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Abstract: This report summarizes my contributions to extreme-value statistics. I worked on

the estimation of the extreme-value index, Weibull-tail coefficient and end-point estimation.

I also studied conditional extremes, that is the situation where the extreme-value behavior

depends on a covariate. I developed some application to risk measure estimation.

Contributions

Extreme value theory is a branch of statistics dealing with the extreme deviations from
the bulk of probability distributions. More specifically, it focuses on the limiting distri-
butions for the minimum or the maximum of a large collection of random observations
from the same arbitrary (unknown) distribution. Let x1 < · · · < xn denote n ordered
observations from a random variable X representing some quantity of interest. A pn-
quantile of X is the value qpn such that the probability that X is greater than qpn is pn,
i.e. P (X > qpn) = pn. When pn < 1/n, such a quantile is said to be extreme since it is
usually greater than the maximum observation xn. To estimate such extreme quantiles
requires therefore specific methods to extrapolate information beyond the observed
values of X. Those methods are based on Extreme value theory. This kind of issues
appeared in hydrology. One objective was to assess risk for highly unusual events, such
as 100-year floods, starting from flows measured over 50 years.

The decay of the survival function P (X > x) = 1 − F (x), where F denotes the
cumulative distribution function associated to X, is driven by a real parameter called
the extreme-value index γ. I have proposed several estimators for this parameter,
see [1, 2, 3, 4, 5]. When this parameter is positive, the survival function is said to be
heavy-tailed, when this parameter is negative, the survival function vanishes above its
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right end point. Some estimation methods for the right end point have been proposed
in [6, 7]. If this parameter is zero, then the survival function decreases to zero at an
exponential rate. An important part of our work is dedicated to the study of such
distributions. For instance, in reliability, the distributions of interest are included
in a semi-parametric family whose tails are decreasing exponentially fast. These so-
called Weibull tail-distributions encompass a variety of light-tailed distributions, such
as Weibull, Gaussian, gamma and logistic distributions. Let us recall that a cumulative
distribution function F has a Weibull tail if it satisfies the following property: There
exists θ > 0 such that for all λ > 0,

lim
y→∞

log(1 − F (λy))

log(1 − F (y))
= λ1/θ.

Dedicated methods have been proposed to estimate the Weibull tail-coefficient θ since
the relevant information is only contained in the extreme upper part of the sample.
More specifically, the estimators I proposed are based on the log-spacings between the
upper order statistics [8, 9, 10, 11, 12]. See also [13, 14, 15, 16] for the estimation of the
associated extreme quantiles. These methods can also be seen as an improvement of
the ET method [17, 18, 19]. Of course, the choice of a tail model is an important issue,
see [20] for the introduction of a goodness-of-fit test and [21] for its implementation.

I also addressed the estimation of extreme level curves. This problem is equivalent
to estimating quantiles when covariate information is available and when their order
converges to one as the sample size increases. We show that, under some conditions,
these so-called ”extreme conditional quantiles” can still be estimated through a ker-
nel estimator of the conditional survival function. Sufficient conditions on the rate
of convergence of their order to one are provided to obtain asymptotically Gaussian
distributed estimators. Making use of this result, some estimators of the extreme-
value parameters are introduced and extreme conditional quantiles estimators are de-
duced [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Finally, the tail copula is widely used to
describe the dependence in the tail of multivariate distributions. In some situations
such as risk management, the dependence structure may be linked with some covariate.
The tail copula thus depends on this covariate and is referred to as the conditional tail
copula. The aim of [32] is to propose a nonparametric estimator of the conditional tail
copula and to establish its asymptotic normality.

In the multivariate context, we focus on extreme geometric quantiles [33, 34]. Their
asymptotics are established, both in direction and magnitude, under suitable integra-
bility conditions, when the norm of the associated index vector tends to one.

Applications of extreme-value theory are found in ecology [35], hydrology [36, 37,
38, 39, 40] and more generally in risk estimation. In this case, I investigate the extreme
properties of several risk measures as alternatives to the classical Value-at-Risk: Con-
ditional tail expectation [41], Conditional tail moment [42, 43], proportional hazard
premium [44], expectiles [45] and Lp quantiles [46].
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