |x)
= λ−1/γ(x).

In this context, γ(.) is a positive function of the covariate x and is referred to
as the conditional tail index since it tunes the tail heaviness of the conditional
distribution of Y given X = x .

Condition (F.1) also implies that for a ∈ [0, 1/γ(x)) and for all y > 0,

RCTMa(1/y |x) = y aγ(x)`a(y |x),

where for x fixed, `a(.|x) is a slowly-varying function at infinity, i.e for all λ > 0,

lim
y→∞

`a(λy |x)

`a(y |x)
= 1.
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Karamata representation

It also appears that, under (F.1), a sufficient condition for the existence of
RCTMa(1/.|x) is a < 1/γ(x).

(F.2) `a(.|x) is normalized for all a ∈ [0, 1/γ(x)).

In such a case, the Karamata representation of the slowly-varying function can
be written as

`a(y |x) = ca(x) exp

„Z y

1

εa(u|x)

u
du

«
,

where ca(.) is a positive function and εa(y |x)→ 0 as y →∞.

Here, we limit ourselves to assuming that for all a ∈ (0, 1/γ(x)),

(F.3) |εa(.|x)| is continuous and ultimately non-increasing.
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Others assumptions

A Lipschitz condition on the probability density function g of X is also
required. For all (x , x ′) ∈ Rp × Rp, the Euclidean distance between x and x ′ is
denoted by d(x , x ′) and the following assumption is introduced :

(L) There exists a constant cg > 0 such that |g(x)− g(x ′)| ≤ cgd(x , x ′).

The next assumption is standard in the kernel estimation framework.

(K) K is a bounded density on Rp, with support S included in the unit ball of
Rp.

Finally, for y > 0 and ξ > 0, the largest oscillation of the conditional moment
of order a ∈ [0, 1/γ(x)) is given by

ωn(y , ξ) = sup

˛̨̨̨
ϕa(z |x)

ϕa(z |x ′) − 1

˛̨̨̨
, z ∈ [(1− ξ)y , (1 + ξ)y ] and d(x , x ′) ≤ h

ff
.
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Main results

Theorem 1 :

Suppose (F.1), (F.2), (L) and (K) hold. Let us introduce
0 ≤ a1 < a2 < · · · < aJ where J is a positive integer. For all x ∈ Rp such that
g(x) > 0 and 0 < γ(x) < 1/(2aJ), let us introduce a sequence (αn) with
αn → 0 and nhpαn →∞ as n→∞. If there exists ξ > 0 such that
nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0, then, the random vector

√
nhpαn

8<:
 

R̂CTMaj ,n(αn|x)

RCTMaj (αn|x)
− 1

!
j∈{1,...,J}

,

 
R̂VaRn(αn|x)

RVaR(αn|x)
− 1

!9=;
is asymptotically Gaussian, centered, with a (J + 1)× (J + 1) covariance

matrix ‖K‖2
2γ

2(x)Σ(x)/g(x) where for (i , j) ∈ {1, . . . , J}2 we have

Σ(x) =

0BBB@
ai ajγ

2(x)(2−(ai +aj )γ(x))

(1−(ai +aj )γ(x))

a1γ
2(x))
...

aJγ
2(x)

a1γ
2(x) · · · aJγ

2(x) γ2(x)

1CCCA .
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Asymptotic normalities

Suppose the assumptions of Theorem 1 hold. Then, if 0 < γ(x) < 1/2, we have

√
nhpαn

 
R̂CTEn(αn|x)

RCTE(αn|x)
− 1

!
d−→ N

„
0,

2(1− γ(x))γ2(x)

1− 2γ(x)

‖K‖2
2

g(x)

«
√

nhpαn

 
R̂CVaRλ,n(αn|x)

RCVaRλ(αn|x)
− 1

!
d−→ N

„
0,
γ2(x)(λ2 + 2− 2λ− 2γ(x))

1− 2γ(x)

‖K‖2
2

g(x)

«

The RCTV(αn|x) estimator involves the computation of a second order
moment, it requires the stronger condition 0 < γ(x) < 1/4,

√
nhpαn

 
R̂CTVn(αn|x)

RCTV(αn|x)
− 1

!
d−→ N

„
0,Vγ(x)

‖K‖2
2

g(x)

«
,

where

Vγ(x) =
8(1− γ(x))(1− 2γ(x))(1 + 2γ(x) + 3γ2(x))

(1− 3γ(x))(1− 4γ(x))
.
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A Weissman type estimator

In Theorem 1, the condition nhpαn →∞ provides a lower bound on the
level of the risk measure to estimate.

This restriction is a consequence of the use of kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x , h).

In consequence, αn must be an order of an extreme quantile within the
sample.

Definition

Let us consider (αn)n≥1 and (βn)n≥1 two positives sequences such that αn → 0,
βn → 0 and 0 < βn < αn. A kernel adaptation of Weissman’s estimator [1978]
is given by

R̂CTM
W

a,n(βn|x) = R̂CTMa,n(αn|x)

„
αn

βn

«aγ̂n(x)

.
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Objective : to estimate γ(x).
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The Hill estimator

Without covariate : Hill [1975]

Let (kn)n≥1 be a sequence of integers such that kn ∈ {1 . . . n}. The Hill
estimator is given by

γ̂n,αn =
1

kn − 1

kn−1X
i=1

log(Zn−i+1,n)− log(Zn−kn+1,n),

where kn = bnαnc and Z1,n ≤ · · · ≤ Zn,n are the order statistics associated
with i.i.d. realizations Z1, . . . ,Zn of the random variable Z .

With a covariate : Gardes and Girard [2008]

Let (αn)n≥1 be a positive sequence such that αn → 0. A kernel version of
the Hill estimator is given by

γ̂n,αn (x) =
JX

j=1

(log(R̂VaRn(τjαn|x))− log(R̂VaRn(τ1αn|x)))

,
JX

j=1

log(τ1/τj),

where J ≥ 1 and (τj)j≥1 is a decreasing sequence of weights.
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Extrapolation

Theorem 2 :

Suppose the assumptions of Theorem 1 hold together with (F.3). Let us
consider γ̂n(x) an estimator of the tail index such thatp

nhp
nαn(γ̂n(x)− γ(x))

d→ N
“

0, v 2(x)
”
,

with v(x) > 0. If, moreover (βn)n≥1 is a positive sequence such that βn → 0
and βn/αn → 0 as n→∞, we then have

√
nhp

nαn

log(αn/βn)

0@ R̂CTM
W

a,n(βn|x)

RCTMa(βn|x)
− 1

1A d→ N
“

0, (av(x))2
”
.

The condition βn/αn → 0 allows us to extrapole and choose a level βn

arbitrarily small.
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Extrapolation

Daouia et al. [2011] have established the asymptotic normality of

R̂VaR
W

n (βn|x) = R̂VaRn(αn|x)

„
αn

βn

«γ̂n(x)

.

As a consequence, replacing R̂VaRn by R̂VaR
W

n and R̂CTMa,n by R̂CTM
W

a,n

provides estimators for all risk measures considered in this presentation adapted
to arbitrarily small levels.

In particular we have RCTE(αn|x) = RCTM1(αn|x). Consequently we obtain

R̂CTE
W

n (βn|x) = R̂CTEn(αn|x)

„
αn

βn

«γ̂n(x)

.

Application : R̂VaR
W

n and R̂CTE
W

n .
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Problem and data description

The Cévennes-Vivarais region 523 Stations / 1958–2000 / in mm

Objective : to choose (hn, αn).

17 / 25



Outline Nonparametric extreme risks measures Estimators and asymptotics results Extrapolation Application

A leave-one-out cross validation procedure to choose hn and αn : Step 1

Double loop on H = {hi ; i = 1, . . . ,M} and on A = {αj ; j = 1, . . . ,R}.
Loop on all stations {xt ; t = 1, . . . ,N}.

Remove all others stations

Estimate γ > 0 using the
classical Hill estimator.

It only depends on αj .

The αj are choosen such that
we stay in the tail of the
distribution max

j∈{1,...,R}
(αj) < 0.1

=⇒ We obtain γ̂n,t,αj
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A leave-one-out cross validation procedure to choose hn and αn : Step 2

Remove the station xt

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

The hi are choosen such that
there is at least one station
in B(xt , hi ) \ {xt}.

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.
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Kernel interpolation

523 Stations Regular grid : 200×200 Work in B(x , h)

Two dimensional covariate X function of the latitude and the longitude.

Bi-quadratic kernel : K(x) = 15
16

(1− x2)2I{|x|≤1}.

Harmonic sequence of weights : (τj)j∈{1,...,9} = 1/j .

Results of the procedure (hemp, αemp) = (24, 1/(3 ∗ 365.25)).
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Non extrapolated risk measures in the Cévennes-Vivarais region

R̂VaRn(1/(3 ∗ 365.25)|x) R̂CTEn(1/(3 ∗ 365.25)|x)
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γ̂n,(1/(3∗365.25)(x) in the Cévennes-Vivarais region
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R̂VaR
W

n (1/(100 ∗ 365.25)|x) i.e. a return level of 100 years
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R̂CTE
W

n (1/(100 ∗ 365.25)|x) corresponding to a return level of 100 years
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