ESTIMATION OF A NEW PARAMETER DISCRIMINATING BETWEEN WEIBULL TAIL-DISTRIBUTIONS AND HEAVY-TAILED DISTRIBUTIONS

RINRIA

Jonathan El Methni⁽¹⁾, Laurent Gardes⁽¹⁾, Stéphane Girard⁽¹⁾ & Armelle Guillou⁽²⁾

⁽¹⁾ Team Mistis, INRIA Rhône-Alpes & LJK, http://mistis.inrialpes.fr-⁽²⁾ Université de Strasbourg & CNRS. Contact: jonathan.elmethni@inrialpes.fr http://mistis.inrialpes.fr/people/elmethni

I. Statistical Framework

- Let X_1, \ldots, X_n be a sample of independent and identically distributed random variables driven from X with cumulative distribution function F, and let $X_{1,n} \leq \cdots \leq X_{n,n}$ denote the order statistics associated to this sample.
- We want to estimate the extreme quantile x_{p_n} of order p_n associated to the random variable $X \in \mathbb{R}$ defined by :

$x_{p_n} = \overline{F} \stackrel{\leftarrow}{\leftarrow} (p_n) = \inf\{x, \overline{F}(x) \le p_n\},\$

with $p_n \to 0$ when $n \to \infty$. The function $\overline{F}^{\leftarrow}$ is the generalized inverse of the nonincreasing function $\overline{F} = 1 - F$.

• In [2], a family of distributions is introduced, it encompasses the whole Fréchet maximum domain of attraction as well as Weibull tail-distributions. These distributions depend on two parameters $\tau \in [0, 1]$ and $\theta > 0$.

II. Model: Gumbel/Fréchet

- Let us consider the family of survival distribution functions defined as
- $\overline{F}(x) = \exp(-K_{\tau}^{\leftarrow}(\log H(x)))$ for $x \ge x_* > 0$ where
- $K_{\tau}(y) = \int_{1}^{y} u^{\tau-1} du$ where $\tau \in [0, 1]$,
- *H* an increasing function such that $H^{\leftarrow} = x^{-\theta} \ell(x)$ where $\theta > 0$ and $\ell(x)$ is a slowly varying function.

Proposition

- $\tau = 0 \iff F$ is a Weibull-tail distribution function with Weibull tail-coefficient θ .
- $\tau \in [0, 1)$ and H is twice differentiable \implies F belongs to the Gumbel maximum domain

of attraction.

• $\tau = 1 \iff F$ is in the Fréchet maximum domain of attraction with tail-index θ .

III. Estimators depending on τ

Denoting by (k_n) an intermediate sequence of integers, the following estimator of θ is considered in [2]:

$$\widehat{\theta}_{n,\tau}(k_n) = \frac{H_n(k_n)}{\mu_{\tau}(\log(n/k_n))}$$

where $H_n(k_n)$ is the Hill estimator [3],

$$H_n(k_n) = \frac{1}{k_n - 1} \sum_{i=1}^{k_n - 1} \log(X_{n-i+1,n}) - \log(X_{n-k_n + 1,n})$$

and with, for all t > 0, $\mu_{\tau}(t) = \int_0^\infty \left(K_{\tau}(x+t) - K_{\tau}(t) \right) e^{-x} dx$. An estimator of the extreme quantile x_{p_n} is proposed in [2]:

 $\widehat{x}_{p_n,\widehat{\theta}_{n,\tau}(k_n)} = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\tau}(k_n) \left(K_{\tau}(\log(1/p_n)) - K_{\tau}(\log(n/k_n))\right)\right).$

IV. Main Goal

The asymptotic distributions of $\hat{\theta}_{n,\tau}(k_n)$ and $\hat{x}_{p_n,\hat{\theta}_{n,\tau}(k_n)}$ have been established in [2] under a second-order condition on ℓ :

There exist $\rho < 0$, a function *b* satisfying $b(x) \rightarrow 0$ and |b| asymptotically decreasing such that uniformly locally on $\lambda > 0$

 $\log\left(\frac{\ell(\lambda x)}{\ell(x)}\right) \sim b(x)K_{\rho}(\lambda), \text{ when } x \to \infty.$

The main goal of this work is to propose an estimator for τ independent from θ .

This parameter controls the behavior of the tail-distribution: the larger the value of τ , the heavier is the tail.

V. Estimator of τ

VI. Asymptotic distribution

Let us consider for t > t'

$$\psi(x;t,t'): \mathbb{R} \to (-\infty, \exp(t-t'))$$
 such that $\psi(x;t,t') = \frac{\mu_x(t)}{\mu_x(t')}$

Denoting by (k_n) and (k'_n) two intermediate sequences of integers such that $k'_n > k_n$, the following estimator of τ is considered :

$$\widehat{\tau}_n = \begin{cases} \psi^{-1} \left(\frac{H_n(k_n)}{H_n(k'_n)}; \log(n/k_n), \log(n/k'_n) \right) & \text{if } \frac{H_n(k_n)}{H_n(k'_n)} < \frac{k}{k} \\ u & \text{if } \frac{H_n(k_n)}{H_n(k'_n)} \ge \frac{k}{k} \end{cases}$$

where $u \in [0, 1]$.

• $\hat{\tau}_n$ exists because $\psi(.; \log(n/k_n), \log(n/k'_n)) : \mathbb{R} \to (-\infty, k'_n/k_n)$ is a bijection.

Replacing τ by $\hat{\tau}_n$ we obtain : • an estimator of θ : $\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) = \frac{H_n(k_n)}{\mu_{\widehat{\tau}_n}(\log(n/k_n))}$ • an estimator of x_{p_n} :

$$\widehat{x}_{p_n,\widehat{\theta}_{n,\widehat{\tau}_n}(k_n)} = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) \left(K_{\widehat{\tau}_n}(\log(1/p_n)) - K_{\widehat{\tau}_n}(\log(n/k_n))\right)\right)$$

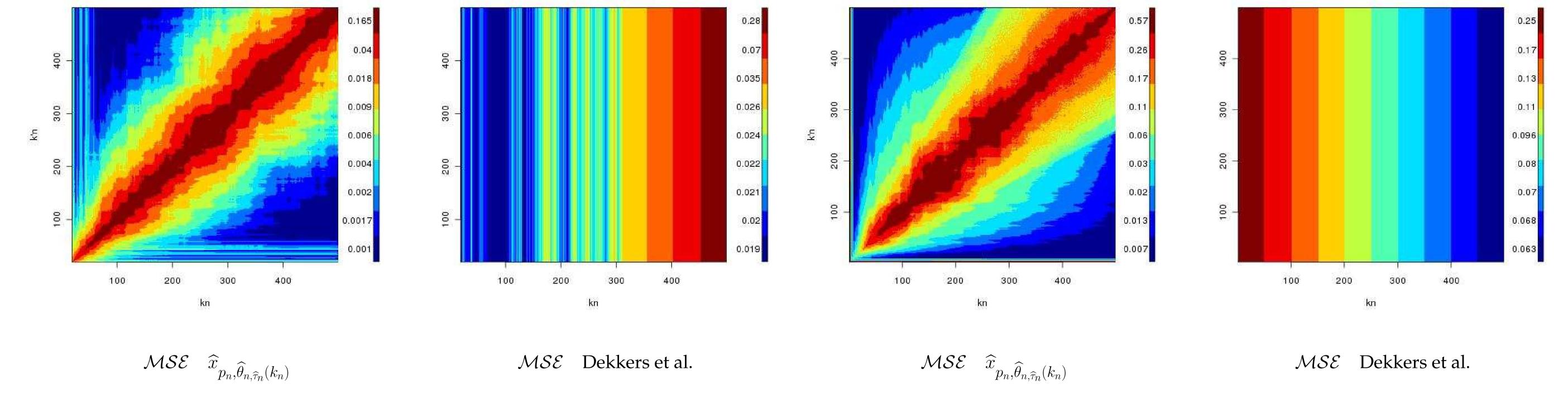
Under some assumptions on (k_n) and (k'_n) we establish the asymptotic normality of $\hat{\tau}_n$, $\widehat{\theta}_{n,\widehat{\tau}_n}(k_n)$ and $\widehat{x}_{p_n,\widehat{\theta}_{n,\widehat{\tau}_n}(k_n)}$. In particular:

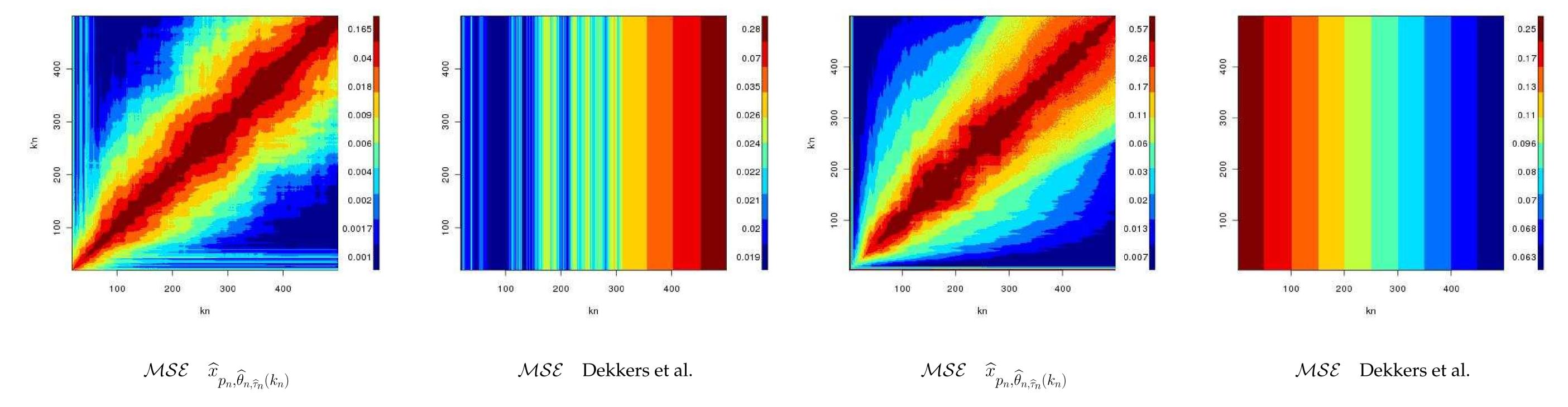
$$\frac{\sqrt{k_n} \left(\log_2(n/k_n) - \log_2(n/k'_n) \right)}{\int_{\log(n/k_n)}^{\log(1/p_n)} \log(u) u^{\tau-1} du} \left(\frac{\widehat{x}_{p_n, \widehat{\theta}_{n, \widehat{\tau}_n}(k_n)}}{x_{p_n}} - 1 \right) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \theta^2).$$

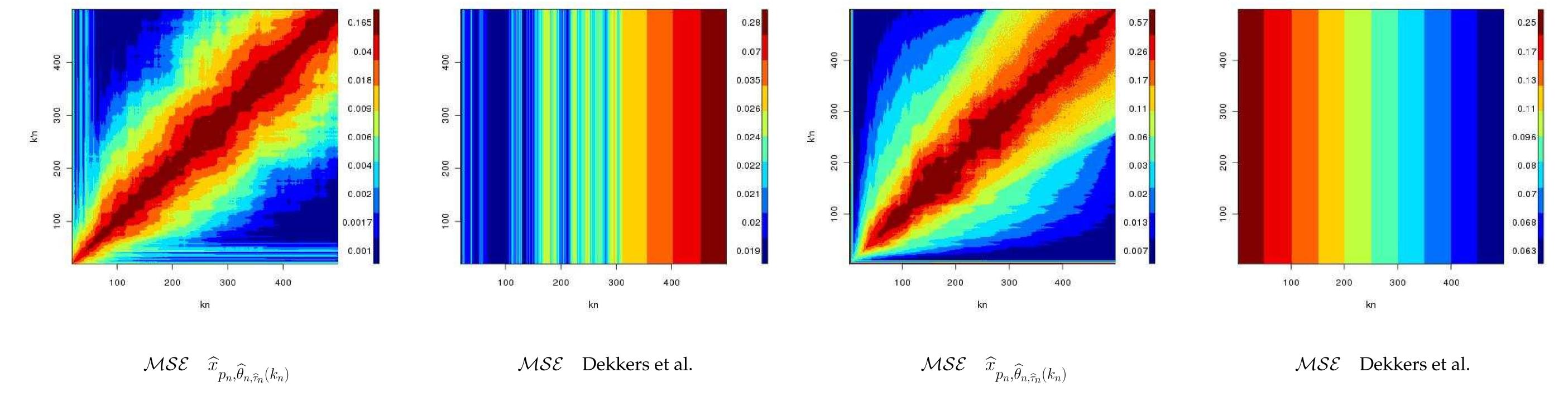
VII. Numerical experiments on simulated data

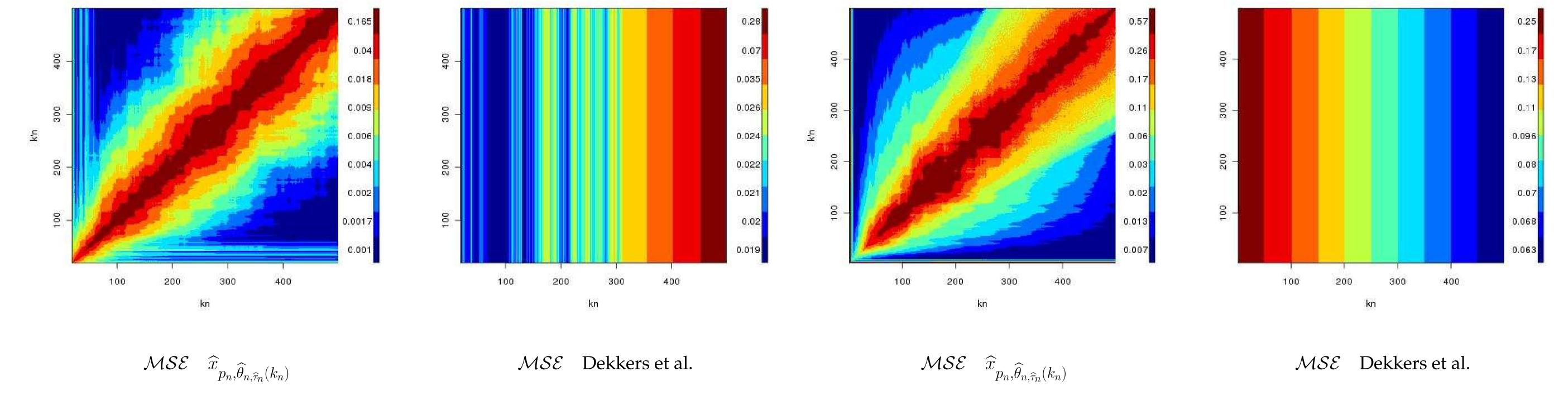
Gamma distribution $\mathcal{D}(Gumbel)$

Pareto distribution $\mathcal{D}(Fréchet)$









Bibliography

- The estimator $\hat{x}_{p_n,\hat{\theta}_{n,\hat{\tau}_n}(k_n)}$ is computed on N = 100 samples of size n = 500for $k_n = 2, \ldots, 499$ and $k'_n = k_n, \ldots, 500$ where $p_n = 10^{-3}$. • The associated deciles of the empirical Mean-Squared Error \mathcal{MSE} are plotted • Comparison with an estimator of A. L. M. Dekkers, J.H.J. Einmahl & L. de Haan [1].
- [1] Dekkers, A. L. M., Einmahl, J. H. J., De Haan, L., (1989). A Moment Estimator for the Index of an Extreme-Value Distribution, The Annals of Statistics, 17, 1833–1855.
- [2] Gardes, L., Girard, S., Guillou, A., (2011). Weibull tail-distributions revisited: a new look at some tail estimators, Journal of Statistical Planning and Inference, 141, 429–444.

[3] Hill, B.M., (1975). A simple general approach to inference about the tail of a distribution, *The Annals of Statistics*, **3**, 1163–1174.