A new extreme quantile estimator based on the log-generalized Weibull-tail model

Clément ALBERT

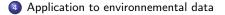
Anne Dutfoy (EDF), Laurent Gardes (Université de Strasbourg), Stéphane Girard (INRIA)

3rd year-PhD May 2018

Extreme quantile estimation

2 The framework

3 A new extreme quantile estimator



Extreme quantile estimation

2 The framework

3 A new extreme quantile estimator

Application to environmemental data

Extreme quantile estimation : Principle

Let X be a random variable with distribution function

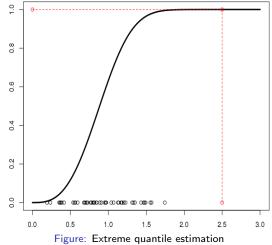
 $F(\cdot) = \mathbb{P}(X \leq \cdot)$

and survival function

 $\overline{F} := 1 - F.$

Starting from a *n*-sample from *X*, our goal is to estimate extreme quantiles $Q(\beta_n)$ of level $1 - \beta_n$ with $n\beta_n \to 0$ as $n \to \infty$, where

 $Q(\beta) := \inf\{x; \overline{F}(x) \le \beta\}.$

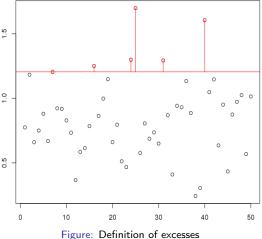


Extreme quantile estimation Peaks Over Threshold (POT)

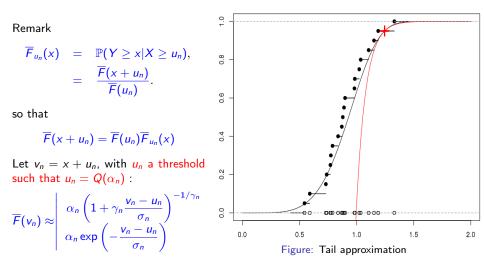
The excesses above u_n are defined as $Y_i = X_i - u_n$ for all $X_i > u_n$. Peaks Over Threshold method (POT) [Smith, 1987] relies on an approximation [Pickands, 1975] of the distribution of excesses \overline{F}_{u_n} by a Generalized Pareto Distribution (GPD) :

$$\overline{F}_{u_n}(x) \approx \begin{vmatrix} \left(1 + \frac{\gamma_n x}{\sigma_n}\right)^{-1/\gamma_n} &, \gamma_n \neq 0\\ \exp\left(-\frac{x}{\sigma_n}\right) &, \gamma_n = 0 \end{vmatrix}, \gamma_n = 0$$

where σ_n and γ_n are the scale and shape parameters of the GPD distribution.



Extreme quantile estimation Peaks Over Threshold (POT)



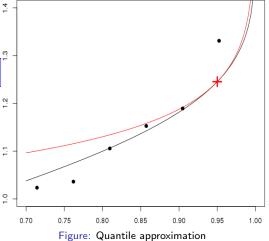
Extreme quantile estimation Peaks Over Threshold (POT)

As a consequence, $Q(\beta_n)$ can be in turn approximated by the deterministic term :

$$Q(eta_n) pprox \left| egin{array}{c} Q(lpha_n) + rac{\sigma_n}{\gamma_n} \left[\left(rac{lpha_n}{eta_n}
ight)^{\gamma_n} - 1
ight]^{r^2} \ Q(lpha_n) + \sigma_n \ln \left(rac{lpha_n}{eta_n}
ight) & \stackrel{
m eq}{=} \end{array}
ight.$$

Extrapolation is performed in the distribution tail from $Q(\alpha_n)$ to $Q(\beta_n)$ thanks to an additive correction depending on α_n/β_n .

Then, the POT method consists in estimating the two unknown parameters σ_n and γ_n .



For example, if $F \in MDA(Gumbel)$ and so $\gamma_n = 0$, one can choose $\hat{Q}(\alpha_n) = X_{n-k_n+1,n}$ with $k_n = \lfloor n\alpha_n \rfloor$ and

$$\hat{\sigma}_n = \frac{1}{k_n} \sum_{i=1}^{k_n} (X_{n-i+1,n} - X_{n-k_n+1,n})$$

to obtained the so-called Exponential Tail (ET) estimator [Breiman et al, 1990] :

$$\hat{Q}(\beta_n) = \hat{Q}(\alpha_n) + \hat{\sigma}_n \ln(\alpha_n/\beta_n),$$

where $X_{1,n} \leq \cdots \leq X_{n,n}$ are the order statistics associated with X_1, \ldots, X_n .

Extreme quantile estimation

2 The framework

3 A new extreme quantile estimator

Application to environmemental data

The framework

In the following, The function $V(\cdot) := \ln Q(1/\exp \cdot)$ is supposed to be of extended regular variation with index $\theta \in \mathbb{R}$ (*ERV*(θ)). More specifically, there exists a positive function *a* (called the auxiliary function) such that, for all t > 0

$$\lim_{x\to\infty}\frac{V(tx)-V(x)}{a(x)}=\int_1^t u^{\theta-1}du=:L_\theta(t).$$
(1)

This model is referred to as the "log-generalized Weibull-tail model" [de Valk, 2016]. A sufficient condition for (1) is

(A1) V is differentiable with derivative V' satisfying

$$\lim_{x\to\infty}\frac{V'(tx)}{V'(x)}=t^{\theta-1}$$

Such a function V' is said to be regularly varying with index $\theta - 1$ and this property is denoted by $V' \in RV(\theta - 1)$, see [Bingham, 1987]. Moreover, under (A1), a possible choice in (1) is a(x) = xV'(x).

The framework

The next result provides a characterization of the tail behavior of F according to the sign of θ .

Proposition (Characterizations)

Let $x^* := \sup\{x \ge 1, F(x) < 1\}$ be the endpoint of F. Then, under some monotonicity assumptions :

- (i) If $V^{\leftarrow}(\ln \cdot) \in RV(1/\beta)$, $\beta > 0$, then (A1) holds with $\theta = 0$.
- (ii) $V^{\leftarrow} \in RV(1/\beta)$, $0 < \beta < 1$ if and only if (A1) holds with $\theta = \beta > 0$.
- (iii) $1 \le x^* < \infty$ and $V^{\leftarrow}(\ln x^* + \ln(1 1/\cdot)) \in RV_{-1/\beta}$, $\beta < 0$ if and only if (A1) holds with $\theta = \beta < 0$.
 - In the case (i), *F* is referred to as a Weibull tail-distribution. Such distributions encompass Gaussian, Gamma, Exponential and strict Weibull distributions.
 - In the case (ii) *F* is called a log-Weibull tail-distribution, the most popular example being the lognormal distribution.
 - The case (iii) corresponds to distributions with a Weibull tail behavior in the neighborhood of a finite endpoint.

The framework

Besides, let us highlight that the domain of attraction associated with F depends on the position of θ with respect to 1:

Proposition (Domains of attraction)

Assume F is differentiable.

(i) If (A1) holds with $\theta < 1$ then $F \in MDA(Gumbel)$.

(ii) If $F \in MDA(Fréchet)$ then (A1) holds with $\theta = 1$.

(iii) If (A1) holds with $\theta > 1$ then F does not belong to any MDA.

It thus appears that model (A1) with $\theta \leq 1$ is of particular interest since it is associated with most distributions in MDA(Gumbel) \cup MDA(Fréchet).

The situation $\theta > 1$ which does not correspond to any domain of attraction is sometimes referred to as super-heavy tails, see for instance [Alves, 2009].

Extreme quantile estimation

2 The framework

3 A new extreme quantile estimator

Application to environnemental data

Model inference

Let X_1, \ldots, X_n be *n* independent copies of a random variable *X* distributed following the model previously introduced. The associated ordered statistics are denoted by $X_{1,n} \leq \ldots \leq X_{n,n}$. Starting from this random sample, we focus on the estimation of extreme quantiles *i.e.* $Q(u) := \overline{F}^{\leftarrow}(u) = \exp[V(\ln(1/u))]$ when $u \to 0$. Two situations for the level *u* are considered.

Intermediate case. If u = α_n where α_n is an intermediate level satisfying α_n → 0 and nα_n → ∞ as n → ∞, a natural estimator is obtained by replacing Q by its empirical counterpart Q̂_n. More precisely, Q(α_n) is estimated by

 $\hat{Q}_n(\alpha_n) = X_{n-\lfloor n\alpha_n \rfloor, n}.$

2 Extreme case. If u = β_n where β_n is an extreme level such that nβ_n → c ≥ 0 as n → ∞, a simple order statistics cannot be used. Extrapolation beyond the sample should be performed. Starting from an intermediate level α_n := k_n/n where k_n → ∞ and k_n/n → 0, we propose to estimate Q(β_n) by

$$\hat{Q}_n(\beta_n) := \hat{Q}_n(\alpha_n) \exp\left[\hat{a}_n[\ln(n/k_n)]L_{\hat{\theta}_n}\left(\frac{\ln\beta_n}{\ln(k_n/n)}\right)\right],$$

where $\hat{\theta}_n$ and $\hat{a}_n[\ln(n/k_n)]$ are suitable estimators of θ and $a[\ln(n/k_n)]$.

Model inference

The rationale behind

$$\hat{Q}_n(\beta_n) := \hat{Q}_n(\alpha_n) \exp\left[\hat{a}_n[\ln(n/k_n)]L_{\hat{\theta}_n}\left(\frac{\ln\beta_n}{\ln(k_n/n)}\right)\right],\tag{2}$$

is based on

$$\lim_{y\to\infty}\frac{V(ty)-V(y)}{a(y)}=\int_1^t u^{\theta-1}du=:L_\theta(t).$$

which basically means that for α close to 0 and for all t > 0,

$$\ln Q(tlpha) pprox \ln Q(lpha) + \mathsf{a}[\ln(1/lpha)] L_ heta \left(1 + rac{\ln(t)}{\ln(lpha)}
ight).$$

Estimator (2) is then obtained by taking $\alpha = k_n/n$ and $t = n\beta_n/k_n$ and by replacing the unknown quantities $Q(k_n/n)$, $a[\ln(n/k_n)]$ and θ by their corresponding estimators. Since k_n/n is an intermediate level, $Q(k_n/n)$ is estimated by $\hat{Q}_n(k_n/n) = X_{n-k_n,n}$.

Inference

The estimator of θ we propose is similar in spirit to the moment estimator introduced in [Dekkers et al, 1989]. Its construction is based on the following two results. Letting $\theta_+ := \theta \lor 0$ and $\theta_- := \theta \land 0$, for any increasing function $V \in ERV_{\theta}$,

$$\lim_{x\to\infty}\frac{V(x)}{a(x)}\ln\frac{V(tx)}{V(x)}=L_{\theta_-}(t),$$

locally uniformly in $(0,\infty)$, see [de Haan & Ferreira, Lemma 3.5.1]. Moreover, one has,

$$\lim_{x\to\infty}\frac{a(x)}{V(x)}=\theta_+.$$

Plugging $x := \ln(1/\alpha)$ and $t := 1 + \ln(s) / \ln(\alpha)$ yields the approximation

$$\ln_2 Q(s\alpha) - \ln_2 Q(\alpha) \approx \theta_+ L_0 \left(1 + \frac{\ln s}{\ln \alpha}\right),$$

as $\alpha \to 0$ and for all $s \in (0,1)$. Integrating with respect to s on (0,1) leads to

$$\int_0^1 \left[\ln_2 Q(s\alpha) - \ln_2 Q(\alpha) \right] ds \left/ \int_0^1 L_0 \left(1 + \frac{\ln s}{\ln \alpha} \right) ds \approx \theta_+.$$

Inference

Considering $\alpha = k_n/n$ where k_n is an intermediate sequence such that $k_n \to \infty$ and $k_n/n \to 0$ and replacing Q by its empirical estimator lead to the following estimator of θ_+ :

$$\hat{\theta}_{n,+} := \frac{M_n^{(1)}}{\mu_1[\ln(n/k_n), 0]}$$

where, for $t>0,\ b\in\mathbb{N}\setminus\{0\}$, $\zeta<1$,

$$\mu_b(t,\zeta):=\int_0^1 \left[L_\zeta\left(1+rac{\ln(1/s)}{t}
ight)
ight]^b ds.$$

Similarly, remark that the previous equation leads to the approximation

$$\left\{\int_{0}^{1}\left[\ln_{2} Q(s\alpha) - \ln_{2} Q(\alpha)\right] ds\right\}^{2} \left/\int_{0}^{1}\left[\ln_{2} Q(s\alpha) - \ln_{2} Q(\alpha)\right]^{2} ds \approx \Psi_{\ln(1/\alpha)}(\theta_{-}),$$
as $\alpha \to 0$, where

$$\Psi_t(\zeta) := \frac{\mu_1^2(t,\zeta)}{\mu_2(t,\zeta)}.$$

Replacing again in the previous approximation α by k_n/n and Q by its empirical counterpart suggests to estimate θ_- by :

$$\widehat{\theta}_{n,-} := \Psi_{\ln(n/k_n)}^{-1} \left(\frac{[\mathcal{M}_n^{(1)}]^2}{\mathcal{M}_n^{(2)}} \right).$$

Inference

We propose to estimate θ by :

$$\hat{\theta}_n := \hat{\theta}_{n,+} + \hat{\theta}_{n,-}.$$

To obtain an estimator of $a[\ln(n/k_n)]$, one can remark that

$$\frac{\ln Q(\alpha)}{a[\ln(1/\alpha)]} \int_0^1 \ln \frac{\ln Q(s\alpha)}{\ln Q(\alpha)} ds \approx \mu_1[\ln(1/\alpha), \theta_-],$$

for α close to 0. Replacing α by k_n/n , Q by its empirical counterpart and θ_- by $\hat{\theta}_{n,-}$ gives :

$$\hat{a}_n[\ln(n/k_n)] := \frac{\ln X_{n-k_n,n}}{\mu_1[\ln(n/k_n), \hat{\theta}_{n,-}]} M_n^{(1)}$$

Main results

The two following results respectively provide the asymptotic behavior of the quantile estimator in the intermediate and extreme cases.

Theorem

Under the model previously introduced, assume that (A1) holds. For all intermediate level α_n , one has

$$\frac{k_n^{1/2}/\ln(n/k_n)}{a[\ln(n/k_n)]}\ln\left(\frac{\hat{Q}_n(\alpha_n)}{Q(\alpha_n)}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

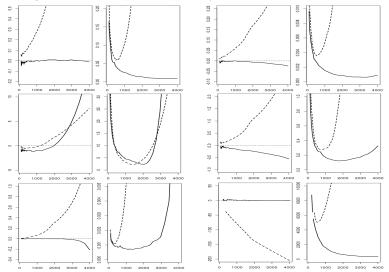
Theorem

For all extreme level β_n , under some additional second order condition on V, one has

$$\frac{k_n^{1/2}/\ln(n/k_n)}{a[\ln(n/k_n)]H_{\theta,0}(d_n)}\ln\left(\frac{\hat{Q}_n(\beta_n)}{Q(\beta_n)}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

Validation on simulations

Figure: Bias (Left) and Mean Square Error (Right) associated with $\hat{Q}_n(\beta_n)$ (solid line) and with the proposal of Cees de Valk and Juan-Juan Cai (dashed line) as a function of k, for n = 500 and N = 500, N the number of replicates. From top to bottom, left to right : Gamma, Gaussian, Pareto-like, Lognormal, Finite endpoint, Super heavy tail.

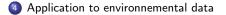


Clément ALBERT A new extreme quantile estimator based on the log-generalized Weibull-tail model

Extreme quantile estimation

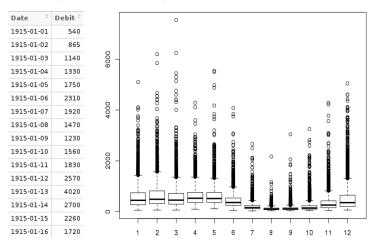
2 The framework

3 A new extreme quantile estimator



The Dataset

Figure: Left figure : first rows of the dataset. Right figure : Boxplot representing the twelve months of the year (January to December).



We consider daily river flow measures, in m^3/s of the Rhône from 1915 to 2013. Due to seasonality aspect, only flows from December 1 to May 31 are retained leading to n = 18043 measures.

Clément ALBERT A new extreme quantile estimator based on the log-generalized Weibull-tail model

Estimation of the 1000 years return level

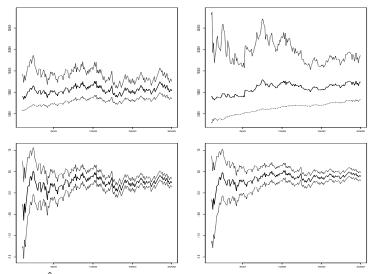


Figure: Estimates $\hat{Q}_n(\beta_n)$ (top left) and its equivalent proposed by de Valk and Cai (top right) of the 10^{-3} per year quantile ($\beta_n = 5.5 \ 10^{-6}$) of river flows and their corresponding index estimates (bottom left and right) as functions of $k \in \{100, \ldots, 2000\}$. The 95% asymptotic confidence intervals are depicted by dotted lines.

Main references

- [1] **De Valk, C. (2016)**, Approximation of high quantiles from intermediate quantiles, *Extremes*, 19(4), 661-686.
- [2] De Valk, C., & Cai, J. J. (2017), A high quantile estimator based on the log-generalized Weibull tail limit, *Econometrics and Statistics*, to appear.
- [3] Albert, C., Dutfoy, A., & Girard, S. (2018), Asymptotic behavior of the extrapolation error associated with the estimation of extreme quantiles, submitted, hal-01692544v2.
- [4] Albert, C., Dutfoy, A., Gardes, L., & Girard, S. (2018), An extreme quantile estimator for the log-generalized Weibull-tail model, submitted, hal-01783929v2.