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Abstract

This note reports my research results in 2015. Three main research topics are addressed:

High dimensional statistical learning, Copulas and Extreme-value analysis.

1 Extreme-value analysis

The decay of the survival function is driven by a real parameter called the extreme-value index.

When this parameter is positive, the survival function is said to be heavy-tailed. The estimation of

extreme risk measures is addressed in this context in [1, 2]. Applications are found in hydrology [3,

4, 5] and more generally in the modelling of environmental risks [6]. We also refer to [7] for an

application to extreme-value methods to intrinsic dimensionality estimation.

A popular way to study the tail of a distribution function is to consider its high or extreme

quantiles. While this is a standard procedure for univariate distributions, it is harder for multi-

variate ones, primarily because there is no universally accepted definition of what a multivariate

quantile should be. In this paper, we focus on extreme geometric quantiles. Their asymptotics

are established, both in direction and magnitude, under suitable integrability conditions, when the

norm of the associated index vector tends to one [8, 9].

2 Copulas

Copula provides a relevant tool to build multivariate probability laws, from fixed marginal distri-

butions and required degree of dependence. From Sklar’s Theorem, the dependence properties of

a continuous multivariate distribution can be entirely summarized, independently of its margins,

by a copula. I proposed a new families of multivariate copulas adapted to high-dimensional prob-

lems [10, 11]. The estimation may be performed using a moments method [12]. I also addressed

the nonparametric estimation of the conditional tail copula [13].
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3 High dimensional statistical learning

Besides, I developped dimension reduction methods for high dimensional regression problems [14]

with some applications in astrophysics.

Finally, I have proposed a parametrization of the Gaussian mixture model for classification

purposes. It is assumed that the high-dimensional data live in subspaces with intrinsic dimensions

smaller than the dimension of the original space and that the data of different classes live in

different subspaces with different intrinsic dimensions. New high-dimensional data classifiers are

introduced on the basis of this model. The use of kernel methods permits to extend the classifiers to

the non-Gaussian framework [15]. See [16] for an application to the classification of hyperspectral

images. An application of multinomial mixture models to the classification of verbal autopsy data

has also been developped [17, 18].
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de Statistique organisées par la Société Française de Statistique, Lille, juin 2015.

3


