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The Value-at-Risk

Let Y ∈ R be a random loss variable. The Value-at-Risk of level α ∈ (0, 1) denoted
by VaR(α) is defined by

VaR(α) := F
←

(α) = inf{y ,F (y) ≤ α},

where F
←

is the generalized inverse of the survival function F (y) = P(Y ≥ y) of Y .
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The VaR(α) is the quantile of level α of the survival function of the r.v. Y .
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Drawbacks of the Value-at-Risk

Let us consider Y1 and Y2 two loss r.v. with associated survival function F 1 and F 2.
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=⇒ Random variables with light tail probabilities and with heavy tail probabilities may
have the same VaR(α). This is one of the main criticism against VaR as a risk
measure (Embrechts et al. [1997]).
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The Conditional Tail Expectation

The Conditional Tail Expectation of level α ∈ (0, 1) denoted CTE(α) is defined by

CTE(α) := E(Y |Y > VaR(α)).
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=⇒ The CTE(α) takes into account the whole information contained in the upper part
of the tail distribution.
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The Conditional Tail Variance

The Conditional Tail Variance of level α ∈ (0, 1) denoted CTV(α) and introduced
by Valdez [2005] is defined by

CTV(α) := E((Y − CTE(α))2|Y > VaR(α)).
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=⇒ The CTV(α) measures the conditional variability of Y given that Y > VaR(α) and
indicates how far away the events deviate from CTE(α).
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The Conditional Tail Moment

The Conditional Tail Skewness of level α ∈ (0, 1) denoted CTS(α) and introduced
by Hong and Elshahat [2010] is defined by

CTS(α) :=
E(Y 3|Y > VaR(α))

(CTV(α))3/2

The CTS evaluates the asymmetry of the distribution above the VaR.

=⇒ We can unify the definitions of the previous risk measures using the Conditional Tail
Moment introduced by El Methni et al. [2014].

Definition

The Conditional Tail Moment of level α ∈ (0, 1) is defined by

CTMb(α) := E(Y b|Y > VaR(α)),

where b ≥ 0 is such that the moment of order b of Y exists.
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Rewritten risk measures

All the previous risk measures of level α can be rewritten as

Risk Measure Rewritten Risk Measure

CTE(α) = E(Y |Y > VaR(α)) CTM1(α)

CTV(α) = E((Y − CTE(α))2|Y > VaR(α)) CTM2(α)− CTM2
1(α)

CTS(α) = E(Y 3|Y > VaR(α))/(CTV(α))3/2 CTM3(α)/(CTV(α))3/2

=⇒ All the risk measures depend on the CTMb(α).
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Framework : regression case

=⇒ Our contributions consist in adding two difficulties in the framework of the
estimation of risk measures.

1 First we add the presence of a random covariate X ∈ Rp.

Y is a positive random variable and X ∈ Rp a random vector of regressors recorded
simultaneously with Y .

In what follows, it is assumed that (X ,Y ) is a continuous random vector.

The probability density function (p.d.f.) of X is denoted by g(·).

The conditional p.d.f. of Y given X = x is denoted by f (·|x).
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Regression Value at Risk and Regression Conditional Tail Moment

For any x ∈ Rp such that g(x) 6= 0, the conditional distribution of Y given X = x is
characterized by the conditional survival function

F (·|x) = P(Y > ·|X = x)

or, equivalently, by the Regression Value at Risk defined for α ∈ (0, 1) by

RVaR(α|x) := F
←

(α|x) = inf{t,F (t|x) ≤ α}.

The Regression Value at Risk of level α is a generalization to a regression setting of the
Value at Risk.

The Regression Conditional Tail Moment of order b is defined by

RCTMb(α|x) := E(Y b|Y > RVaR(α|x),X = x),

where b ≥ 0 is such that the moment of order b of Y exists.
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Framework : extreme losses

2 Second we are interested in the estimation of risk measures in the case of extreme
losses.

=⇒ To this end, we replace the fixed order α ∈ (0, 1) by a sequence αn → 0 as the
sample size n→∞.

RVaR(αn|x) := F
←

(αn|x)

RCTMb(αn|x) := E(Y b|Y > RVaR(αn|x),X = x)

=⇒ All the risk measures depend on the RCTMb(α|x).

RCTE(αn|x) = RCTM1(αn|x),

RCTV(αn|x) = RCTM2(αn|x)− RCTM2
1(αn|x),

RCTS(αn|x) = RCTM3(αn|x)/(RCTV(αn|x))3/2.
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Regression Conditional Tail Moment

Starting from n independent copies (X1,Y1), . . . , (Xn,Yn) of the random vector (X ,Y ),
we address here the estimation of the Regression Conditional Tail Moment of level αn

and order b ≥ 0 given by

RCTMb(αn|x) :=
1

αn
E
(
Y bI{Y > RVaR(αn|x)}|X = x

)
,

where b is such that the moment of order b of Y exits and I{·} is the indicator function.

=⇒ We want to estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

{(
R̂CTMbj ,n(αn|x), j = 1, . . . , J

)}
,

with 0 ≤ b1 < . . . < bJ and where J is an integer.
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Estimator of the RVaR

The estimator of the Regression Value at Risk of level αn considered is given by

R̂VaRn(αn|x) = inf{t, ˆ̄Fn(t|x) ≤ αn}

with
ˆ̄Fn(y |x) =

∑n
i=1Kkn (x − Xi )I{Yi > y}∑n

i=1Kkn (x − Xi ).

The bandwidth (kn) is a non random sequence converging to 0 as n→∞.

It controls the smoothness of the kernel estimator.

For z > 0, we have also introduced the notation Kz(·) = z−pK(·/z) where K(·) is a
density on Rp.

The estimation of the RVaR(αn|x) has been addressed for instance by Daouia et
al. [2013].

13 / 33



Estimator of the RCTM and the RVaR

The estimator of the Regression Conditional Tail Moment of level αn and order b is given
by

R̂CTMb,n(αn|x) =
1

αn

∑n
i=1Khn (x − Xi )Y

b
i I{Yi > R̂VaRn(αn|x)}∑n

i=1Khn (x − Xi )

where

R̂VaRn(αn|x) = inf{t, ˆ̄Fn(t|x) ≤ αn}

with

ˆ̄Fn(y |x) =

∑n
i=1Kkn (x − Xi )I{Yi > y}∑n

i=1Kkn (x − Xi ).

The bandwidths (hn) and (kn) are non random sequences converging to 0 as n→∞.

They control the smoothness of the kernel estimators. In what follows, the
dependence on n for these two sequences is omitted.

For the sake of simplicity we have chosen the same kernel K(·).
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Von-Mises condition in the presence of a covariate

To obtain the asymptotic property of the Regression Conditional Tail Moment estimator,
an assumption on the right tail behavior of the conditional distribution of Y given X = x
is required. In the sequel, we assume that,

(F) The function RVaR(·|x) is differentiable and

lim
α→0

RVaR′(tα|x)

RVaR′(α|x)
= t−(γ(x)+1),

locally uniformly in t ∈ (0,∞).

=⇒ In other words :

−RVaR′(·|x) is said to be regularly varying at 0 with index −(γ(x) + 1)

The condition (F) entails that the conditional distribution of Y given X = x is in the
maximum domain of attraction of the extreme value distribution with extreme value
index γ(x).
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Conditional extreme-value index

The unknown function γ(x) is referred as the conditional extreme-value index.

It controls the behaviour of the tail of the survival function and by consequence the
behaviour of the extreme values.

=⇒ if γ(x) < 0, F (.|x) belongs to the domain of attraction of Weibull. It contains
distributions with finite right tail, i.e. short-tailed.

=⇒ if γ(x) = 0, F (.|x) belongs to the domain of attraction of Gumbel. It contains
distributions with survival function exponentially decreasing, i.e. light-tailed.

=⇒ if γ(x) > 0, F (.|x) belongs to the domain of attraction of Fréchet. It contains
distributions with survival function polynomially decreasing, i.e. heavy-tailed.

The case γ(x) > 0 has already been investigated by El Methni et al. [2014].
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Assumptions

First, a Lipschitz condition on the probability density function g of X is required. For all
(x , x ′) ∈ Rp × Rp, denoting by d(x , x ′) the distance between x and x ′, we suppose that

(L) There exists a constant cg > 0 such that |g(x)− g(x ′)| ≤ cgd(x , x ′).

The next assumption is devoted to the kernel function K(·).

(K) K(·) is a bounded density on Rp, with support S included in the unit ball of Rp.

Before stating our main result, some further notations are required.

For ξ > 0, the largest oscillation at point (x , y) ∈ Rp × R+
∗ associated with the

Regression Conditional Tail Moment of order b ∈ [0, 1/γ+(x)) is given by

ω (x , y , b, ξ, h) = sup

{∣∣∣∣ ϕb(z |x)

ϕb(z |x ′) − 1

∣∣∣∣ with

∣∣∣∣ zy − 1

∣∣∣∣ ≤ ξ and x ′ ∈ B(x , h)

}
,

where ϕb(·|x) := F (·|x)RCTMb(F (·|x)|x) and B(x , h) denotes the ball centred at x with
radius h.
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Asymptotic normality of R̂VaRn(αn|x)

Theorem 1

Suppose (F), (L) and (K) hold. For x ∈ Rp such that g(x) > 0, let αn → 0 such that

nkpαn →∞ as n→∞

If there exists ξ > 0 such that

nkpαn (k ∨ ω(x ,RVaR(αn|x), 0, ξ, k))2 → 0,

then

(nkpα−1
n )1/2f (RVaR(αn|x)|x)

(
R̂VaRn(αn|x)− RVaR(αn|x)

)
d−→ N

(
0,
‖K‖2

2

g(x)

)
.

=⇒ We thus find back the result established in Daouia et al. [2013] under weaker
assumptions.

18 / 33



Asymptotic joint distribution of our estimators

Theorem 2

Suppose (F), (L) and (K) hold. For x ∈ Rp such that g(x) > 0 :

Let 0 ≤ b1 ≤ . . . ≤ bJ < 1/(2γ+(x)),

` = h ∧ k and ` = h ∨ k.

Let αn → 0 such that n`pαn →∞ as n→∞.

If there exists ξ > 0 such that

n`
p
αn

(
` ∨max

b
ω(x ,RVaR(αn|x), b, ξ, `)

)2

→ 0,

then, if
h/k → 0 or k/h→ 0

the random vector

(n`pαn)1/2

{(
R̂CTMbj ,n(αn|x)

RCTMbj (αn|x)
− 1

)}
j∈{1,...,J}

is asymptotically Gaussian, centred, with a J × J covariance matrix.
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Covariance matrix two cases

In what follows, (·)+ (resp. (·)−) denotes the positive (resp. negative) part function.

1 If k/h→ 0 then the covariance matrix is given by

‖K‖2
2Σ(1)(x)

g(x)

where for (i , j) ∈ {1, . . . , J}2,

Σ
(1)
i,j (x) = (1− biγ+(x))(1− bjγ+(x)).

2 If h/k → 0 then the covariance matrix is given by

‖K‖2
2Σ(2)(x)

g(x)

where for (i , j) ∈ {1, . . . , J}2,

Σ
(2)
i,j (x) =

(1− biγ+(x))(1− bjγ+(x))

1− (bi + bj)γ+(x)
=

Σ
(1)
i,j (x)

1− (bi + bj)γ+(x)
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Covariance matrix two cases

Recall that

Σ
(1)
i,j (x) = (1− biγ+(x))(1− bjγ+(x)) and Σ

(2)
i,j (x) =

Σ
(1)
i,j (x)

1− (bi + bj)γ+(x)

Note that if γ(x) ≤ 0, asymptotic covariance matrices do not depend on
{b1, . . . , bJ} and thus the estimators share the same rate of convergence.

Conversely, when γ(x) > 0, asymptotic variances are increasing functions of the
RCTM order.

Moreover, in this case, note that for all i ∈ {1, . . . , J}

Σ
(2)
i,i (x) > Σ

(1)
i,i (x)

=⇒ Taking k/h→ 0 leads to more efficient estimators than h/k → 0.
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Proposition

Under (F), the Regression Conditional Tail Moment or order b is asymptotically
proportional to the Regression Value at Risk to the power b.

Proposition

Under (F), for all b ∈ [0, 1/γ+(x)),

lim
α→0

RCTMb(α|x)

[RVaR(α|x)]b
=

1

1− bγ+(x)
,

and RCTMb(·|x) is regularly varying with index −bγ+(x).

In particular, the Proposition is an extension to a regression setting of the result
established in Hua and Joe [2011] for the Conditional Tail Expectation (b = 1) in the
framework of heavy-tailded distributions (γ = γ(x) > 0).
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Right endpoint

Let us note y∗(x) = RVaR(0|x) = F̄←(0|x) ∈ (0,∞] the endpoint of Y given X = x

Two cases :

1 If the endpoint y∗(x) is infinite :

y∗(x) =∞ then γ(x) ≥ 0

=⇒ We can make risk measure estimation.

=⇒ An application in pluviometry has already been done in El Methni et al. [2014].
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Right endpoint

2 If the endpoint y∗(x)) is finite, the risk measures do not have sense :

y∗(x) <∞ then γ(x) ≤ 0

As a consequence of the Proposition

RCTMb(α|x) = [RVaR(α|x)]b(1 + o(1))→ [y∗(x)]b as α→ 0.

For all b > 0, a natural estimator of the right endpoint (or frontier) is thus given by

ŷ∗b,n(x) :=
[
R̂CTMb,n(αn|x)

]1/b

where αn is a sequence converging to 0 as n→∞.

=⇒ We can use our Proposition to make frontier estimation.

=⇒ We propose an application in nuclear reactor reliability.
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Simulation and Procedure

The performance of the frontier estimator ŷ∗b,n(x) is illustrated on simulated data.

ŷ∗b,n(x) depends on two hyper-parameters h and α :

The choice of the bandwidth h, which controls the degree of smoothing, is a recurrent
problem in non-parametric statistics.

Besides, the choice of α is crucial, it is equivalent to the choice of the number of
upper order statistics in the non-conditional extreme-value theory.

We propose a data driven procedure to select h and α.

The performance of the data-driven selection of the hyper-parameters is compared
to an oracle one. Our procedure yields reasonable results.
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Simulation and Procedure

We have compared 10 estimators ŷ∗1,n, . . . , ŷ
∗
10,n deduced from ŷ∗b,n(x) with R̂VaR

and three estimators ŷ
(∗,gj)
n , ŷ

(∗,mc)
n and ŷ

(∗,mv)
n from Girard and Jacob [2008] and

Girard et al. [2013]

It appears that ŷ∗1,n = ĈTE does not yield very good results but ŷ∗2,n, . . . , ŷ
∗
10,n all

perform better than R̂VaR, ŷ
(∗,gj)
n , ŷ

(∗,mc)
n and ŷ

(∗,mv)
n in all situations.

Among them, ŷ∗7,n yields the best results but the behavior of ŷ∗4,n, ŷ∗5,n and ŷ∗6,n are
very close.

As a conclusion it appears on this numerical study that ŷ∗b,n combined with the
data-driven hyper-parameters selection are efficient frontier estimators for b ≥ 2.

Their performance seems to be stable with b ≥ 2 but an automatic selection of b
could be of interest.
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Application in nuclear reactors reliability

The dataset comes from the US Electric Power Research Institute and consists of
n = 254 toughness results obtained from non-irradiated representative steels.
The variable of interest Y is the fracture toughness and the unidimensional covariate
X is the temperature measured in degrees Fahrenheit.
As the temperature decreases, the steel fissures more easily.
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Frontier estimation

In a worst case scenario, it is important to know the upper limit of fracture
toughness of each material as a function of the temperature, that is y∗(x).

An accurate knowledge of the change in fracture toughness of the reactor pressure
vessel materials as a function of the temperature is of prime importance in a nuclear
power plant’s lifetime programme.
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Frontier estimation

The hyper-parameters associated with ŷ∗7,n are chosen in the sets

H = {17, 18, . . . , 120} and A = {0.01, 0.011, . . . , 0.1}

The selection yields (hdata, αdata) = (98, 0.085)
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Frontier estimation

The hyper-parameters associated with ŷ∗7,n are chosen in the sets

H = {17, 18, . . . , 120} and A = {0.01, 0.011, . . . , 0.1}

The selection yields (hdata, αdata) = (98, 0.085)
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Frontier estimation

The hyper-parameters associated with ŷ∗7,n are chosen in the sets

H = {17, 18, . . . , 120} and A = {0.01, 0.011, . . . , 0.1}

The selection yields (hdata, αdata) = (98, 0.085)
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Frontier estimation

The hyper-parameters associated with ŷ∗7,n are chosen in the sets

H = {17, 18, . . . , 120} and A = {0.01, 0.011, . . . , 0.1}

The selection yields (hdata, αdata) = (98, 0.085)
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Frontier estimation

We compare ŷ∗7,n to the spline-based estimators CS-B and QS-B recently introduced
in Daouia et al. [2016] for monotone boundaries.

The BIC criterion is used to determine the complexity of the spline approximation.
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Frontier estimation

We compare ŷ∗7,n to the spline-based estimators CS-B and QS-B recently introduced
in Daouia et al. [2016] for monotone boundaries.

The BIC criterion is used to determine the complexity of the spline approximation.
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CS-B and QS-B simply interpolate the boundary points whereas ŷ∗7,n estimates a
heavier tail and thus a higher value for the limit of fracture toughness.

Moreover, unlike us, they make different hypothesis on the form of the curve.
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Conclusions

Commentaries

+ New tool for the prevention of risk and frontier estimation.

+ Theoretical properties similar to the univariate case (extreme or not) and with or
without a covariate.

+ Our results are similar to those obtained by Daouia et al. [2013] and El Methni et al.
[2014]. We have filled in the gap between these two works.

+ Capable to estimate risk measures based on conditional moments of the r.v. of losses
given that the losses are greater than RVaR(α) for short, light and heavy-tailed
distributions.

+ Tuning parameter selection procedure to choose (h, α).

Illustration on real data

=⇒ Application in pluviometry.

=⇒ Application in nuclear reactors reliability.

Long-term perspectives

- Curse of dimensionality.
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Further readings

This presentation is based on the research article

El Methni, J., Gardes, L. and Girard, S. Kernel estimation of extreme regression risk
measures, to appear in Electronic Journal of Statistics, 2018.

On my personal web page you can find a link to the Preprint version.

Thank you for your attention
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