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@ Weibull-tail distributions
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@ Let (X,Y) € E x R be a random pair where E is an arbitrary space
associated with a semi-metric (or pseudometric) d, see [3],
Definition 3.2.

@ The conditional survival function of Y given X = x € E is denoted
by F(y|x) :==P(Y > y|X = x) and is supposed to be continuous
and strictly decreasing with respect to y.

@ The associated conditional cumulative hazard function is defined by
H(y|x) := —log F(y|x).

@ The conditional quantile is given by
q(alx) = FY(a|x) = H Y(log(1/a)|x), for all a € (0,1).
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Conditional Weibull-tail distributions

(A.1) H(.|x) is supposed to be regularly varying with index 1/6(x), i.e.

lim H(ty|x) _ 1/6(x)

y=oo H(y|x)
for all t > 0. In this situation, 6(.) is a positive function of the
covariate x € E referred to as the functional Weibull tail-coefficient.

)

From [1], H=1(.|x) is regularly varying with index 6(x). Thus, there
exists a slowly-varying function ¢(.|x) such that

0(x)

g(e™|x) = H ' (ylx) = y*™i(y|x).

Recall that the slowly-varying function £(.|x) is such that

- ((ty[x)
y||—>oo ylx) L (1)

for all t > 0.

4/ 29



Additional assumptions

(A.2) £(.|x) is a normalised slowly-varying function.

In such a case, the Karamata representation (see [1]) of the
slowly-varying function can be written as

(ylx) = c(x) exp { | (X)d} ,

u

where ¢(x) > 0 and £(u|x) — 0 as u — occ.

The function £(.|x) plays an important role in extreme-value theory since
it drives the speed of convergence in (1) and more generally the bias of
extreme-value estimators. Therefore, it may be of interest to specify how
it converges to O:

(A.3) |e(.]x)] is regularly varying with index p(x) < 0.

p(x) is called the conditional second-order parameter.
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Examples of (unconditional) Weibull-tail distributions

Distribution

Uy) e(y) p
Gaussian 1/2 | V20 — %IC’% +0(1/y) %Io)g/y )
N(p, %)
Gamma | 1| 240V o) 1o a8 |
6 B Y v
Ma#£1,))
Weibull 1/ A 0 oo

Wi(a, )
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Starting from iid copies (X, Y;), i=1,...,n, of (X,Y),

@ Estimate the extreme conditional quantiles defined as
P(Y > g(an, x)|X = x) = ag,

when a, — 0 as n — oo.

@ Estimate the functional Weibull-tail coefficient 8(x).

7/ 29



@ Estimation of extreme conditional quantiles
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First, F(y|x) is estimated by a kernel method. For all (x,y) € E x R, let

Eo(ylx) = ZK (5, X0) /hn)I{ Vi > v} ZK (x, X:)/ hn).

where

@ h, is a nonrandom sequence (called bandwidth) such that h, — 0
as n — oo,

@ K is assumed to have a support included in [0, 1] such that
G <K({t)<Gforallte[0,1]]and 0 < (1 < G < o0.
It is assumed without loss of generality that K integrates to one.
K is called a type | kernel, see [3], Definition 4.1.

Second, g(ax) is estimated via the generalized inverse of I-e,,(.|x):

Gn(alx) = £ (alx) = inf{y, Fa(y|x) < a},

for all @ € (0,1).
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Notations:
@ B(x, h,) the ball of center x and radius hj,,
@ ¢.(h,) :=P(X € B(x, hyp)) the small ball probability of X,
o 1l (h,) == E{K7(d(x,X)/h,)} the T-th moment,
© An(x) = (naun(ui) (hn))? /157 (h)) /2.
It is easily shown that for all 7 > 0

0 < Clpx(hn) < 1 (hn) < G ox(hn),

and thus A,(x) is of order (na,px(h,))~Y/2.
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Regularity assumption

Since the considered estimator involves a smoothing in the x direction, it
is necessary to assess the regularity of the conditional survival function
with respect to x. To this end, the oscillations are controlled by

Aﬁ(X7 O[, C? h)

where (a, () € (0,1)2.

F(a(81x)|x) ’
- R L arta Ll S |
(BBl X [auc] ‘ F(a(Blx)[x)
= sup ‘F(q(ﬁﬁ|x)|x’) -1},

(x",B)€B(x;h) x[a,q]
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Asymptotic normality

Suppose (A.1), (A.2) hold.
@ Let 0 <7y <--- <71 <1 where Jis a positive integer.
@ x € E such that py(h,) > 0 where h, — 0 as n — oo.

If a, — 0 and there exists 77 > 0 such that npy(h,)a, — oo,
oy (hn)an(AF)?(x, (1 = n)7san, (1 + 0)tn, hy) = 0,
then, the random vector

{Iog(l/ozn)/\nl(x) (m - 1) }j=1,. J

o9

is asymptotically Gaussian, centered, with covariance matrix 6%(x)Z
where ¥; iy = 7.1, for (j,j') € {1,...,J}%

N’
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Conditions on the sequences

npx(hp)a, — co: Necessary and sufficient condition for the almost sure
presence of at least one point in the region B(x, h,) X [g(c,|x), +00) of
E xR.

quantile(x)

nox(hn)an(AF)?(x, (1 — n)7yn, (1 4 1)an, h,) — 0: The biais induced
by the smoothing is negligible compared to the standard-deviation.
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© Estimation of the functional Weibull-tail coefficient
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We propose a family of estimators of #(x) based on some properties of
the log-spacings of the conditional quantiles. Recall that

qle™|x) = H (y|x) = y"@e(y]x).
Let « € (0,1) small enough and 7 € (0,1),

log g(Ta|x) — log g(c|x)
= log H7!(— log(ra)|x) — log H~*(— log(a)|x)
— 000)(log 5(ra) ~ log () + log ()
~  0(x)(log_o(Tar) — log_5(x))

~ log(1/7)
~ 0k log(1/ax)’

where log_,(-) := loglog(1/-),
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Hence, for a decreasing sequence 0 < 75 < --- < 73 < 1, where J is a
positive integer, and for all (twice differentiable) function ¢ : R/ — R
satisfying the shift and location invariance condition

¢(nz) = no(2),
plnu+z) = ¢(2),
for all p € R\ {0}, z € R/ and where u = (1,...,1)! € R, one has:

N o(log g(T1a|x), ..., log g(Tya|x))
60x) ~ log(1/a) =4 T, .- Tog(1/7)))

Thus, the estimation of 0(x) relies on the estimation of conditional
quantiles g(-|x):

o(log Gn(T100n|X), - . ., log Gn(Tytn|x))

é,,(x) = log(1/an) o(log(1/m1),...,log(1/1)))

with a, — 0 as n — oo.
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Asymptotic normality

Ssuppose (A.1)—(A.3) hold. Let x € E such that ¢, (h,) > 0 where
h, —0as n— . If a, = 0,

v npx(hy)ane(log(l/apn)|x) = A € R

and there exists 77 > 0 such that ny,(h,)a, — co and

napx(h,,)a,,{A,E(X, (1 —n)myan, (1 +n)an, hy) V 1/log(1l/an,)} — 0,
then,
A1) @n(x) = 0(x)) = N (jags, 62 (x) Vip)

where 115 = Av? Viog ¢(v), Vi = (Vliegep(v))! X (Vliegp(v)) and
v = (log(1/7),...,log(1/7;))" do not depend on (X, Y) distribution.

v
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Corollary

Suppose (A.1)—(A.3) hold. Let x € E such that ¢, (h,) > 0 and
ye(y|x) — oo as y — oco. Assume there exist Ly, L. et L. such that

1

‘G(X X,) < Lodlxx),
llog c(x) — logc(x’)| < Led(x,x'),
sup |e(u|x) —e(u|x")] < L.d(x,x),

u€E[L,¥n(x)]
where yp(x) := sup{H(q(an|x)|x"), x" € B(x, h,)}. Suppose
x H(1/y)(log y)1 =7 — 0 (2)
for some £ > 0 as y — oo. Then, letting A > 0,
ap = n" and hy, = ;! ()\(1 — €)% =€ (<(log n\x))—2) ,

~

Theorem 2 yields A2 (x)(0,(x) — 6(x)) N N (pg, 0?(x) V).

The key assumption (2) holds in the finite dimensional setting or for
fractal-type and some exponential-type processes, see [3], Chapter 13.
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1/p
Let us focus on the functions ¢(P)(z) = (Zj:z Bi(zj — zl)P) , where

z=(z1,...,2z))t € R, pe N\ {0} and for all j € {2,...,J}, Bj € R.
The corresponding estimator of 6 writes:

~ Z'J:z ﬁj [|Og CAln(TjO‘n|X) — log an(Tlan|X)]p> Ve
0P (x) = log(1/av,, J .
) = loglt/an) ( Yo, Billog(m /7)1

As a consequence of Theorem 2, the associated asymptotic mean and
variance of @gp)(x) are given for an arbitrary vector 8 by ;1 = A and

(n(P))fAZAfn(P)

v — ,
(n(P) ) tAVVtAtfr](P)

where A is a given matrix and nP) = (8;(v; — v1), j =2,...,J)".

@ The asymptotic bias p does not depend neither on p and nor on the
weights {5, j=2,...,J}.

@ It is possible to minimize V(P) with respect to 7(P).
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Proposition

The asymptotic variance of GAE,")(X) is minimal for 5(P) proportional to

Nopt = (AXA!)~LAv and is given by

1
(Av)t (ATAD) 1AV’

Vopt =

and is independent of p.

<

Moreover, for a fixed value of J, it is possible to minimize numerically the
optimal variance V¢ with respect to parameters 0 < 7, < --- <713 < 1.
The resulting values of V, are displayed in the table below:

Vopt 71 T 73 T4 Ts
1.5441 | 1.0000 0.2032
1.2191 | 1.0000 0.3615 0.0735
1.1223 | 1.0000 0.4703 0.1702 0.0346
1.0789 | 1.0000 0.5486 0.2585 0.0936 0.0190

(G F -GV o)
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@ !llustration on simulations
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Framework

@ E is a subset of L([0, 1]) made of trigonometric functions
¥, [0,1] — [0, 1], ¢,(t) = cos(2mzt) with different periods indexed
by z € [1/10,1/2].

@ Two semi-metrics are considered:

A (Y2, hz) = |I0ell5 = e13],
d2('(/}za7/}2') = H'(/}z_¢z’||25

for all (z,2’) € [1/10,1/2]?, where

1 . -
a3 = / V() = & (1+ (4)) |

Az

The semi-metric d5 is built on the classical L, norm while d;
measures some spacing between the periods of the trigonometric
functions.
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Simulated data

N = 100 copies of a sample of size n = 1000 from a random pair (X, Y)
defined as follows:

@ The covariate X is chosen randomly on E by considering X =17
where Z is a uniform random variable on [1/10,1/2].

@ For a fixed function x € E, the generalized inverse of the conditional
hazard function H(.|x) is given by the following Hall's model:

H (y|x) = y’™ (1 — w”(x)) , y >0,

with
6(x) = (18/5]x]3+9/50)~ —5/18,
p(x) = 50/(60]x]3+3) —5/2,
v = 1/10.

23/ 29



Four simulated random functions X(.)
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@ The previous estimator with optimal weights is used. Here, we limit
ourselves to J =5 and p € {1, 3}.

@ A modified bi-quadratic kernel is adopted (type | kernel):

K(u) = % (3 (1-?)+ 110) I{|u| < 1}.

@ h, and «, are selected simultaneously thanks to a data-driven
procedure. For a fixed x, let {Zi(x, hp), ..., Zm, (X, hn)} be the m,
random values Y; for which X; € B(x, h,). The idea [7] is to select
the sequences h, and «;, such that the rescaled log-spacings

ilog(m,/i)(log Zm,,fH»l,m,,(X-, h,) — log Zm,,fi,mn(x7 h,)),

i=1,...,|mya,], are approximately Exp(6(x)) distributed. The
“optimal” sequences are obtained by minimizing a
Kolmogorov-Smirnov distance.

@ Comparison with the non-conditional estimator proposed in [2]:
kn
e _ 2iz (108 Yo—it1,0 — 10g Yok, r1,n)

’ i, (log_(n/i) —log_(n/kn))
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Influence of the exponent p

Let e ¢, be the relative error obtained on the jth replication using the
semi-metric d; and the estimator (P).

Left: histogram of e, 13 — €,1,1 (sSemi-metric dy), right: histogram of
€e2.3 — €o21 (Semi-metric ds).

Both histograms are nearly centered, small influence of p.
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Influence of the semi-metric

Recall that ej ¢, is the relative error obtained on the ith replication using
the semi-metric dy and the estimator ().

180

160

Left: histogram of €521 — €011 (p = 1), right: histogram of
€623 — €913 (P = 3)-

Both histograms are skewed to the right, the semi-metric d; yields better
result than ds.
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Comparison with the non-conditional estimator

Recall that € ¢, is the relative error obtained on the ith replication using
the semi-metric dy and the estimator 8(P). We moreover denote by e the
relative error obtained on the ith replication using the non-conditional

estimator ONCE.

IH..J( \WJ_-W

Left: histogram of e, — €511 (p = 1), right: histogram of e, — €4 1 3

(p=3).
Both histograms are skewed to the right, the conditional estimator yields
better results than the unconditional one.
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