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Context

Classification of multispectral imagery
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•A pixel is represented by x ∈ Rd.

• Spatial-spectral classification.

•Kernel methods: including spa-
tial information in the classifica-
tion process is not easy.

• Statistical methods: MRF, but
hard when d is large

Combine statistical methods (GMM-MRF) and kernel methods.

Classification with parsimonious Gaussian

process models

Gaussian process in the kernel feature space

Let S =
{

(xi, yi)
}n
i=1

be a set of training samples, where xi ∈ J , J ⊂ Rd, is a pixel
and yi ∈ {1, . . . , C} its class, and C the number of classes. For short, in the following

− ln
(
p
(
φ(xi)|yi

))
will be referred to Ω(φ(xi), yi).

In this work, the conventional Gaussian kernel function is used:

k(xi,xj) = exp

(
−
‖xi − xj‖2

Rd

2σ2

)
, σ > 0, (1)

Its associated feature space is F and the mapping function is φ : Rd → F . We have
dF = +∞ and the conventional multivariate normal distribution cannot be defined.
To overcome this, let us assume that φ(x), conditionally on y = c, is a Gaussian process
with mean µc and covariance function Σc. Hence, for all r ≥ 1, random vectors on
Rr defined by [φ(x)1, . . . , φ(x)r] are, conditionally on y = c, a multivariate normal
vectors. Therefore, it is possible to write for yi = c

Ω(φ(xi), yi) =

r∑
j=1

[
〈φ(xi)− µc,qcj〉2

2λcj
+

ln(λcj)

2

]
+ γ (2)

where λcj is the jth eigenvalue of Σc in decreasing order, qcj its associated eigenvector
and γ a constant term that does not depend on c.

Parsimonious Gaussian process

Definition 1 (Parsimonious Gaussian process)A parsimonious Gaussian
process is a Gaussian process φ(x) for which, conditionally to y = c, the eigen-
decomposition of its covariance operator Σc is such that:

A1. It exists a dimension r < +∞ such that λcj = 0 for j ≥ r and for all c =
1, . . . , C.

A2. It exists a dimension pc < min(r, nc) such that λcj = λ for pc < j < r and for
all c = 1, . . . , C.

A1 is motivated by the quick decay of the eigenvalues for a Gaussian kernel. A2
expresses that the data of each class live in a specific subspace Fc of size pc.

Sub-models

Model Variance inside Fc qcj pc

pGP0 Free Free Free
pGP1 Free Free Common
pGP2 Common within groups Free Free
pGP3 Common within groups Free Common
pGP4 Common between groups Free Common
pGP5 Common within and between groups Free Free
pGP6 Common within and between groups Free Common
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Model inference

Centered Gaussian kernel function according to class c as:

k̄c(xi,xj) = k(xi,xj) +
1

n2
c

nc∑
l,l′=1
yl,y

′
l=c

k(xl,xl′)−
1

nc

nc∑
l=1
yl=c

(
k(xi,xl) + k(xj,xl)

)
.

(3)

The associated normalized kernel matrix Kc of size nc × nc is defined by

(Kc)l,l′ =
k̄c(xl,xl′)

nc
. (4)

Proposition 1For pM = max(p1, . . . , pC), c = 1, . . . , C and the model pGP0,
eq. (2) can be computed with

Ω(φ(xi), yi) =
1

2nc

p̂c∑
j=1

1

λ̂cj

(
1

λ̂cj
− 1

λ̂

)( nc∑
l=1
yl=c

βcjlk̄c(xi,xl)

)2

+
1

2λ̂
k̄c(xi,xi) +

p̂c∑
j=1

ln(λ̂cj)

2
+ (p̂M − p̂c)

ln(λ̂)

2

(5)

where βcjl is the l
th component of the normalized eigenvector βcj associated to jth

largest eigenvalue λ̂cj of Kc and

λ̂ =
1∑C

c=1 π̂c(rc − p̂c)

C∑
c=1

π̂
(
trace(Kc)−

p̂c∑
j=1

λ̂cj
)

(6)

and π̂c = nc/n.

The estimation of pc is done by looking at the cumulative variance for the sub-models
pGP0,2,5. In practice, pc is estimated such as the percentage of the cumulative variance
is higher than a given threshold th:∑p̂c

j=1 λ̂cj∑nc
j=1 λ̂cj

> th. (7)

For the other sub-models, p̂ is a fixed parameter given by the user.

Experimental results

The data set is the University Area of Pavia, Italy, acquired with the ROSIS-03 sensor.
The image has 103 spectral bands (d = 103) and is 610×340 pixels. 50 pixels for
each class have been randomly selected from the samples for the training set, and the
remaining set of pixels has been used for validation. The process has been repeated
50 times, each time a new training set has been generated and the variables have been
scaled between -1 and 1.

Method pGP0 pGP1 pGP2 pGP3 pGP4 pGP5 pGP6 SVM GMM KGMM pGPMRF

OA 83.5 84.2 62.7 69.6 73.4 61.1 69.9 84.5 77.7 80.4 91.2

A conventionnal Potts model is used to construct a Markov Random Field (MRF) for
which the conditional probability is computed with pGP1. For the optimization, a
Metropolis algorithm is used.

Part of Pavia image Thematic map obtained with pGP1 Thematic map obtained with pGP1MRF

Conclusions and perspectives

Conclusions:

•Family Kernel GMMs has been proposed

•Good classification accuracies w.r.t SVM

•Extension to MRF classifier

Perspectives

• Influence of the training set size

•Combination of kernel

•Advanced MRF models


