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I. The inverse problem

• Visible and near infrared imaging spectroscopy allows the detection, mapping and
characterization of minerals and ices by analyzing the solar light reflected in different
directions by the surface materials.

• Modeling the direct link between some physical parameters Y and observable spec-
tra X is called the forward problem and allows, for given values of the model param-
eters, to simulate the spectra that should be observed.

• Conversely, deducing the physical model parameters from the observed spectra is
called an inverse problem.

• Application to OMEGA/MEX hyperspectral images observed on Mars [1].

II. Our approach

Regression Problem

• Estimate the functional relationship f between the spectra x ∈ Rd and one parameter
y ∈ R (d = 184 wavelengths).

• Because of the curse of dimensionality, parameters estimation are difficult.

• Model free approaches based on statistical learning theory are a good alternative to
parametric ones.

Support Vectors Machines Regression

• Structural risk minimization [2]:
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• Learn f of the form: f (x) =
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)

found by convex optimization.

• k is a kernel function: f might be non-linear.
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Simulated data: xi corresponding to non-zero

αi are called support vectors

III. Validations on simulations

Data sets

• Simulated by radiative transfert; 3584 training samples & 3528 test samples

• 5 parameters : proportion of CO2, H2O & dust - grain size of CO2 & H2O

Results

• Competing methods: Gaussian Regularized Sliced Inverse Regression (GRSIR) [3] and
Partial Least Squares (PLS) [2].

• Optimal parameters selected by cross-validation.

Parameter GRSIR PLS
SVM NRMSE and computing time for GRSIR, PLS

and SVM with various kernels. “x-Pol” is

q = x in the polynomial kernel. The power of

the polynomial kernel was fixed to 9 for each

parameter, after cross-validation. The NRMSE

quantifies the importance of estimation errors

(must be close to zero). The bottom line of the

table corresponds to the training time of param-

eter “Prop. of H2O” after the selection of opti-

mal hyperparameters.

lin. Gauss. Spect. 0-Pol 0.5-Pol 1-Pol 2-Pol

Prop. of H2O 0.28 0.32 0.31 0.14 0.25 0.24 0.17 0.14 0.13

Prop. of CO2 0.19 0.31 0.30 0.15 0.27 0.27 0.18 0.16 0.15

Prop. of dust 0.11 0.22 0.22 0.09 0.19 0.19 0.11 0.10 0.10

Grain size of H2O 0.34 0.39 0.39 0.15 0.34 0.33 0.23 0.19 0.18

Grain size of CO2 0.16 0.24 0.25 0.11 0.21 0.20 0.14 0.12 0.11

CPU time (s) 0.16 0.66 3.57 10.30 5.89 5.98 10.20 60.30 478

Estimation of the grain size of CO2 ice (Y-axis) versus real values (X-axis)
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GRSIR
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PLS
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SVM

GRSIR PLS SVM (Gaussian Kernel)

Comments

• SVM with Gaussian or polynomial kernel gives the best results in terms of Normalized
Root Mean Square Errors (NRMSE) for all parameters

• Non-linear regression (GRSIR, Gaussian or polynomial SVM) performs better than linear
regression (PLS and linear SVM).

• Training time is longer with SVM.

• Analysing the SVM solution: The Support Vectors ↔ αi 6= 0 in f (x) =
∑n

i=1 αik(x,xi) + b

High number of SVs indicates that
the estimation is difficult. The phe-
nomenon is explained by the satura-
tion of the physical model: different y

generate very similar x.

• Link between SVM with a linear kernel and GRSIR:

GRSIR axis β and SVM normal vector w as a function of λ

IV. Inversions of real hyperspectral images

• Validation is difficult because no ground truth data is available.

• SVM estimations vary continuously and seem to be spatially coherent.

• SVM and GRSIR estimation are of different magnitude.

• Images from different orbits but analyzing the same portion of Mars does not give similar
SVM estimates, unlike to GRSIR estimates.

Histogram of SVM and GRSIR estimates from two images of the same portion of Mars
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