Inverting hyperspectral images with Gaussian Regularized Sliced Inverse Regression

Caroline Bernard-Michel, Sylvain Douté, Laurent Gardes and Stéphane Girard

MISTIS - INRIA Rhône-Alpes
http://mistis.inrialpes.fr/

The inverse problem

- Visible and near infrared imaging spectroscopy allows the detection, mapping and characterization of minerals and ices by analyzing the solar light reflected in different directions by the surface materials.
- Modeling the direct link between some physical parameters \(Y \) and observable spectra \(X \) is called the forward problem and allows, for given values of the model parameters, to simulate the spectra that should be observed.
- Conversely, deducing the physical model parameters from the observed spectra is called an inverse problem.
- Application to OMEGA/MEX hyperspectral images observed on Mars [2].

Functional approach and dimension reduction

- Estimate the functional relationship \(F \) between the spectra \(X \in \mathbb{R}^p \) and one parameter \(Y \in \mathbb{R} \) (\(p = 184 \) wavelengths).
- Because of the curse of dimensionality, dimension reduction techniques are required.
- They rely on the assumption that the predictor \(X \) can be replaced by its projection on a subspace of smaller dimension \(X' \) without loss of information. Denoting by \(\beta_1, \ldots, \beta_K \) a basis of this subspace, the functional relationship \(Y = f(X) \) can be rewritten as \(Y = f(\beta_1 X, \ldots, \beta_K X) \) where \(f \) is now a \(K \)-variate function.

Sliced Inverse regression

- Introduced by Li [4]
 - Find the directions \(h = (\beta_1, \ldots, \beta_K) \) such that \(h' X \) best explains \(Y \).
 - Find the directions \(h \) minimizing the variances of \(h' X \) given \(Y \).
- In practice, the range of \(Y \) is partitioned into \(h \) slices and one needs to calculate the eigenvectors of \((\Sigma h)^{-1} \) where \(\Sigma \) is the spectra covariance matrix and \(h \) the slice mean spectra covariance matrix.

Our approach

- One GRSIR axis is sufficient.
- The \(k \)-nearest neighbors methodology (\(k \)-NN) is very unstable.
- GRGSIR gives the best results in terms of Normalized Root Mean Square Errors (NRMSE) for most parameters.
- PLS [3] does not seem suited because the relationship is non linear.
- There is still a small bias with GRSIR due to the choice of the learning database.

Inversion of real hyperspectral images

- Validation is difficult because no ground truth data is available.
- GRGSIR first axis does put weights on key spectral points according to researchers in planetary physics.
- GRGSIR estimations vary continuously and seem to be spatially coherent.
- GRGSIR map is more detailed.
- GRGSIR is in accordance with the Waveanglet physical approach whereas in some regions, \(k \)-NN and PLS give conflicting estimations. Waveanglet is a supervised classification method that allows the detection and quantification of major compounds on hyperspectral images [5].
- Images from different orbits but analyzing the same portion of Mars give similar GRGSIR estimates.
- When spectra cannot be inverted by GRSIR, it generally means they correspond to another physical model.

Bibliography