Kernel estimation of extreme regression risk measures

by

Jonathan EL METHNI

in collaboration with

Stéphane GIRARD & Laurent GARDES

13th International Conference on Operations Research Havana Cuba, March 2018.

3

・ロト ・ 日本・ ・ ヨト・ ・ ヨト・・

Estimators and asymptotic results

Applications

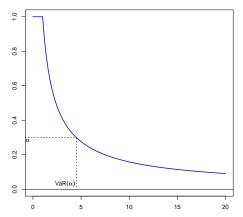
6 Conclusions and perspectives

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

 Let Y ∈ ℝ be a random loss variable. The Value-at-Risk of level α ∈ (0, 1) denoted by VaR(α) is defined by

$$\operatorname{VaR}(\alpha) := \overline{F}^{\leftarrow}(\alpha) = \inf\{y, \overline{F}(y) \le \alpha\},\$$

where $\overline{F}^{\leftarrow}$ is the generalized inverse of the survival function $\overline{F}(y) = \mathbb{P}(Y \ge y)$ of Y.

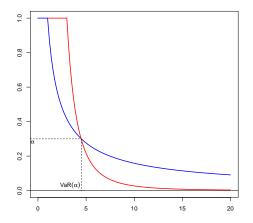


• The VaR(α) is the quantile of level α of the survival function of the r.v. Y.

3 / 33

Drawbacks of the Value-at-Risk

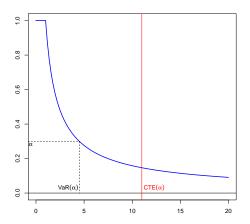
• Let us consider Y_1 and Y_2 two loss r.v. with associated survival function \overline{F}_1 and \overline{F}_2 .



⇒ Random variables with light tail probabilities and with heavy tail probabilities may have the same VaR(α). This is one of the main criticism against VaR as a risk measure (Embrechts *et al.* [1997]).

• The Conditional Tail Expectation of level $\alpha \in (0,1)$ denoted $CTE(\alpha)$ is defined by

 $CTE(\alpha) := \mathbb{E}(Y|Y > VaR(\alpha)).$

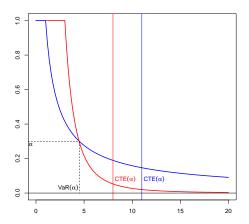


 $\Rightarrow \text{ The } \mathsf{CTE}(\alpha) \text{ takes into account the whole information contained in the upper part of the tail distribution.}$

5 / 33

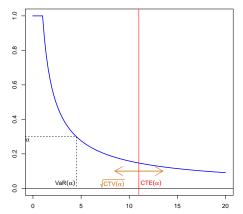
• The Conditional Tail Expectation of level $\alpha \in (0,1)$ denoted $CTE(\alpha)$ is defined by

 $CTE(\alpha) := \mathbb{E}(Y|Y > VaR(\alpha)).$



 $\Rightarrow \text{ The } CTE(\alpha) \text{ takes into account the whole information contained in the upper part of the tail distribution.}$

 The Conditional Tail Variance of level α ∈ (0, 1) denoted CTV(α) and introduced by Valdez [2005] is defined by



 $\operatorname{CTV}(\alpha) := \mathbb{E}((Y - \operatorname{CTE}(\alpha))^2 | Y > \operatorname{VaR}(\alpha)).$

 \implies The CTV(α) measures the conditional variability of Y given that Y > VaR(α) and indicates how far away the events deviate from CTE(α).

• The Conditional Tail Skewness of level $\alpha \in (0, 1)$ denoted $CTS(\alpha)$ and introduced by Hong and Elshahat [2010] is defined by

$$\mathrm{CTS}(\alpha) := rac{\mathbb{E}(Y^3|Y > \mathrm{VaR}(\alpha))}{(\mathrm{CTV}(\alpha))^{3/2}}$$

The CTS evaluates the asymmetry of the distribution above the VaR.

⇒ We can unify the definitions of the previous risk measures using the Conditional Tail Moment introduced by El Methni *et al.* [2014].

Definition

The Conditional Tail Moment of level $\alpha \in (0,1)$ is defined by

 $\operatorname{CTM}_b(\alpha) := \mathbb{E}(Y^b | Y > \operatorname{VaR}(\alpha)),$

where $b \ge 0$ is such that the moment of order b of Y exists.

All the previous risk measures of level α can be rewritten as

Risk Measure	Rewritten Risk Measure
$CTE(\alpha) = \mathbb{E}(Y Y > \operatorname{VaR}(\alpha))$	$\mathrm{CTM}_1(lpha)$
$CTV(\alpha) = \mathbb{E}((Y - \mathrm{CTE}(\alpha))^2 Y > \mathrm{VaR}(\alpha))$	$\operatorname{CTM}_2(\alpha) - \operatorname{CTM}_1^2(\alpha)$
$CTS(\alpha) = \mathbb{E}(Y^3 Y > \mathrm{VaR}(\alpha)) / (\mathrm{CTV}(\alpha))^{3/2}$	$\mathrm{CTM}_3(lpha)/(\mathrm{CTV}(lpha))^{3/2}$

 \implies All the risk measures depend on the CTM_b(α).

 \Longrightarrow Our contributions consist in adding two difficulties in the framework of the estimation of risk measures.

() First we add the presence of a random covariate $X \in \mathbb{R}^{p}$.

- Y is a positive random variable and X ∈ ℝ^ρ a random vector of regressors recorded simultaneously with Y.
- In what follows, it is assumed that (X, Y) is a continuous random vector.
- The probability density function (p.d.f.) of X is denoted by $g(\cdot)$.
- The conditional p.d.f. of Y given X = x is denoted by $f(\cdot|x)$.

For any $x \in \mathbb{R}^p$ such that $g(x) \neq 0$, the conditional distribution of Y given X = x is characterized by the conditional survival function

 $\overline{F}(\cdot|x) = \mathbb{P}(Y > \cdot|X = x)$

or, equivalently, by the Regression Value at Risk defined for $lpha \in (0,1)$ by

 $\operatorname{RVaR}(\alpha|x) := \overline{F}^{\leftarrow}(\alpha|x) = \inf\{t, \overline{F}(t|x) \le \alpha\}.$

The Regression Value at Risk of level α is a generalization to a regression setting of the Value at Risk.

The Regression Conditional Tail Moment of order *b* is defined by

 $\operatorname{RCTM}_b(\alpha|x) := \mathbb{E}(Y^b|Y > \operatorname{RVaR}(\alpha|x), X = x),$

where $b \ge 0$ is such that the moment of order b of Y exists.

- Second we are interested in the estimation of risk measures in the case of extreme losses.
- ⇒ To this end, we replace the fixed order $\alpha \in (0, 1)$ by a sequence $\alpha_n \to 0$ as the sample size $n \to \infty$.

$$\begin{aligned} & \operatorname{RVaR}(\alpha_n|x) & := \quad \overline{F} \stackrel{\leftarrow}{\leftarrow} (\alpha_n|x) \\ & \operatorname{RCTM}_b(\alpha_n|x) & := \quad \mathbb{E}(Y^b|Y > \operatorname{RVaR}(\alpha_n|x), X = x) \end{aligned}$$

 \implies All the risk measures depend on the RCTM_b($\alpha | x$).

$$\begin{aligned} &\operatorname{RCTE}(\alpha_n|x) &= \operatorname{RCTM}_1(\alpha_n|x), \\ &\operatorname{RCTV}(\alpha_n|x) &= \operatorname{RCTM}_2(\alpha_n|x) - \operatorname{RCTM}_1^2(\alpha_n|x), \\ &\operatorname{RCTS}(\alpha_n|x) &= \operatorname{RCTM}_3(\alpha_n|x)/(\operatorname{RCTV}(\alpha_n|x))^{3/2}. \end{aligned}$$

Regression Conditional Tail Moment

Starting from *n* independent copies $(X_1, Y_1), \ldots, (X_n, Y_n)$ of the random vector (X, Y), we address here the estimation of the Regression Conditional Tail Moment of level α_n and order $b \ge 0$ given by

$$\operatorname{RCTM}_b(\alpha_n|x) := \frac{1}{\alpha_n} \mathbb{E}\left(Y^b \mathbb{I}\{Y > \operatorname{RVaR}(\alpha_n|x)\} | X = x\right),$$

where b is such that the moment of order b of Y exits and $\mathbb{I}\{\cdot\}$ is the indicator function.

 \implies We want to estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

$$\left\{\left(\widehat{\operatorname{RCTM}}_{b_j,n}(\alpha_n|x), \ j=1,\ldots,J\right)\right\},\$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQ(0)

with $0 \leq b_1 < \ldots < b_J$ and where J is an integer.

The estimator of the Regression Value at Risk of level α_n considered is given by

$$\widehat{\operatorname{RVaR}}_n(\alpha_n|x) = \inf\{t, \ \hat{F}_n(t|x) \le \alpha_n\}$$

with

$$\hat{F}_n(y|x) = \frac{\sum_{i=1}^n \mathcal{K}_{k_n}(x - X_i)\mathbb{I}\{Y_i > y\}}{\sum_{i=1}^n \mathcal{K}_{k_n}(x - X_i)}.$$

- The bandwidth (k_n) is a non random sequence converging to 0 as $n \to \infty$.
- It controls the smoothness of the kernel estimator.
- For z > 0, we have also introduced the notation K_z(·) = z^{-p}K(·/z) where K(·) is a density on ℝ^p.
- The estimation of the $\text{RVaR}(\alpha_n|x)$ has been addressed for instance by Daouia *et al.* [2013].

The estimator of the Regression Conditional Tail Moment of level α_n and order b is given by

$$\widehat{\operatorname{RCTM}}_{b,n}(\alpha_n|x) = \frac{1}{\alpha_n} \frac{\sum_{i=1}^n \mathcal{K}_{h_n}(x-X_i) Y_i^b \mathbb{I}\{Y_i > \widehat{\operatorname{RVaR}}_n(\alpha_n|x)\}}{\sum_{i=1}^n \mathcal{K}_{h_n}(x-X_i)}$$

where

$$\widehat{\operatorname{RVaR}}_n(\alpha_n|x) = \inf\{t, \ \hat{F}_n(t|x) \le \alpha_n\}$$

with

$$\hat{F}_n(y|x) = \frac{\sum_{i=1}^n \mathcal{K}_{k_n}(x-X_i)\mathbb{I}\{Y_i > y\}}{\sum_{i=1}^n \mathcal{K}_{k_n}(x-X_i)}.$$

- The bandwidths (h_n) and (k_n) are non random sequences converging to 0 as $n \to \infty$.
- They control the smoothness of the kernel estimators. In what follows, the dependence on *n* for these two sequences is omitted.
- For the sake of simplicity we have chosen the same kernel $\mathcal{K}(\cdot)$.

To obtain the asymptotic property of the Regression Conditional Tail Moment estimator, an assumption on the right tail behavior of the conditional distribution of Y given X = x is required. In the sequel, we assume that,

(F) The function $\operatorname{RVaR}(\cdot|x)$ is differentiable and

$$\lim_{\alpha\to 0} \frac{\operatorname{RVaR}'(t\alpha|x)}{\operatorname{RVaR}'(\alpha|x)} = t^{-(\gamma(x)+1)},$$

locally uniformly in $t \in (0, \infty)$.

 \implies In other words :

 $-\operatorname{RVaR}'(\cdot|x)$ is said to be regularly varying at 0 with index $-(\gamma(x)+1)$

The condition (F) entails that the conditional distribution of Y given X = x is in the maximum domain of attraction of the extreme value distribution with extreme value index $\gamma(x)$.

The unknown function $\gamma(x)$ is referred as the conditional extreme-value index.

It controls the behaviour of the tail of the survival function and by consequence the behaviour of the extreme values.

- \implies if $\gamma(x) < 0$, F(.|x) belongs to the domain of attraction of Weibull. It contains distributions with finite right tail, *i.e.* short-tailed.
- \implies if $\gamma(x) = 0$, F(.|x) belongs to the domain of attraction of Gumbel. It contains distributions with survival function exponentially decreasing, *i.e.* light-tailed.
- \implies if $\gamma(x) > 0$, F(.|x) belongs to the domain of attraction of Fréchet. It contains distributions with survival function polynomially decreasing, *i.e.* heavy-tailed.

The case $\gamma(x) > 0$ has already been investigated by El Methni *et al.* [2014].

Assumptions

First, a Lipschitz condition on the probability density function g of X is required. For all $(x, x') \in \mathbb{R}^p \times \mathbb{R}^p$, denoting by d(x, x') the distance between x and x', we suppose that

(L) There exists a constant $c_g > 0$ such that $|g(x) - g(x')| \le c_g d(x, x')$.

The next assumption is devoted to the kernel function $\mathcal{K}(\cdot)$.

(K) $\mathcal{K}(\cdot)$ is a bounded density on \mathbb{R}^p , with support S included in the unit ball of \mathbb{R}^p .

Before stating our main result, some further notations are required.

For $\xi > 0$, the largest oscillation at point $(x, y) \in \mathbb{R}^p \times \mathbb{R}^+_*$ associated with the Regression Conditional Tail Moment of order $b \in [0, 1/\gamma_+(x))$ is given by

$$\omega\left(x,y,b,\xi,h\right) = \sup\left\{ \left| \frac{\varphi_b(z|x)}{\varphi_b(z|x')} - 1 \right| \text{ with } \left| \frac{z}{y} - 1 \right| \leq \xi \text{ and } x' \in B(x,h) \right\},$$

where $\varphi_b(\cdot|x) := \overline{F}(\cdot|x)RCTM_b(\overline{F}(\cdot|x)|x)$ and B(x,h) denotes the ball centred at x with radius h.

Theorem 1

Suppose (F), (L) and (K) hold. For $x \in \mathbb{R}^{p}$ such that g(x) > 0, let $\alpha_{n} \to 0$ such that

$$nk^{p} \alpha_{n}
ightarrow \infty$$
 as $n
ightarrow \infty$

If there exists $\xi > 0$ such that

$$nk^{p}\alpha_{n}(k \vee \omega(x, \operatorname{RVaR}(\alpha_{n}|x), 0, \xi, k))^{2} \rightarrow 0,$$

then

$$(nk^{p}\alpha_{n}^{-1})^{1/2}f(\operatorname{RVaR}(\alpha_{n}|x)|x)\left(\widehat{\operatorname{RVaR}}_{n}(\alpha_{n}|x)-\operatorname{RVaR}(\alpha_{n}|x)\right)\overset{d}{\longrightarrow}\mathcal{N}\left(0,\frac{\|\mathcal{K}\|_{2}^{2}}{g(x)}\right).$$

 \implies We thus find back the result established in Daouia *et al.* [2013] under weaker assumptions.

Theorem 2

Suppose (F), (L) and (K) hold. For $x \in \mathbb{R}^p$ such that g(x) > 0:

- Let $0 \le b_1 \le \ldots \le b_J < 1/(2\gamma_+(x))$,
- $\underline{\ell} = h \wedge k$ and $\overline{\ell} = h \vee k$.
- Let $\alpha_n \to 0$ such that $n\underline{\ell}^p \alpha_n \to \infty$ as $n \to \infty$.
- If there exists $\xi > 0$ such that

$$n\overline{\ell}^{p}\alpha_{n}\left(\overline{\ell}\vee\max_{b}\omega(x,\operatorname{RVaR}(\alpha_{n}|x),b,\xi,\overline{\ell})\right)^{2}\rightarrow0,$$

then, if

 $h/k \rightarrow 0$ or $k/h \rightarrow 0$

the random vector

$$\left(n\underline{\ell}^{p}\alpha_{n}\right)^{1/2}\left\{\left(\frac{\widehat{\operatorname{RCTM}}_{b_{j},n}(\alpha_{n}|x)}{\operatorname{RCTM}_{b_{j}}(\alpha_{n}|x)}-1\right)\right\}_{j\in\{1,\ldots,J\}}$$

is asymptotically Gaussian, centred, with a $J \times J$ covariance matrix.

Covariance matrix two cases

In what follows, $(\cdot)_+$ (resp. $(\cdot)_-$) denotes the positive (resp. negative) part function.

• If $k/h \rightarrow 0$ then the covariance matrix is given by

$$\frac{\|\mathcal{K}\|_2^2 \Sigma^{(1)}(x)}{g(x)}$$

where for $(i,j) \in \{1,\ldots,J\}^2$,

$$\Sigma_{i,j}^{(1)}(x) = (1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x)).$$

2 If $h/k \rightarrow 0$ then the covariance matrix is given by

$$\frac{\|\mathcal{K}\|_2^2 \Sigma^{(2)}(x)}{g(x)}$$

where for $(i,j) \in \{1,\ldots,J\}^2$,

$$\Sigma_{i,j}^{(2)}(x) = \frac{(1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x))}{1 - (b_i + b_j)\gamma_+(x)} = \frac{\Sigma_{i,j}^{(1)}(x)}{1 - (b_i + b_j)\gamma_+(x)}$$

Recall that

$$\Sigma_{i,j}^{(1)}(x) = (1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x))$$
 and $\Sigma_{i,j}^{(2)}(x) = \frac{\Sigma_{i,j}^{(1)}(x)}{1 - (b_i + b_j)\gamma_+(x)}$

- Note that if γ(x) ≤ 0, asymptotic covariance matrices do not depend on {b₁,..., b_J} and thus the estimators share the same rate of convergence.
- Conversely, when $\gamma(x) > 0$, asymptotic variances are increasing functions of the RCTM order.
- Moreover, in this case, note that for all $i \in \{1, \dots, J\}$

 $\Sigma_{i,i}^{(2)}(x) > \Sigma_{i,i}^{(1)}(x)$

 \implies Taking $k/h \rightarrow 0$ leads to more efficient estimators than $h/k \rightarrow 0$.

Under (**F**), the Regression Conditional Tail Moment or order b is asymptotically proportional to the Regression Value at Risk to the power b.

Proposition Under (F), for all $b \in [0, 1/\gamma_{+}(x))$, $\lim_{\alpha \to 0} \frac{\operatorname{RCTM}_{b}(\alpha|x)}{[\operatorname{RVaR}(\alpha|x)]^{b}} = \frac{1}{1 - b\gamma_{+}(x)},$ and $\operatorname{RCTM}_{b}(\cdot|x)$ is regularly varying with index $-b\gamma_{+}(x)$.

In particular, the Proposition is an extension to a regression setting of the result established in Hua and Joe [2011] for the Conditional Tail Expectation (b = 1) in the framework of heavy-tailded distributions ($\gamma = \gamma(x) > 0$).

Let us note $y^*(x) = \operatorname{RVaR}(0|x) = \overline{F}^{\leftarrow}(0|x) \in (0,\infty]$ the endpoint of Y given X = x

Two cases :

If the endpoint $y^*(x)$ is infinite :

$$y^*(x) = \infty$$
 then $\gamma(x) \ge 0$

 \implies We can make risk measure estimation.

 \implies An application in pluviometry has already been done in El Methni *et al.* [2014].

Right endpoint

If the endpoint $y^*(x)$ is finite, the risk measures do not have sense :

 $y^*(x) < \infty$ then $\gamma(x) \leq 0$

As a consequence of the Proposition

 $\operatorname{RCTM}_b(\alpha|x) = [\operatorname{RVaR}(\alpha|x)]^b(1+o(1)) \to [y^*(x)]^b \text{ as } \alpha \to 0.$

For all b > 0, a natural estimator of the right endpoint (or frontier) is thus given by

$$\hat{y}_{b,n}^{*}(x) := \left[\widehat{\operatorname{RCTM}}_{b,n}(\alpha_{n}|x)\right]^{1/b}$$

where α_n is a sequence converging to 0 as $n \to \infty$.

 \implies We can use our Proposition to make frontier estimation.

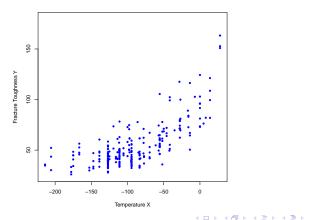
 \implies We propose an application in nuclear reactor reliability.

- The performance of the frontier estimator $\hat{y}_{b,n}^*(x)$ is illustrated on simulated data.
- $\hat{y}_{b,n}^*(x)$ depends on two hyper-parameters h and α :
 - The choice of the bandwidth *h*, which controls the degree of smoothing, is a recurrent problem in non-parametric statistics.
 - Besides, the choice of α is crucial, it is equivalent to the choice of the number of upper order statistics in the non-conditional extreme-value theory.
- We propose a data driven procedure to select h and α .
- The performance of the data-driven selection of the hyper-parameters is compared to an oracle one. Our procedure yields reasonable results.

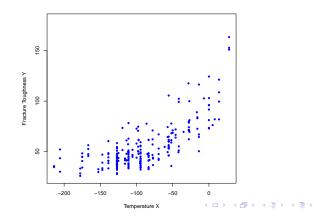
- We have compared 10 estimators $\hat{y}_{1,n}^*, \dots, \hat{y}_{10,n}^*$ deduced from $\hat{y}_{b,n}^*(x)$ with RVaR and three estimators $\hat{y}_n^{(*,gj)}$, $\hat{y}_n^{(*,mc)}$ and $\hat{y}_n^{(*,mv)}$ from Girard and Jacob [2008] and Girard *et al.* [2013]
- It appears that $\hat{y}_{1,n}^* = \widehat{\text{CTE}}$ does not yield very good results but $\hat{y}_{2,n}^*, \dots, \hat{y}_{10,n}^*$ all perform better than $\widehat{\text{RVaR}}$, $\hat{y}_n^{(*,gj)}$, $\hat{y}_n^{(*,mc)}$ and $\hat{y}_n^{(*,mv)}$ in all situations.
- Among them, $\hat{y}_{7,n}^*$ yields the best results but the behavior of $\hat{y}_{4,n}^*$, $\hat{y}_{5,n}^*$ and $\hat{y}_{6,n}^*$ are very close.
- As a conclusion it appears on this numerical study that $\hat{y}_{b,n}^*$ combined with the data-driven hyper-parameters selection are efficient frontier estimators for $b \ge 2$.
- Their performance seems to be stable with b ≥ 2 but an automatic selection of b could be of interest.

Application in nuclear reactors reliability

- The dataset comes from the US Electric Power Research Institute and consists of n = 254 toughness results obtained from non-irradiated representative steels.
- The variable of interest Y is the fracture toughness and the unidimensional covariate X is the temperature measured in degrees Fahrenheit.
- As the temperature decreases, the steel fissures more easily.



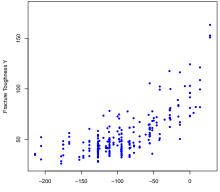
- In a worst case scenario, it is important to know the upper limit of fracture toughness of each material as a function of the temperature, that is y*(x).
- An accurate knowledge of the change in fracture toughness of the reactor pressure vessel materials as a function of the temperature is of prime importance in a nuclear power plant's lifetime programme.



• The hyper-parameters associated with $\hat{y}_{7,n}^*$ are chosen in the sets

 $\mathcal{H} = \{17, 18, \dots, 120\}$ and $\mathcal{A} = \{0.01, 0.011, \dots, 0.1\}$

• The selection yields $(h_{data}, \alpha_{data}) = (98, 0.085)$

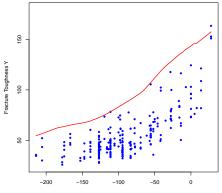


Temperature X

• The hyper-parameters associated with $\hat{y}_{7,n}^*$ are chosen in the sets

 $\mathcal{H} = \{17, 18, \dots, 120\}$ and $\mathcal{A} = \{0.01, 0.011, \dots, 0.1\}$

• The selection yields $(h_{data}, \alpha_{data}) = (98, 0.085)$

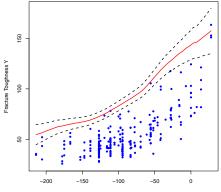


Temperature X

• The hyper-parameters associated with $\hat{y}_{7,n}^*$ are chosen in the sets

 $\mathcal{H} = \{17, 18, \dots, 120\}$ and $\mathcal{A} = \{0.01, 0.011, \dots, 0.1\}$

• The selection yields $(h_{data}, \alpha_{data}) = (98, 0.085)$



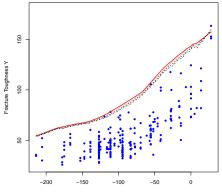
Temperature X

イロン イヨン イヨン イヨン 三日

• The hyper-parameters associated with $\hat{y}_{7,n}^*$ are chosen in the sets

 $\mathcal{H} = \{17, 18, \dots, 120\}$ and $\mathcal{A} = \{0.01, 0.011, \dots, 0.1\}$

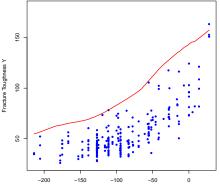
• The selection yields $(h_{data}, \alpha_{data}) = (98, 0.085)$



Temperature X

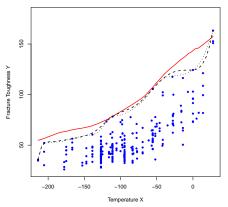
イロン イヨン イヨン イヨン 三日

- We compare $\hat{y}_{7,n}^*$ to the spline-based estimators CS-B and QS-B recently introduced in Daouia *et al.* [2016] for monotone boundaries.
- The BIC criterion is used to determine the complexity of the spline approximation.



Temperature X

- We compare ŷ^{*}_{7,n} to the spline-based estimators CS-B and QS-B recently introduced in Daouia *et al.* [2016] for monotone boundaries.
- The BIC criterion is used to determine the complexity of the spline approximation.



- CS-B and QS-B simply interpolate the boundary points whereas $\hat{\gamma}^*_{n,n}$ estimates a heavier tail and thus a higher value for the limit of fracture toughness.
- Moreover, unlike us, they make different hypothesis on the form of the curve.

Conclusions

Commentaries

- + New tool for the prevention of risk and frontier estimation.
- + Theoretical properties similar to the univariate case (extreme or not) and with or without a covariate.
- + Our results are similar to those obtained by Daouia *et al.* [2013] and El Methni *et al.* [2014]. We have filled in the gap between these two works.
- + Capable to estimate risk measures based on conditional moments of the *r.v.* of losses given that the losses are greater than $RVaR(\alpha)$ for short, light and heavy-tailed distributions.
- + Tuning parameter selection procedure to choose (h, α) .

Illustration on real data

- \implies Application in pluviometry.
- \implies Application in nuclear reactors reliability.

Long-term perspectives

- Curse of dimensionality.

This presentation is based on the research article

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

On my personal web page you can find a link to the Preprint version.

This presentation is based on the research article

On my personal web page you can find a link to the Preprint version.

Thank you for your attention

- Daouia, A., Gardes, L. and Girard, S. (2013). On kernel smoothing for extremal quantile regression, *Bernoulli*, 19, 2557–2589.
- Daouia, A., Noh, H. & Park, B.U. (2016). Data envelope fitting with constrainded polynomial spline, *Journal of the Royal Statistical Society, B*, **78(1)**, 3–36.
- El Methni, J., Gardes, L. & Girard, S. (2014). Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions, *Scandinavian Journal of Statistics*, **41(4)**, 988–1012.
- Embrechts, P., Kluppelberg, C. and Mikosh, T. (1997). Modelling Extremal Events, *Springer editions*.
- Girard, S., and Jacob, P. (2008). Frontier estimation via kernel regression on high power transformed data. *Journal of Multivariate Analysis*, **99**, 403–420.
- Girard, S., Guillou, A. and Stupfler, G. (2013) Frontier estimation with kernel regression on high order moments, *Journal of Multivariate Analysis*, **116**, 172–189.
- Hong, J. and Elshahat, A. (2010). Conditional tail variance and conditional tail skewness. *Journal of Financial and Economic Practice*, **10**, 147–156.
 - Valdez, E.A. (2005). Tail conditional variance for elliptically contoured distributions, *Belgian Actuarial Bulletin*, **5**, 26–36.