Regularization methods for Sliced Inverse Regression

Stéphane Girard

Team Mistis, INRIA Rhône-Alpes, France http://mistis.inrialpes.fr/~girard

February 2008

Joint work with Caroline Bernard-Michel and Laurent Gardes

Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

SIR: Goal

[Li, 1991]

- Infer the conditional distribution of a response r.v. $Y \in \mathbb{R}$ given a predictor $X \in \mathbb{R}^p$.
- ullet When p is large, curse of dimensionality.
- Sufficient dimension reduction aims at replacing X by its projection onto a subspace of smaller dimension without loss of information on the distribution of Y given X.
- The central subspace is the smallest subspace S such that, conditionally on the projection of X on S, Y and X are independent.

How to estimate a basis of the central subspace?

SIR : Basic principle

Assume $\dim(S)=1$ for the sake of simplicity, *i.e.* $S=\operatorname{span}(b)$, with $b\in\mathbb{R}^p\Longrightarrow\operatorname{Single}$ index model :

$$Y = g(b^t X) + \xi$$
 where ξ is independent of X .

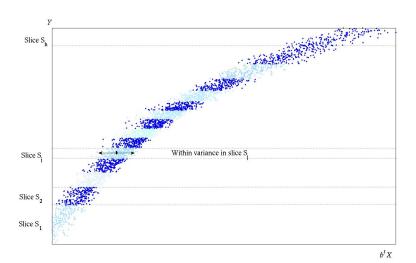
Idea:

- Find the direction b such that $b^t X$ best explains Y.
- Conversely, when Y is fixed, $b^t X$ should not vary.
- Find the direction b minimizing the variations of $b^t X$ given Y.

In practice:

- The range of Y is partitioned into h slices S_j .
- Minimize the within slice variance of $b^t X$ under the normalization constraint $var(b^t X) = 1$.
- Equivalent to maximizing the between slice variance under the same constraint.

SIR: Illustration



SIR: Estimation procedure

Given a sample $\{(X_1,Y_1),\ldots,(X_n,Y_n)\}$, the direction b is estimated by

$$\hat{b} = \operatorname*{argmax}_{b} b^{t} \hat{\Gamma} b$$
 u.c. $b^{t} \hat{\Sigma} b = 1$. (1)

where $\hat{\Sigma}$ is the estimated covariance matrix and $\hat{\Gamma}$ is the between slice covariance matrix defined by

$$\hat{\Gamma} = \sum_{j=1}^{h} \frac{n_j}{n} (\bar{X}_j - \bar{X}) (\bar{X}_j - \bar{X})^t, \quad \bar{X}_j = \frac{1}{n_j} \sum_{Y_i \in S_j} X_i,$$

with n_j is proportion of observations in slice S_j . The optimization problem (1) has an explicit solution : \hat{b} is the eigenvector of $\hat{\Sigma}^{-1}\hat{\Gamma}$ associated to its largest eigenvalue.

SIR: Limitations

Problem : $\hat{\Sigma}$ can be singular, or at least ill-conditioned, in several situations.

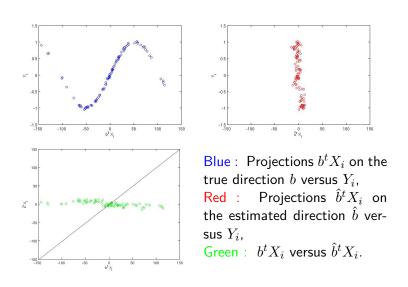
- Since $\operatorname{rank}(\hat{\Sigma}) \leq \min(n-1,p)$, if $n \leq p$ then $\hat{\Sigma}$ is singular.
- Even when n and p are of the same order, $\hat{\Sigma}$ is ill-conditioned, and its inversion introduces numerical instabilities in the estimation of the central subspace.
- \bullet Similar phenomena occur when the coordinates of X are highly correlated.

SIR : Numerical experiment (1/2)

Experimental set-up.

- A sample $\{(X_1,Y_1),\ldots,(X_n,Y_n)\}$ of size n=100 where $X_i\in\mathbb{R}^p$ with p=50 and $Y_i\in\mathbb{R}$, for $i=1,\ldots,n$.
- $X_i \sim \mathcal{N}_p(0, \Sigma)$ with $\Sigma = Q\Delta Q^t$ where
 - $\bullet \ \Delta = \operatorname{diag}(p^{\theta}, \dots, 2^{\theta}, 1^{\theta}),$
 - Q is a matrix drawn from the uniform distribution on the set of orthogonal matrices.
 - \implies The condition number of Σ is p^{θ} . (Here, $\theta = 2$).
- $Y_i = g(b^t X_i) + \xi$ where
 - g is the link function $g(t) = \sin(\pi t/2)$,
 - b is the true direction $b = 5^{-1/2}Q(1, 1, 1, 1, 1, 0, \dots, 0)^t$,
 - $\xi \sim \mathcal{N}_1(0, 9.10^{-4})$

SIR : Numerical experiment (2/2)



Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

Single-index inverse regression model

Model introduced in [Cook, 2007].

$$X = \mu + c(Y)Vb + \varepsilon, \tag{2}$$

where

- ullet μ and b are non-random \mathbb{R}^p- vectors,
- $\varepsilon \sim \mathcal{N}_p(0, V)$, independent of Y,
- $c: \mathbb{R} \to \mathbb{R}$ is a nonrandom coordinate function.

Consequence : The conditional expectation of $X-\mu$ given Y is a degenerated random vector located in the direction Vb.

Maximum Likelihood estimation (1/3)

• Projection estimator of the coordinate function. c(.) is expanded as a linear combination of h basis functions $s_j(.)$,

$$c(.) = \sum_{j=1}^{h} c_j s_j(.) = s^t(.)c,$$

where $c = (c_1, ..., c_h)^t$ is unknown and $s(.) = (s_1(.), ..., s_h(.))^t$. Model (2) can be rewritten as

$$X = \mu + s^t(Y)cVb + \varepsilon, \ \varepsilon \sim \mathcal{N}_p(0, V),$$

• Definition : Signal to Noise Ratio in the direction b.

$$\rho = \frac{b^t \Sigma b - b^t V b}{b^t V b},$$

where $\Sigma = \operatorname{cov}(X)$.

Maximum Likelihood estimation (2/3)

Notations

• W : the $h \times h$ empirical covariance matrix of s(Y) defined by

$$W = \frac{1}{n} \sum_{i=1}^{n} (s(Y_i) - \bar{s})(s(Y_i) - \bar{s})^t \text{ with } \bar{s} = \frac{1}{n} \sum_{i=1}^{n} s(Y_i).$$

ullet M : the h imes p matrix defined by

$$M = \frac{1}{n} \sum_{i=1}^{n} (s(Y_i) - \bar{s})(X_i - \bar{X})^t,$$

Maximum Likelihood estimation (3/3)

If W and $\hat{\Sigma}$ are regular, then the ML estimators are :

- **Direction** : \hat{b} is the eigenvector associated to the largest eigenvalue $\hat{\lambda}$ of $\hat{\Sigma}^{-1}M^tW^{-1}M$,
- Coordinate : $\hat{c} = W^{-1}M\hat{b}/\hat{b}^t\hat{V}\hat{b}$,
- Location parameter : $\hat{\mu} = \bar{X} \bar{s}^t \hat{c} \hat{V} \hat{b}$,
- Covariance matrix : $\hat{V} = \hat{\Sigma} \hat{\lambda} \hat{\Sigma} \hat{b} \hat{b}^t \hat{\Sigma} / \hat{b}^t \hat{\Sigma} \hat{b}$,
- Signal to Noise Ratio : $\hat{\rho} = \hat{\lambda}/(1-\hat{\lambda})$.

The inversion of $\hat{\Sigma}$ is still necessary.

SIR : A particular case

In the particular case of piecewise constant basis functions

$$s_j(.) = \mathbb{I}\{. \in S_j\}, \ j = 1, ..., h,$$

standard calculations show that

$$M^t W^{-1} M = \hat{\Gamma}$$

and thus the ML estimator \hat{b} of b is the eigenvector associated to the largest eigenvalue of $\hat{\Sigma}^{-1}\hat{\Gamma}$.

 \Longrightarrow SIR method.

Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

Gaussian prior

Introduction of a prior information on the projection of X on b appearing in the inverse regression model

$$(1+\rho)^{-1/2} (s(Y) - \bar{s})^t cb \sim \mathcal{N}(0,\Omega).$$

- $(1+\rho)^{-1/2}$ is introduced for normalization purposes, permitting to preserve the interpretation of the eigenvalue in terms of signal to noise ratio.
- Ω describes which directions in \mathbb{R}^p are the most likely to contain b.

Gaussian regularized estimators

If W and $\Omega \hat{\Sigma} + I_p$ are regular, the ML estimators are

- **Direction**: \hat{b} is the eigenvector associated to the largest eigenvalue $\hat{\lambda}$ of $(\Omega \hat{\Sigma} + I_p)^{-1} \Omega M^t W^{-1} M$,
- Coordinate : $\hat{c}=W^{-1}M\hat{b}/((1+\eta(\hat{b}))\hat{b}^t\hat{V}\hat{b})$, with $\eta(\hat{b})=\hat{b}^t\Omega^{-1}\hat{b}/\hat{b}^t\hat{\Sigma}\hat{b}$,
- $\hat{\mu}$, \hat{V} and $\hat{\rho}$ are unchanged.
- \Longrightarrow The inversion of $\hat{\Sigma}$ is replaced by the inversion of $\Omega\hat{\Sigma} + I_p$. \Longrightarrow For a properly chosen prior matrix Ω , the numerical instabilities in the estimation of b disappear.

Gaussian regularized SIR (1/2)

GRSIR: In the particular case of piecewise constant basis functions, the ML estimator \hat{b} of b is the eigenvector associated to the largest eigenvalue of $(\Omega \hat{\Sigma} + I_p)^{-1} \Omega \hat{\Gamma}$.

Links with existing methods

- Ridge [Zhong et al, 2005] : $\Omega = \tau^{-1}I_p$. No privileged direction for b in \mathbb{R}^p . $\tau > 0$ is the regularization parameter.
- PCA+SIR [Chiaromonte et al, 2002] :

$$\Omega = \sum_{j=1}^{d} \frac{1}{\hat{\delta}_j} \hat{q}_j \hat{q}_j^t,$$

where $d \in \{1,\dots,p\}$ is fixed, $\hat{\delta}_1 \geq \dots \geq \hat{\delta}_d$ are the d largest eigenvalues of $\hat{\Sigma}$ and $\hat{q}_1,\dots,\hat{q}_d$ are the associated eigenvectors.

Gaussian regularized SIR (2/2)

Three new methods

PCA+ridge :

$$\Omega = \frac{1}{\tau} \sum_{j=1}^{d} \hat{q}_j \hat{q}_j^t.$$

No privileged direction in the d-dimensional eigenspace.

- Tikhonov : $\Omega = \tau^{-1}\hat{\Sigma}$. Directions with large variance are most likely.
- PCA+Tikhonov :

$$\Omega = \frac{1}{\tau} \sum_{j=1}^{d} \hat{\delta}_j \hat{q}_j \hat{q}_j^t.$$

In the d-dimensional eigenspace, directions with large variance are most likely.

Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

Validation on simulations

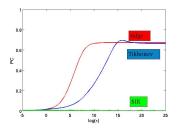
Experimental set-up : Same as previously. **Proximity criterion** between the true direction b and the estimated ones $\hat{b}^{(r)}$ on N=100 replications :

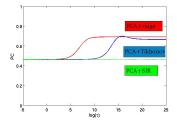
$$PC = \frac{1}{N} \sum_{r=1}^{N} (b^t \hat{b}^{(r)})^2$$

- $0 \le PC \le 1$,
- a value close to 0 implies a low proximity : The $\hat{b}^{(r)}$ are nearly orthogonal to b,
- a value close to 1 implies a high proximity : The $\hat{b}^{(r)}$ are approximatively collinear with b.

Influence of the regularization parameter

 $\log \tau$ versus PC. The "cut-off" dimension and the condition number are fixed (d=20 and $\theta=2$).

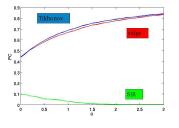


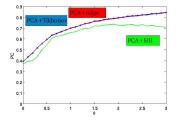


- Ridge and Tikhonov : significant improvement if τ is large,
- PCA+SIR: reasonable results compared to SIR,
- PCA+ridge and PCA+Tikhonov : small sensitivity to τ .

Sensitivity with respect to the condition number of the covariance matrix

 θ versus PC. The "cut-off" dimension is fixed to d=20. The optimal regularization parameter is used for each value of θ .

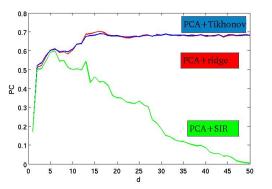




- Only SIR is very sensitive to the ill-conditioning,
- ridge and Tikhonov : similar results,
- PCA+ridge and PCA+Tikhonov : similar results.

Sensitivity with respect to the "cut-off" dimension

d versus PC. The condition number is fixed ($\theta = 2$) The optimal regularization parameter is used for each value of d.



- PCA+SIR : very sensitive to d.
- PCA+ridge and PCA+Tikhonov : stable as d increases.

Outline

- Sliced Inverse Regression (SIR)
- 2 Inverse regression without regularization
- 3 Inverse regression with regularization
- 4 Validation on simulations
- Real data study

Estimation of Mars surface physical properties from hyperspectral images

Context:

- Observation of the south pole of Mars at the end of summer, collected during orbit 61 by the French imaging spectrometer OMEGA on board Mars Express Mission.
- 3D image : On each pixel, a spectra containing p=184 wavelengths is recorded.
- This portion of Mars mainly contains water ice, CO₂ and dust.

Goal : For each spectra $X \in \mathbb{R}^p$, estimate the corresponding physical parameter $Y \in \mathbb{R}$ (grain size of CO_2).

An inverse problem

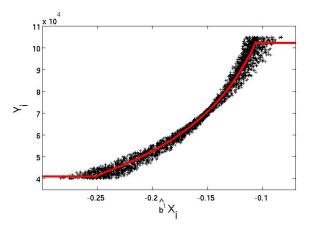
Forward problem.

- Physical modeling of individual spectra with a surface reflectance model.
- Starting from a physical parameter Y, simulate X = F(Y).
- Generation of n=12,000 synthetic spectra with the corresponding parameters.
- \implies Learning database.

Inverse problem.

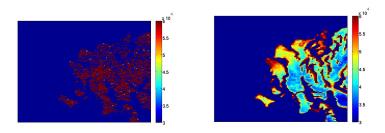
- Estimate the fonctional relationship Y = G(X).
- Dimension reduction assumption $G(X) = g(b^t X)$.
- b is estimated by SIR/GRSIR, g is estimated by a nonparametric one-dimensional regression.

Estimated functional relationship



Functional relationship between reduced spectra $\hat{b}^t X$ on the first GRSIR (PCA+ridge prior) direction and Y, the grain size of CO₂.

Estimated CO₂ maps



Grain size of CO_2 estimated by SIR (left) and GRSIR (right) on an hyperspectral image observed on Mars during orbit 61.

References

- [Li, 1991] Li, K.C. (1991). Sliced inverse regression for dimension reduction. *Journal of the American Statistical Association*, **86**, 316–327.
- [Cook, 2007]. Cook, R.D. (2007). Fisher lecture: Dimension reduction in regression. *Statistical Science*, **22**(1), 1–26.
- [Zhong et al, 2005]. Zhong, W., Zeng, P., Ma, P., Liu, J.S. and Zhu, Y. (2005). RSIR: Regularized Sliced Inverse Regression for motif discovery. *Bioinformatics*, 21(22), 4169–4175.
- [Chiaromonte et al, 2002]. Chiaromonte, F. and Martinelli, J. (2002). Dimension reduction strategies for analyzing global gene expression data with a response. *Mathematical Biosciences*, 176, 123–144.

References

- R. Coudret, S. Girard & J. Saracco. A new sliced inverse regression method for multivariate response, *Computational Statistics and Data Analysis*, to appear, 2014.
- M. Chavent, S. Girard, V. Kuentz, B. Liquet, T.M.N. Nguyen & J. Saracco. A sliced inverse regression approach for data stream, Computational Statistics, to appear, 2014.
- C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes & S. Girard.
 Retrieval of Mars surface physical properties from OMEGA
 hyperspectral images using Regularized Sliced Inverse Regression,
 Journal of Geophysical Research Planets, 114, E06005, 2009.
- C. Bernard-Michel, L. Gardes & S. Girard. A Note on Sliced Inverse Regression with Regularizations, *Biometrics*, 64, 982–986, 2008.
- C. Bernard-Michel, L. Gardes & S. Girard. Gaussian Regularized Sliced Inverse Regression, Statistics and Computing, 19, 85–98, 2009.
- A. Gannoun, S. Girard, C. Guinot & J. Saracco. Sliced Inverse Regression in reference curves estimation, *Computational Statistics* and Data Analysis, 46, 103–122, 2004.