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@ Sliced Inverse Regression (SIR)



[Li, 1991]
@ Infer the conditional distribution of a response r.v. Y € R
given a predictor X € RP.
@ When p is large, curse of dimensionality.

o Sufficient dimension reduction aims at replacing X by its
projection onto a subspace of smaller dimension without loss
of information on the distribution of Y given X.

@ The central subspace is the smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.

How to estimate a basis of the central subspace?



SIR : Basic principle

Assume dim(S) = 1 for the sake of simplicity, i.e. S =span(b),
with b € RP = Single index model :

Y = g(b'X) + ¢ where € is independent of X.

Idea :

@ Find the direction b such that b'X best explains Y.

@ Conversely, when Y is fixed, b* X should not vary.

@ Find the direction b minimizing the variations of b'X given Y.
In practice :

@ The range of Y is partitioned into h slices S;.

@ Minimize the within slice variance of b*X under the
normalization constraint var(b'X) = 1.

@ Equivalent to maximizing the between slice variance under the
same constraint.



SIR : lllustration
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SIR : Estimation procedure

Given a sample {(X1,Y1),..., (X, Yn)}, the direction b is
estimated by

b= argmax b'T'b u.c. b'Sb=1. (1)
b

where 3 is the estimated covariance matrix and I is the between
slice covariance matrix defined by

with n; is proportion of observations in slice S;. The optimization
problem (1) has an explicit solution : b is the eigenvector of 3~ 'T"
associated to its largest eigenvalue.



SIR : Limitations

Problem : 3 can be singular, or at least ill-conditioned, in several
situations.

e Since rank(2) < min(n — 1, p), if n < p then 3 is singular.

@ Even when n and p are of the same order, 3 is ill-conditioned,
and its inversion introduces numerical instabilities in the
estimation of the central subspace.

@ Similar phenomena occur when the coordinates of X are
highly correlated.



SIR : Numerical experiment (1/2)

Experimental set-up.
o A sample {(X1,Y1),...,(X,,Y,)} of size n = 100 where
X, e RPwithp=50and Y; R, fori=1,...,n.
o X; ~N,(0,%) with X = QAQ" where
o A =diag(p?,...,2%,19),
e (Q is a matrix drawn from the uniform distribution on the set
of orthogonal matrices.
= The condition number of X is p?. (Here, 6 = 2).
o V; = g(b'X;) + & where
e g is the link function g(t) = sin(nt/2),
e b is the true direction b = 571/2Q(1,1,1,1,1,0,...,0)",
o £ ~N1(0,9.107%)



SIR : Numerical experiment (2/2)
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Blue : Projections b'X; on the
true direction b versus Y;,

Red : Projections b'X; on
the estimated direction b ver-
sus Y;,

Green : bt X; versus b X;.
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© Inverse regression without regularization



Single-index inverse regression model

Model introduced in [Cook, 2007].
X=p+cY)Vb+e, (2)

where
@ 1 and b are non-random RP— vectors,
e ¢ ~ N,(0,V), independent of Y,
@ ¢: R — R is a nonrandom coordinate function.

Consequence : The conditional expectation of X — i given Y is a
degenerated random vector located in the direction Vb.



Maximum Likelihood estimation (1/3)

Projection estimator of the coordinate function. ¢(.) is
expanded as a linear combination of & basis functions s;(.),

h
()= ejsi() =s'()e,
j=1
where ¢ = (c1,...,cp)t is unknown and

s(.) = (s1(.),.-.,sn(.))t. Model (2) can be rewritten as

X =pu+sY)Vb+e, e~Ny(0,V),

Definition : Signal to Noise Ratio in the direction b.
_ b'Eb—b'VD
P="vvy
where ¥ =cov(X).



Maximum Likelihood estimation (2/3)

Notations

e W : the h x h empirical covariance matrix of s(Y") defined by

n

Z(s(Yl) —5)(s(Y;) —5)" with 5=

i=1 =1

1
W ==
n

@ M : the h x p matrix defined by



Maximum Likelihood estimation (3/3)

If W and 3 are regular, then the ML estimators are :
@ Direction :AIA) is 'Ehe eigenvector associated to the largest
eigenvalue \ of S~1 MW 1M,
e Coordinate : ¢ = W~'Mb/b'Vb,
o Location parameter : i = X — b,
o Covariance matrix : V = 3 — ASbb'S /b S,
o Signal to Noise Ratio : p = \/(1 — }).

The inversion of X is still necessary.



SIR : A particular case

In the particular case of piecewise constant basis functions
si(.)=I{.€S8;}, j=1,...,h,
standard calculations show that
MWIM =T

and thus the ML estimator b of b is the eigenvector associated to
the largest eigenvalue of 71T,

= SIR method.



© Inverse regression with regularization



Gaussian prior

Introduction of a prior information on the projection of X on b
appearing in the inverse regression model

(1+p) Y2 (s(Y) = 5)teb ~ N(0,9).

o (1+ p)~'/? is introduced for normalization purposes,
permitting to preserve the interpretation of the eigenvalue in
terms of signal to noise ratio.

@ () describes which directions in R? are the most likely to
contain b.



Gaussian regularized estimators

If W and QS + I, are regular, the ML estimators are

@ Direction :AIA) is theA eigenvector associated to the largest
eigenvalue A of (O + I,)1QMW 1M,
o Coordinate :AéA:AIiV_lMlA)/((l + n(b))b'Vb), with
n(b) = b'Q~1b/b' b,
° [, V and p are unchanged.
— The inversion of 3 is replaced by the inversion of Q% + I,

= For a properly chosen prior matrix §2, the numerical
instabilities in the estimation of b disappear.



Gaussian regularized SIR (1/2)

GRSIR : In the particular case of piecewise constant basis
functions, the ML estimator b of b is the eigenvector associated to
the largest eigenvalue of (O3 + I,)1QI.

Links with existing methods
e Ridge [Zhong et al, 2005] : = 7711,. No privileged direction
for b in RP. 7 > 0 is the regularization parameter.
@ PCA+SIR [Chiaromonte et al, 2002] :

where d € {1,...,p} is fixed, 61 > -+ > b4 are the d largest
eigenvalues of ¥ and ¢y, ..., {q are the associated
eigenvectors.



Gaussian regularized SIR (2/2)

Three new methods
o PCA+ridge :

1 .
Q:;Zq]@
j=

No privileged direction in the d-dimensional eigenspace.
o Tikhonov : = 713, Directions with large variance are most
likely.
o PCA+Tikhonov :
1

d
Z 74545

In the d-dimensional eigenspace, directions with large
variance are most likely.

\]



@ Validation on simulations



Validation on simulations

Experimental set-up : Same as previously.
Proximity criterion between the true direction b and the
estimated ones b(") on N = 100 replications
LS
PC= = (0'0")?
- 2 (050)

r=1

e 0 < PCL,

@ a value close to 0 implies a low proximity : The b() are nearly
orthogonal to b,

@ a value close to 1 implies a high proximity : The b() are
approximatively collinear with b.



Influence of the regularization parameter

log 7 versus PC. The “cut-off” dimension and the condition
number are fixed (d = 20 and 6 = 2).
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@ Ridge and Tikhonov : significant improvement if 7 is large,
@ PCA-+SIR : reasonable results compared to SIR,

o PCA+ridge and PCA-+Tikhonov : small sensitivity to 7.



Sensitivity with respect to the condition number of

the covariance matrix

0 versus PC. The “cut-off” dimension is fixed to d = 20. The
optimal regularization parameter is used for each value of 6.
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@ Only SIR is very sensitive to the ill-conditioning,
@ ridge and Tikhonov : similar results,
@ PCA+ridge and PCA+Tikhonov : similar results.



Sensitivity with respect to the “cut-off” dimension

d versus PC. The condition number is fixed (6 = 2) The optimal
regularization parameter is used for each value of d.
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o PCA-+SIR : very sensitive to d.
@ PCA+ridge and PCA+Tikhonov : stable as d increases.



© Real data study



Estimation of Mars surface physical properties from

hyperspectral images

Context :

@ Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.

@ 3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.

@ This portion of Mars mainly contains water ice, COs and dust.

Goal : For each spectra X € RP, estimate the corresponding
physical parameter Y € R (grain size of CO3).



An inverse problem

Forward problem.

@ Physical modeling of individual spectra with a surface
reflectance model.

e Starting from a physical parameter Y, simulate X = F'(Y).

@ Generation of n = 12,000 synthetic spectra with the
corresponding parameters.

— Learning database.

Inverse problem.
o Estimate the fonctional relationship ¥ = G(X).
e Dimension reduction assumption G(X) = g(b'X).

@ b is estimated by SIR/GRSIR, g is estimated by a
nonparametric one-dimensional regression.



Estimated functional relationship
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Functional relationship between reduced spectra b'X on the first
GRSIR (PCA-ridge prior) direction and Y, the grain size of COs.



Estimated CO5 maps
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Grain size of CO4 estimated by SIR (left) and GRSIR (right) on an
hyperspectral image observed on Mars during orbit 61.
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