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1 Introduction

In an early paper, Geffroy [6] introduced the problem of estimating a subset D

of R
2 given random sample of points Σn = {(Xi, Yi) ; i = 1, ..., n} drawn from

the interior. He considered a set

D =
{
(x, y) ∈ R

2 : 0 ≤ x ≤ 1; 0 ≤ y ≤ f (x)
}

(1)

where f is a strictly positive function. Given an increasing sequence of integers

kn, for r = 1, ..., kn, let In,r = [(r − 1) /kn, r/kn) and

Un,r = max {Yi : 1 ≤ i ≤ n; Xi ∈ In,r} (2)

where it is conveniently understood that max∅ = 0. The Geffroy’s estimate of

f is the step function fn defined by

fn (x) =Un,r if x ∈ In,r, r = 1, ..., kn, (3)

Un,kn
if x = 1. (4)

Under various conditions on f and on the probability density of the Zi =

(Xi, Yi), Geffroy produced convergence theorems and limit laws for the L∞-

norm sup0≤x≤1 |fn (x) − f (x)|. Much later, Korostelev and Tsybakov [14] em-

bedded this very simple estimate in the more sophisticated class of piecewise-

polynomial estimates. But despite of its simplicity, the piecewise-constant Gef-

froy’s estimate remains the most appropriate when little is known about the

properties of f . This is the case when estimating boundary fragments in im-

ages [15]. More precisely, in the case of a uniform sample on D, when it is only

known that f possesses a bounded derivative, Korostelev and Tsybakov [14]

proved that fn is minimax for the L∞- norm if kn = (log n/n)
−1/2

and for the

L1- norm
∫ 1

0
|fn(x) − f(x)|dx if kn = n1/2. Since the results for the L∞- norm

are already known from the original paper of Geffroy, solving the question of

the limit law for the L1- norm was a primary motivation of the present study.
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The interest of the L1- error in functional estimation was mainly highlighted

by Devroye and Györfi [4]. One of the most attractive features of the L1- error

is to be visualized by the surface marked off by the estimator and the function

to be estimated. No doubt that in a frontier estimation problem this criterion

should be of particular interest.

As for the asymptotic normality of the histogram estimates of density [1,

2, 3] it seems that no direct proof is tractable. We also proceed by Poisson

approximations, but in a different and original way. Girard and Jacob [12] first

solved the Poissonian case which necessitate only current methods. Next, in

an unpublished paper, Geffroy [7] brought out the key idea for extending their

result by a squeezing method of the empirical point process between two Poisson

point processes. However, this first step was achieved by Geffroy only in the

elementary case where f = 1 on [0, 1]. Much more refinements for a complete

treatment of the general case were necessary, and the whole development is

presented here.

Of course, many works exist about estimates of boundaries but few of them

provide asymptotic distributions. In the framework of production frontier esti-

mation, the value f(x) can be interpreted as the maximum level of output which

is attainable for the level of input x. Then, from economical considerations, f

is supposed to be increasing and concave which suggests an adapted estima-

tor, called the DEA (Data Envelopment Analysis) estimator [5]. Its asymptotic

distribution is established in [8]. When no monotonicity assumption is made

on f , without intending to be exhaustive, we can cite [9, 10, 11, 14] for other

asymptotic distribution studies.

But apart from the early paper [6] of Geffroy, which gives Gumbel limit laws

for uniform errors, we have not found attempts on limit laws for global errors.

As far as we know, the present paper is the first to give a solution for the

L1- error in the case of independent and uniformly distributed random points.
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Before stating the main result, we need some further definitions.

Given two sequences of positive numbers (un) and (vn), we write:

• un = o(vn) or equivalently un � vn if un/vn → 0 as n → ∞,

• un ∼ vn if un/vn → 1 as n → ∞,

• un = O(vn) if lim supun/vn < ∞,

• un � vn if 0 < lim inf un/vn ≤ lim sup un/vn < ∞.

Both conditions un � vn and un = o (vn) imply un = O (vn). Conversely,

un = O (vn) implies either un � vn or un = o (vn) at least for subsequences.

Denoting by λ the Lebesgue measure restricted on D, we put λ(D) = c−1 and

we also note

∆n =

∫ 1

0

|fn(x) − f(x)|dx,

the L1- error, where fn is defined by (2)–(4).

Theorem 1 Assume f is α−Lipschitzian. If kn = o(n/ log n) and n = O
(
k1+α

n

)
,

then there exists a bounded sequence (sn) such that

nc

sn

√
kn

(∆n − E (∆n)) → N (0, 1) as n → ∞. (5)

More precisely, if n � k1+α
n then sn � 1, and if n = o

(
k1+α

n

)
, sn = 1.

The paper is organized as follows: in section 2 are brought together the

preliminary results useful for the construction of the Poisson approximation and

for preparing the discussion. In section 3 are quoted, with some explanations,

the known results on L1- error for Poisson processes. The section 4 is devoted

to the proof of the above theorem. Finally, in the discussion section 5 we show

that the unknown term c can be replaced by a simple estimate, and that the

term E (∆n) can be replaced by a centering sequence independent of f . This

gain, which makes the result applicable, is paid by the loss of optimal speed, so

we can take sn = 1.
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2 Some preliminaries

In what follows, (Zn) is a sequence of independent random variables defined on a

probability space (Ω,F , P ) and uniformly distributed on the set D given by (1),

and fn is the estimate of f defined by the Un,r, r = 1, ..., kn as in (2)–(4). We

quote and prove quickly a exponential inequality for which we have no precise

reference to propose.

Lemma 1 Let X a Poisson random variable with parameter µ > 0. For ε/2µ

small enough,

P (X − µ > ε) < exp
(
−ε2/4µ

)
.

Proof. Let 0 < δ < t such that et − 1 − t < t2. Then,

E
(
et(X−µ)

)
= exp

(
µ
(
et − 1 − t

))
≤ eµt2

and thus, for every ε > 0,

P (X − µ > ε) < e−tεeµt2 .

If t = ε/2µ < δ, the result holds. Of course, a similar bound is available for

P (X − µ < −ε).

Now, following the idea of [7], the proof of the main theorem requires a random

sandwiching of the sample Σn = {Z1, ..., Zn} between two Poisson point pro-

cesses Σ1,n and Σ2,n. Define c1,n = c (1 − γn) and c2,n = c (1 + γn), with γn =
(

log n
nkn

)1/4

. Then consider, for every n, two Poisson random variables N1,n and

N2,n on (Ω,F , P ), with respective parameters n (1 − γn) and n (1 + γn), each

of them being independent of the sequence (Zn) , and satisfying N1,n < N2,n.

Such a construction is achieved by taking N2,n = N1,n +Mn where Mn is a

Poisson random variable with parameter 2nγn, independent of N1,n. The two

announced Poisson point processes are the random sets Σ1,n =
{
Z1, ..., ZN1,n

}

and Σ2,n =
{
Z1, ..., ZN2,n

}
and the sandwich event is En = (Σ1,n ⊆ Σn ⊆ Σ2,n).
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Note that the mean measure of the point process Σj,n is ncj,nλ for j = 1, 2, while

the mean measure of the empirical point process Σn is ncλ.

Lemma 2 If kn → ∞ and kn = o(n/ logn), then

lim
n→∞

n√
kn

P (Ω r En) = 0.

Proof. Clearly, Ω r En = (N1,n > n) ∪ (N2,n < n). From Lemma 1, we obtain

for n large enough

P (Ω r En) < exp

(
− nγ2

n

4(1− γn)

)
+ exp

(
− nγ2

n

4(1 + γn)

)
.

Consequently, it suffices to verify that nk
−1/2
n exp(−nγ2

n) goes to 0 under the

condition kn = o(n/ log n). Writing kn = nεn/logn with εn → 0, it amounts to

checking that

log n − log
√

kn − nγ2
n = log n − log

√
kn − log n√

εn
→ −∞,

which is immediate.

Now, for j = 1, 2 define

Uj,n,r = max {Yi : 1 ≤ i ≤ Nj,n; Xi ∈ In,r} ,

and introduce

mn,r = inf {f (x) : x ∈ In,r} ,

Mn,r = sup {f (x) : x ∈ In,r} .

For 0 ≤ y ≤ Mn,r set also,

Dn,r (y) =
{
(x, t) ∈ R

2 : x ∈ In,r; y ≤ t ≤ f (x)
}

.

Remark that (Uj,n,r ≤ y) = (Σj,n ∩ Dn,r (y) = ∅). Since the mean measure of

the point process Σj,n is ncj,nλ, the distribution function of Uj,n,r can be written

Gj,n,r (y) = P (Uj,n,r ≤ y) = exp (−ncj,nλ (Dn,r (y))) .

6



In particular, for 0 ≤ y ≤ mn,r, we have

Gj,n,r (y) = exp (ncj,n (y/kn − λn,r)) ,

where we have defined

λn,r = λ (Dn,r (0)) . (6)

Lemma 3 Assume f is α−Lipschitzian. If kn = o(n/ log n) and n = O
(
k1+α

n

)
,

then

lim
n→∞

n

k
3/2
n

kn∑

r=1

E (U2,n,r − U1,n,r) = 0.

Proof. For j = 1, 2 we have

E (Uj,n,r) =

∫ Mn,r

0

(1 − Gj,n,r (y)) dy,

so that E (U2,n,r − U1,n,r) = A + B, with

A =

∫ mn,r

0

exp

(
nc1,n

kn
(y − knλn,r)

)
dy − exp

(
nc2,n

kn
(y − knλn,r)

)
dy

B =

∫ Mn,r

mn,r

(G1,n,r (y) − G2,n,r (y)) dy.

Now, A is calculated as a sum A1 + A2 with

A1 =
kn

nc1,n
exp

(
nc1,n

kn
(mn,r − knλn,r)

)
− kn

nc2,n
exp

(
nc2,n

kn
(mn,r − knλn,r)

)

A2 =
kn

nc2,n
exp (−nc2,nλn,r) −

kn

nc1,n
exp (−nc1,nλn,r) .

The part A2 is easily seen to be a o (n−s) where s is an arbitrarily large exponent

under the condition kn = o(n/ logn). Moreover, if a, b, x, y are real numbers

such that x < y < 0 < b < a, we have

0 < aey − bex = (a − b) ey + b (ey − ex) < (a − b) + b (y − x) . (7)

Applying to A1 the inequality (7) gives

A1 ≤ kn

nc1,n
− kn

nc2,n
+

kn

nc2,n

(
nc1,n

kn
(mn,r − knλn,r) −

nc2,n

kn
(mn,r − knλn,r)

)

≤ kn

n

(
c2,n − c1,n

c2,nc1,n

)
+ (Mn,r − mn,r)

c2,n − c1,n

c2,n

∼
kn

n

2γn

c (1 − γ2
n)

+ (Mn,r − mn,r)
2γn

c (1 + γ2
n)

.
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Under the condition n = O
(
k1+α

n

)
and the hypothesis that f is α−Lipschitzian,

(Mn,r − mn,r) = O(kn/n), so that A1 = O (kn/(nγn)). Finally,

A = o
(
n−s

)
+ O

(
kn

n
γn

)
= O

(
kn

n
γn

)
. (8)

Now, for mn,r ≤ y ≤ Mn,r,

G1,n,r (y) − G2,n,r (y) ≤ n (c2,n − c1,n) λ(Dn,r (y)),

so that

B ≤ 2γn
nc

kn
(Mn,r − mn,r)

2
= O

(
kn

n
γn

)
. (9)

Summarizing (8) and (9) we obtain

E (U2,n,r − U1,n,r) = O

(
k

3/4
n

n5/4
(log n)1/4

)
.

Of course this last result is uniform in r = 1, ..., kn, thus

n

k
3/2
n

kn∑

r=1

E (U2,n,r − U1,n,r) = O
(
n−1/4k1/4

n (log n)
1/4
)

= o (1) ,

and the result is proved.

A precise evaluation of E (∆n) is not useful to obtain the main result. However,

we cannot avoid it in the discussion of section 5.

Lemma 4 Assume f is α−Lipschitzian. If kn = o(n/ log n) and n = O
(
k1+α

n

)
,

then

E (∆n) =
kn

(n + 1) c
+ O

(
n

k1+2α
n

)
.

More precisely, if n � k1+α
n then E (∆n) = O(n− α

1+a ), and if n = o
(
k1+α

n

)
then

E (∆n) = kn

nc (1 + o (1)).

Proof. The distribution function of Un,r can be written

Gn,r (y) = P (Un,r ≤ y) = (1 − cλ(Dn,r (y)))n, 0 ≤ y ≤ Mn,r.

More precisely, for 0 ≤ y ≤ mn,r we have

Gn,r (y) = (1 − c (λn,r − y/kn))
n

,
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where λn,r is defined by (6). Let us write E (∆n) =
∑kn

r=1 E (An,r), where

An,r =

∫

In,r

|f (x) − fn (x)| dx

=

∫

In,r

(f (x) − Un,r) dx + 2

∫

In,r

(Un,r − f (x))1{Un,r≥f(x)}dx.

A straightforward calculation gives, uniformly in r:

E

(∫

In,r

(f (x) − Un,r) dx

)
=

∫ Mn,r

0

(λn,r − y/kn) dGn,r (y)

=
1

(n + 1) c
+ O

(
n

k2+2α
n

)
.

Moreover, max1≤r≤kn
(1 − Gn,r (mn,r)) = O

(
n/k1+α

n

)
since f is α−Lipschitzian,

thus

E

(∫

In,r

(Un,r − f (x))1{Un,r≥f(x)}dx

)
≤ (Mn,r − mn,r)

kn
(1 − Gn,r (mn,r))

= O

(
n

k2+2α
n

)
.

The discussion between the cases n � k1+α
n and n = o

(
k1+α

n

)
is obvious.

3 The Poissonian case

Now, for j = 1, 2, let

∆j,n =

∫ 1

0

|fj,n (x) − f (x)| dx

denote the L1- error for the estimate fj,n, defined by fj,n (x) = Uj,n,r, for every

x ∈ In,r, r = 1, ..., kn, and fj,n (1) = Uj,n,kn
. We summarize below the main

results of the paper [12]. The proof of the Lemma 5 is just a matter of patient

calculus of moments of order 1, 2, 3 for each random variable

Aj,n,r =

∫

In,r

|f (x) − fj,n (x)| dx

based upon the distribution functions Gj,n,r and following the same lines as the

proof of Lemma 4. See [12], Lemma 3.2 for further details.
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Lemma 5 Assume f is α−Lipschitzian. If kn = o(n/ log n) and n = O
(
k1+α

n

)
,

then for j = 1, 2,

(i) max
1≤r≤kn

∣∣∣∣E (Aj,n,r) −
1

ncj,n

∣∣∣∣ = O

(
n

k2+2α
n

)

(ii) max
1≤r≤kn

∣∣∣∣∣E
(
A2

j,n,r

)
− 2

n2c2
j,n

∣∣∣∣∣ = O

(
n

k3+3α
n

)

(iii) max
1≤r≤kn

E
(
A3

j,n,r

)
≤ 6

n3c3
j,n

+ O

(
n

k4+4α
n

)
.

However, the following lemma is crucial when dealing with the case n � k1+α
n ,

so we give a more detailed proof.

Lemma 6 Assume f is α−Lipschitzian. If n � k1+α
n , then there exists K > 0

such that for j = 1, 2,

min
1≤r≤kn

Var (Aj,n,r) ≥
K

n2c2
j,n

(1 + o(1)).

Proof. As a consequence of the variance decomposition formula,

Var (Aj,n,r) ≥ P (Uj,n,r ≤ mn,r) Var(Aj,n,r|Un,r ≤ mn,r) (10)

= Gj,n,r (mn,r)
1

k2
n

Var (Uj,n,r|Uj,n,r ≤ mn,r) (11)

since Aj,n,r = λn,r−Uj,n,r/kn when Uj,n,r ≤ mn,r. Remarking that Gj,n,r (mn,r)

is uniformly bounded from below, it remains to control Var (Uj,n,r|Uj,n,r ≤ mn,r),

using the following steps

E(Uj,n,r|Uj,n,r ≤ mn,r) =

(
mn,r −

kn

ncj,n
+ o

(
k2

n

n2

))
Gj,nr(mn,r)

E
(
U2

j,n,r|Uj,n,r ≤ mn,r

)
=

(
m2

n,r − 2
mn,rkn

ncj,n
+ 2

k2
n

n2c2
j,n

+ o

(
k2

n

n2

))
Gj,nr(mn,r),

to get the result.

Then, the independence of the {Aj,n,r; r = 1, ..., kn}, due to the fundamental

independence property of the Poisson point process Σj,n on disjoint subsets of

D allows an easy application of Lindeberg’s central limit theorem. For more

details on the calculus, we refer to [12], Theorem 1.
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Lemma 7 Assume f is α−Lipschitzian. If kn = o(n/ log n) and n = O
(
k1+α

n

)
,

then for j = 1, 2, there exists a bounded sequence (sj,n) such that

ncj,n

sj,n

√
kn

(∆j,n − E (∆j,n)) → N (0, 1) as n → ∞.

More precisely, if n � k1+α
n then sj,n � 1, and if n = o

(
k1+α

n

)
, sj,n = 1.

4 Proof of the main result

For j = 1, 2, limn→∞ cj,n = c, thus the result of Lemma 7 can be rewritten

n

sj,n

√
kn

(∆j,n − E (∆j,n)) → N
(
0, c−2

)
, j = 1, 2.

We are now in position for obtaining Theorem 1, by proving that the differ-

ence between n
s1,n

√
kn

(∆1,n − E (∆1,n)) and n
s1,n

√
kn

(∆n − E (∆n)) converges

in probability to zero under the hypothesis of Lemma 7. First remark that

En = (Σ1,n ⊆ Σn ⊆ Σ2,n) ⊆ (f1,n ≤ fn ≤ f2,n)

so that

n

s1,n

√
kn

E (1En
|∆n − ∆1,n|) ≤

n

s1,n

√
kn

E

(∫ 1

0

(f2,n (x) − f1,n (x)) dx

)

=
n

s1,nk
3/2
n

kn∑

r=1

E (U2,n,r − U1,n,r) .

Then, let M = sup {f (x) : x ∈ [0, 1]}: since fn ≤ M and f1,n ≤ M , we have

n

s1,n

√
kn

E (1ΩrEn
|∆n − ∆1,n|) ≤ 2M

n

s1,n

√
kn

P (Ω r En) .

Lemma 2 and Lemma 3 yield

lim
n→∞

n

s1,n

√
kn

E (|∆n − ∆1,n|) = 0, (12)

so that

n

s1,n

√
kn

|∆n − ∆1,n| P→ 0. (13)
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From (12) and (13) we finally conclude

n

s1,n

√
kn

(∆1,n − E (∆1,n)) − n

s1,n

√
kn

(∆n − E (∆n))
P→ 0.

Taking sn = s1,n, we obtain the result of Theorem 1.

5 Discussion

1) Optimal speed: Theorem 1 is valid under the rate condition n � k1+α
n .

Of course this gives the best speed of convergence of ∆n to N (0, 1) in terms of

variance. The awkward fact is that, with n � k1+α
n , the variance of ∆n can just

be controlled, but not calculated, for a general f .

Note that the choice n � k1+α
n is also optimal for the L1- error within the class

of estimators fn based upon a sequence satisfying n = O(k1+α
n ). To see that,

let ka,n and kb,n be two sequences of positive integers satisfying the conditions

of Lemma 7. Suppose that n � k1+α
a,n and that n = o(k1+α

b,n ), and write ∆
(a)
n and

∆
(b)
n for the two corresponding sequences ∆n.

Following Lemma 4, we have E(∆
(a)
n ) = O(n− α

1+α ) and E(∆
(b)
n ) =

kb,n

nc (1 + o (1)),

thus

E(∆(a)
n )/E(∆(b)

n ) = O
((

n− α
1+α

)
n/kb,n

)
= O

((
n/k1+α

b,n

) 1
1+α

)
= o (1) .

In the case where f has a bounded derivative, α = 1 and the best speed is

obtained with n � k2
a,n, a result which is in accordance with those of [14].

2) Estimating c: In the result (5), c is unknown. A natural estimate of c is

c̃n =
kn∑kn

r=1 Un,r

.

Since

E
(∣∣c̃−1

n − c−1
∣∣) = E

(∣∣∣∣
∫ 1

0

fn (x) dx −
∫ 1

0

f (x) dx

∣∣∣∣
)

≤ E (∆n) ,
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it is readily seen that c̃n converges in probability to c, so that c̃n can be plugged

in place of c in (5) without perturbing the result.

Corollary 1 Assume f is α−Lipschitzian. If kn = o(n/ logn) and n = O
(
k1+α

n

)
,

then

nc̃n

sn

√
kn

(∆n − E (∆n)) → N (0, 1) as n → ∞.

with sn � 1 if n � k1+α
n , and sn = 1 if n = o

(
k1+α

n

)
.

3) Centering the sequence: From Lemma 4, the convergence to zero of

nc√
kn

E (∆n) −
√

kn = O

(
n2

k
3/2+2α
n

)

strongly depends of the regularity of the unknown function f . Thus, in order to

replace E (∆n) by the sequence kn/(nc), we must renounce the optimal choice

of kn. In return, we can take sn = 1.

Corollary 2 Assume f is α−Lipschitzian. If kn = o(n/ logn) and n = o
(
k

3/4+α
n

)
,

then

nc√
kn

∆n −
√

kn → N (0, 1) as n → ∞.

4) A cleaned result: In order to replace both c and E (∆n), write

nc̃n√
kn

∆n −
√

kn =
c̃n

c

(
nc√
kn

∆n −
√

kn

)
+ c̃n

√
kn

(
c−1 − c̃−1

n

)
.

Under the conditions of Corollary 2, the first term in the above sum converges

in distribution to N (0, 1), but the second term is a oP (1) only under stronger

conditions. In view of Lemma 4,

√
knE

(∣∣c−1 − c̃−1
n

∣∣) ≤
√

knE (∆n) =
k

3/2
n

(n + 1) c
+ O

(
n

k
1/2+2α
n

)
.

Note that kn = o(n2/3) and n = o(k
3/4+α
n ) are incompatible for α ≤ 3/4.

Moreover, for α > 3/4, n = o(k
1/2+2α
n ) is a weaker condition than n = o(k

3/4+α
n ).

Thus we have obtained

13



Corollary 3 Assume f is α−Lipschitzian. If kn = o(n2/3) and n = o
(
k

3/4+α
n

)
,

then

nc̃n√
kn

∆n −
√

kn → N (0, 1) as n → ∞.

For α = 1, the possible choices are given by the relations n2/3 � kn � n4/7.

This result shows that the asymptotic bias of the L1- error can be estimated by

kn/(nc̃n), suggesting a bias corrected estimator of fn defined by

gn(x) = fn(x) +
1

n

kn∑

r=1

Un,r.
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