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INRIA Rhône-Alpes, Team Mistis,
655 avenue de l’Europe, Montbonnot,
38334 Saint-Ismier Cedex, France.

Stephane.Girard@inrialpes.fr

http://mistis.inrialpes.fr/people/girard

1



Nonparametric estimation of the conditional tail index L. Gardes & S. Girard

1. Introduction

The problem.

• Estimation of the tail index γ associated to a random variable Y .

• Some covariate information x is recorded simultaneously with Y .

• The tail heaviness of Y given x depends on x, and thus the tail index is a function γ(x)

of the covariate.

Our approach combines nonparametric smoothing techniques with extreme-value

methods. Few assumptions are made on

• the regularity of γ(x),

• the nature of the covariate.

A central limit theorem is established without assuming that x is finite dimensional.

Related work. See for instance Beirlant et al. (2004) and Chavez et al. (2005).
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2. Estimators of the conditional tail index

Framework. E a metric space associated to a metric d.

• Model: Conditional tail quantile function of Y given t ∈ E is, for all y > 0,

U(y, t) = inf{s;F (s, t) ≥ 1− 1/y} = yγ(t)ℓ(y, t), (1)

where

◦ γ(t) is an unknown positive function of the covariate t and,

◦ for t fixed, ℓ(., t) is a slowly-varying function, i.e. for λ > 0,

lim
y→∞

ℓ(λy, t)

ℓ(y, t)
= 1.

• Data: A sample (Y1, x1), . . . , (Yn, xn) iid from (1), where the design points x1, . . . , xn
are non random points in E.

Goal. For a given t ∈ E, estimate the conditional tail index γ(t).
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Nonparametric estimators

• Window width: hn,t a positive sequence tending to zero as n → ∞,

• Window: Ball B(t, hn,t) = {x ∈ E, d(x, t) ≤ hn,t},

• Selected observations: {Zi(t), i = 1, . . . ,mn,t} the response variables Y ′
i s

associated to the mn,t covariates x
′
is in the ball B(t, hn,t).

• Corresponding order statistics: Z1,mn,t(t) ≤ . . . ≤ Zmn,t,mn,t(t),

• Intermediate sequence: kn,t → ∞ and kn,t/mn,t → 0,

• Weights: W (., t) a function defined on (0, 1) such that
∫ 1

0 W (s, t)ds = 1,

• Moving-window estimators: A weighted sum of the rescaled log-spacings between

the largest selected observations:

γ̂n(t,W ) =

kn,t∑
i=1

i log

(
Zmn,t−i+1,mn,t(t)

Zmn,t−i,mn,t(t)

)
W (i/kn,t, t)

/ kn,t∑
i=1

W (i/kn,t, t) .
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3. Main results

Assumptions on the conditional distribution

• Lipschitz assumptions: There exists positive constants zℓ, cℓ, cγ and α ≤ 1 such

that for all x ∈ B(t, 1),

|γ(x)− γ(t)| ≤ cγd
α(x, t),

and

sup
z>zℓ

∣∣∣∣log(ℓ(z, x)

ℓ(z, t)

)∣∣∣∣ ≤ cℓd(x, t),

• Second order condition: There exists a negative function ρ(t) and a rate function

b(., t) satisfying b(y, t) → 0 as y → ∞, such that for all λ ≥ 1,

log

(
ℓ(λy, t)

ℓ(y, t)

)
= b(y, t)

1

ρ(t)
(λρ(t) − 1)(1 + o(1)),

where ”o” is uniform in λ ≥ 1 as y → ∞.
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Assumptions on the weights

• Beirlant et al assumption: (See Beirlant et al. (2002)).

• Integrability condition: There exists a constant δ > 0 such that∫ 1

0

|W (s, t)|2+δds < ∞.

Asymptotic normality

Theorem 1 If, moreover, k
1/2
n,t bn,t → λ(t) ∈ R and k

1/2
n,t h

α
n,t → 0 then

k
1/2
n,t (γ̂n(t,W )− γ(t)− bn,tAB(t,W ))

d→ N
(
0, γ2(t)AV(t,W )

)
,

where we have defined

bn,t = b

(
mn,t

kn,t
, t

)
,

AB(t,W ) =

∫ 1

0

W (s, t)s−ρ(t)ds and AV(t,W ) =

∫ 1

0

W 2(s, t)ds.
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Remark 1.

• The asymptotic bias involves two parts:

◦ bn,t which depends on the original distribution itself,

◦ AB(t,W ) which can be made small by an appropriate choice of the weighting

function W .

• Similarly, the asymptotic variance involves two parts:

◦ 1/kn,t which is inversely proportional to the number of observations used to build

the estimator,

◦ γ2(t)AV(t,W ) which can also be adjusted.

• When λ(t) ̸= 0, condition k
1/2
n,t bn,t → λ(t) forces the bias to be of the same order as the

standard-deviation.

• Condition k
1/2
n,t h

α
n,t → 0 is due to the functional nature of the tail index to estimate. It

imposes to the fluctuations of t → γ(t) to be negligible compared to the standard

deviation of the estimator.
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Corollary 1 Suppose that E = Rp and that the slowly-varying function ℓ is such that

ℓ(y, t) = 1 for all (y, t) ∈ R+ × Rp. If

lim inf
n→∞

mn,t

nhp
n,t

> 0, (2)

then the convergence in distribution holds with rate n
α

p+2αηn, where ηn → 0 arbitrarily

slowly.

• Condition (2) is an assumption on the multidimensional design and on the distance d.

• Under the condition on the slowly-varying function ℓ(y, t) = 1 for all (y, t) ∈ R+ × Rp,

estimating γ(t) is a nonparametric regression problem since γ(t) = E(log Y |X = t). Let

us highlight that the convergence rate is, up to the ηn factor, the optimal convergence

rate for estimating α-Lipschitzian regression function in Rp, see Stone (1982).
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4. Two classical examples of weights

Conditional Hill estimator: Considering the constant weight function W H(s, t) = 1

for all s ∈ [0, 1] yields

γ̂n(t,W
H) =

1

kn,t

kn,t∑
i=1

i log

(
Zmn,t−i+1,mn,t(t)

Zmn,t−i,mn,t(t)

)
,

which is formally the same expression as in Hill (1975). Convergence in distribution holds

with AB(t,W H) = 1/(1− ρ(t)) and AV(t,W H) = 1.

Conditional Zipf estimator: Considering the weight function W Z(s, t) = − log(s)

for all s ∈ [0, 1] yields an estimator γ̂n(t,W
Z) similar to the Zipf estimator proposed by

Kratz et al. (1996) and Schultze et al. (1996). Convergence in distribution holds with

AB(t,W Z) = 1/(1− ρ(t))2 and AV(t,W Z) = 2.
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5. Theoretical choices of weights

Minimum variance estimator. The conditional Hill estimator is the unique

minimum variance estimator in our family.

Asymptotically unbiased estimator with minimum variance. The weight

function associated to the unique asymptotically unbiased estimator with minimum

variance is

W opt(s, t) =
ρ(t)− 1

ρ2(t)

(
ρ(t)− 1 + (1− 2ρ(t))s−ρ(t)

)
.

Convergence in distribution holds with AB(t,W opt) = 0 and

AV(t,W opt) = (1− 1/ρ(t))2.

Remark 2.

• Requires the knowledge of the second order parameter ρ(t).

• The estimation of the function t → ρ(t) is not addressed here. See for instance Alves et

al. (2003) for estimators when there is no covariate information. See also Gardes et al.

(2007) for an illustration of the effect of using a arbitrary chosen value.
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6. Illustration on real data

Description of the data.

• n = 13, 505 daily mean discharges (in m3/s) of the Chelmer river collected by the

Springfield gauging station, from 1969 to 2005.

• The data are provided by the Centre for Ecology and Hydrology (United Kingdom) and

are available at http://www.ceh.ac.uk/data/nrfa.

• Y is the daily flow of the river,

• x = (x1, x2) is a bi-dimensional covariate such that x1 ∈ {1969, 1970, . . . , 2005} is the

year of measurement and x2 ∈ {1, 2, . . . , 365} is the day.
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Selection of the hyperparameters.

• hn,t and kn,t are assumed to be independent of t, they are thus denoted by hn and kn
respectively.

• They are selected by minimizing the following distance between conditional Hill and

Zipf estimators:

min
hn,kn

max
t∈T

∣∣γ̂n(t,W H)− γ̂n(t,W
Z)
∣∣ ,

where T = {1969, 1970, . . . , 2005} × {15, 45, . . . , 345}.

• This heuristics is commonly used in functional estimation and relies on the idea that,

for a properly chosen pair (hn, kn) we have γ̂n(t,W
H) ≃ γ̂n(t,W

Z).

• The selected value of hn corresponds to a smoothing over 4 years on x1 and 2 months

on x2. Each ball B(t, hn), t ∈ T contains mn = 1089 points and kn = 54 rescaled

log-spacings are used.
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The heuristics is validated by computing on each ball B(t, hn), t ∈ T the χ2 distance to

the standard exponential distribution. The histogram of these distances is superimposed

to the theoretical density of the corresponding χ2 distribution.
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Conditional Zipf estimator
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The results are located in the interval [0.2, 0.7]. The estimated tail index is almost

independent of the year but dependent of the day. Heaviest tails are obtained in

September: Extreme flows are more likely this month.
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