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Notations

Let (X ,Y ) ∈ E × R be a random pair where E is an arbitrary space
associated with a semi-metric (or pseudometric) d , see [3],
Definition 3.2.

The conditional survival function of Y given X = x ∈ E is denoted
by F̄ (y |x) := P(Y > y |X = x) and is supposed to be continuous
and strictly decreasing with respect to y .

The associated conditional cumulative hazard function is defined by
H(y |x) := − log F̄ (y |x).

The conditional quantile is given by
q(α|x) := F̄−1(α|x) = H−1(log(1/α)|x), for all α ∈ (0, 1).
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Conditional Weibull-tail distributions

(A.1) H(.|x) is supposed to be regularly varying with index 1/θ(x), i.e.

lim
y→∞

H(ty |x)

H(y |x)
= t1/θ(x),

for all t > 0. In this situation, θ(.) is a positive function of the
covariate x ∈ E referred to as the functional Weibull tail-coefficient.

From [1], H−1(.|x) is regularly varying with index θ(x). Thus, there
exists a slowly-varying function `(.|x) such that

q(e−y |x) = H−1(y |x) = yθ(x)`(y |x).

Recall that the slowly-varying function `(.|x) is such that

lim
y→∞

`(ty |x)

`(y |x)
= 1, (1)

for all t > 0.
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Additional assumptions

(A.2) `(.|x) is a normalised slowly-varying function.

In such a case, the Karamata representation (see [1]) of the
slowly-varying function can be written as

`(y |x) = c(x) exp

{∫ y

1

ε(u|x)

u
du

}
,

where c(x) > 0 and ε(u|x)→ 0 as u →∞.

The function ε(.|x) plays an important role in extreme-value theory since
it drives the speed of convergence in (1) and more generally the bias of
extreme-value estimators. Therefore, it may be of interest to specify how
it converges to 0:

(A.3) |ε(.|x)| is regularly varying with index ρ(x) ≤ 0.

ρ(x) is called the conditional second-order parameter.
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Examples of (unconditional) Weibull-tail distributions

Distribution θ `(y) ε(y) ρ

Gaussian 1/2
√

2σ − σ

2
√

2

log y

y
+ O(1/y)

1

4

log y

y
−1

N (µ, σ2)

Gamma 1
1

β
+
α− 1

β

log y

y
+ O(1/y) (1− α)

log y

y
−1

Γ(α 6= 1, λ)

Weibull 1/α λ 0 −∞
W(α, λ)
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Two goals

Starting from iid copies (Xi ,Yi ), i = 1, . . . , n, of (X ,Y ),

Estimate the extreme conditional quantiles defined as

P(Y > q(αn, x)|X = x) = αn,

when αn → 0 as n→∞.

Estimate the functional Weibull-tail coefficient θ(x).
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Principle

First, F̄ (y |x) is estimated by a kernel method. For all (x , y) ∈ E ×R, let

ˆ̄Fn(y |x) =
n∑

i=1

K (d(x ,Xi )/hn)I{Yi > y}

/
n∑

i=1

K (d(x ,Xi )/hn),

where

hn is a nonrandom sequence (called bandwidth) such that hn → 0
as n→∞,

K is assumed to have a support included in [0, 1] such that
C1 ≤ K (t) ≤ C2 for all t ∈ [0, 1] and 0 < C1 < C2 <∞.
It is assumed without loss of generality that K integrates to one.
K is called a type I kernel, see [3], Definition 4.1.

Second, q(α|x) is estimated via the generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) = ˆ̄F←n (α|x) = inf{y , ˆ̄Fn(y |x) ≤ α},

for all α ∈ (0, 1).

9/ 29



Notations:

B(x , hn) the ball of center x and radius hn,

ϕx(hn) := P(X ∈ B(x , hn)) the small ball probability of X ,

µ
(τ)
x (hn) := E{K τ (d(x ,X )/hn)} the τ -th moment,

Λn(x) = (nαn(µ
(1)
x (hn))2/µ

(2)
x (hn))−1/2.

It is easily shown that for all τ > 0

0 < C τ1 ϕx(hn) ≤ µ(τ)
x (hn) ≤ C τ2 ϕx(hn),

and thus Λn(x) is of order (nαnϕx(hn))−1/2.
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Regularity assumption

Since the considered estimator involves a smoothing in the x direction, it
is necessary to assess the regularity of the conditional survival function
with respect to x . To this end, the oscillations are controlled by

∆F̄ (x , α, ζ, h) := sup
(x′,β)∈B(x,h)×[α,ζ]

∣∣∣∣ F̄ (q(β|x)|x ′)
F̄ (q(β|x)|x)

− 1

∣∣∣∣
= sup

(x′,β)∈B(x,h)×[α,ζ]

∣∣∣∣ F̄ (q(β|x)|x ′)
β

− 1

∣∣∣∣ ,
where (α, ζ) ∈ (0, 1)2.
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Asymptotic normality

Theorem 1

Suppose (A.1), (A.2) hold.

Let 0 < τJ < · · · < τ1 ≤ 1 where J is a positive integer.

x ∈ E such that ϕx(hn) > 0 where hn → 0 as n→∞.

If αn → 0 and there exists η > 0 such that nϕx(hn)αn →∞,

nϕx(hn)αn(∆F̄ )2(x , (1− η)τJαn, (1 + η)αn, hn)→ 0,

then, the random vector{
log(1/αn)Λ−1

n (x)

(
q̂n(τjαn|x)

q(τjαn|x)
− 1

)}
j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix θ2(x)Σ
where Σj,j′ = τ−1

j∧j′ for (j , j ′) ∈ {1, . . . , J}2.
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Conditions on the sequences

nϕx(hn)αn →∞: Necessary and sufficient condition for the almost sure
presence of at least one point in the region B(x , hn)× [q(αn|x),+∞) of
E × R.

nϕx(hn)αn(∆F̄ )2(x , (1− η)τJαn, (1 + η)αn, hn)→ 0: The biais induced

by the smoothing is negligible compared to the standard-deviation.

13/ 29



1 Weibull-tail distributions

2 Estimation of extreme conditional quantiles

3 Estimation of the functional Weibull-tail coefficient

4 Illustration on simulations

14/ 29



Principle

We propose a family of estimators of θ(x) based on some properties of
the log-spacings of the conditional quantiles. Recall that

q(e−y |x) = H−1(y |x) = yθ(x)`(y |x).

Let α ∈ (0, 1) small enough and τ ∈ (0, 1),

log q(τα|x)− log q(α|x)

= logH−1(− log(τα)|x)− logH−1(− log(α)|x)

= θ(x)(log−2(τα)− log−2(α)) + log

(
`(− log(τα)|x)

`(− log(α)|x)

)
≈ θ(x)(log−2(τα)− log−2(α))

≈ θ(x)
log(1/τ)

log(1/α)
,

where log−2(·) := log log(1/·),
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Hence, for a decreasing sequence 0 < τJ < · · · < τ1 ≤ 1, where J is a
positive integer, and for all (twice differentiable) function φ : RJ → R
satisfying the shift and location invariance condition

φ(ηz) = ηφ(z),

φ(ηu + z) = φ(z),

for all η ∈ R \ {0}, z ∈ RJ and where u = (1, . . . , 1)t ∈ RJ , one has:

θ(x) ≈ log(1/α)
φ(log q(τ1α|x), . . . , log q(τJα|x))

φ(log(1/τ1), . . . , log(1/τJ))
.

Thus, the estimation of θ(x) relies on the estimation of conditional
quantiles q(·|x):

θ̂n(x) = log(1/αn)
φ(log q̂n(τ1αn|x), . . . , log q̂n(τJαn|x))

φ(log(1/τ1), . . . , log(1/τJ))
,

with αn → 0 as n→∞.
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Asymptotic normality

Theorem 2

Ssuppose (A.1)–(A.3) hold. Let x ∈ E such that ϕx(hn) > 0 where
hn → 0 as n→∞. If αn → 0,√

nϕx(hn)αnε(log(1/αn)|x)→ λ ∈ R

and there exists η > 0 such that nϕx(hn)αn →∞ and√
nϕx(hn)αn{∆F̄ (x , (1− η)τJαn, (1 + η)αn, hn) ∨ 1/log(1/αn)} → 0,

then,

Λ−1
n (x)(θ̂n(x)− θ(x))

d−→ N (µφ, θ
2(x)Vφ)

where µφ = λv t ∇ log φ(v), Vφ = (∇ log φ(v))t Σ (∇ log φ(v)) and
v = (log(1/τ1), . . . , log(1/τJ))t do not depend on (X ,Y ) distribution.
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Corollary

Suppose (A.1)–(A.3) hold. Let x ∈ E such that ϕx(hn) > 0 and
yε(y |x)→∞ as y →∞. Assume there exist Lθ, Lc et Lε such that∣∣∣∣ 1

θ(x)
− 1

θ(x ′)

∣∣∣∣ ≤ Lθd(x , x ′),

|log c(x)− log c(x ′)| ≤ Lcd(x , x ′),

sup
u∈[1,ȳn(x)]

|ε(u|x)− ε(u|x ′)| ≤ Lεd(x , x ′),

where ȳn(x) := sup{H(q(αn|x)|x ′), x ′ ∈ B(x , hn)}. Suppose

ϕ−1
x (1/y)(log y)1+ξ−ρ(x) → 0 (2)

for some ξ > 0 as y →∞. Then, letting λ > 0,

αn = n−1+ξ and hn = ϕ−1
x

(
λ(1− ξ)2ρ(x)n−ξ(ε(log n|x))−2

)
,

Theorem 2 yields Λ−1
n (x)(θ̂n(x)− θ(x))

d−→ N (µφ, θ
2(x)Vφ).

The key assumption (2) holds in the finite dimensional setting or for

fractal-type and some exponential-type processes, see [3], Chapter 13.
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Example

Let us focus on the functions φ(p)(z) =
(∑J

j=2 βj(zj − z1)p
)1/p

, where

z = (z1, . . . , zJ)t ∈ RJ , p ∈ N \ {0} and for all j ∈ {2, . . . , J}, βj ∈ R.
The corresponding estimator of θ writes:

θ̂(p)
n (x) = log(1/αn)

(∑J
j=2 βj [log q̂n(τjαn|x)− log q̂n(τ1αn|x)]p∑J

j=2 βj [log(τ1/τj)]p

)1/p

.

As a consequence of Theorem 2, the associated asymptotic mean and

variance of θ̂
(p)
n (x) are given for an arbitrary vector β by µ = λ and

V (p) =
(η(p))tAΣAtη(p)

(η(p))tAvv tAtη(p)
,

where A is a given matrix and η(p) = (βj(vj − v1), j = 2, . . . , J)t .

The asymptotic bias µ does not depend neither on p and nor on the
weights {βj , j = 2, . . . , J}.

It is possible to minimize V (p) with respect to η(p).
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Proposition

The asymptotic variance of θ̂
(p)
n (x) is minimal for η(p) proportional to

ηopt = (AΣAt)−1Av and is given by

Vopt =
1

(Av)t (AΣAt)−1Av
,

and is independent of p.

Moreover, for a fixed value of J, it is possible to minimize numerically the
optimal variance Vopt with respect to parameters 0 < τJ < · · · < τ1 ≤ 1.
The resulting values of Vopt are displayed in the table below:

J Vopt τ1 τ2 τ3 τ4 τ5

2 1.5441 1.0000 0.2032
3 1.2191 1.0000 0.3615 0.0735
4 1.1223 1.0000 0.4703 0.1702 0.0346
5 1.0789 1.0000 0.5486 0.2585 0.0936 0.0190
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Framework

E is a subset of L2([0, 1]) made of trigonometric functions
ψz : [0, 1]→ [0, 1], ψz(t) = cos(2πzt) with different periods indexed
by z ∈ [1/10, 1/2].

Two semi-metrics are considered:

d1(ψz , ψz′) =
∣∣‖ψz‖2

2 − ‖ψz′‖2
2

∣∣ ,
d2(ψz , ψz′) = ‖ψz − ψz′‖2,

for all (z , z ′) ∈ [1/10, 1/2]2, where

‖ψz‖2
2 =

∫ 1

0

ψ2
z (t)dt =

1

2

(
1 +

sin(4πz)

4πz

)
.

The semi-metric d2 is built on the classical L2 norm while d1

measures some spacing between the periods of the trigonometric
functions.
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Simulated data

N = 100 copies of a sample of size n = 1000 from a random pair (X ,Y )
defined as follows:

The covariate X is chosen randomly on E by considering X = ψZ

where Z is a uniform random variable on [1/10, 1/2].

For a fixed function x ∈ E , the generalized inverse of the conditional
hazard function H(.|x) is given by the following Hall’s model:

H←(y |x) = yθ(x)
(

1− γyρ(x)
)
, y ≥ 0,

with

θ(x) = (18/5‖x‖2
2 + 9/50)−1 − 5/18,

ρ(x) = 50/(60‖x‖2
2 + 3)− 5/2,

γ = 1/10.
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Four simulated random functions X (.)
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Estimators

The previous estimator with optimal weights is used. Here, we limit
ourselves to J = 5 and p ∈ {1, 3}.
A modified bi-quadratic kernel is adopted (type I kernel):

K (u) =
10

9

(
3

2

(
1− u2

)2
+

1

10

)
I{|u| ≤ 1}.

hn and αn are selected simultaneously thanks to a data-driven
procedure. For a fixed x , let {Z1(x , hn), . . . ,Zmn(x , hn)} be the mn

random values Yi for which Xi ∈ B(x , hn). The idea [7] is to select
the sequences hn and αn such that the rescaled log-spacings

i log(mn/i)(logZmn−i+1,mn(x , hn)− logZmn−i,mn(x , hn)),

i = 1, . . . , bmnαnc, are approximately Exp(θ(x)) distributed. The
“optimal” sequences are obtained by minimizing a
Kolmogorov-Smirnov distance.

Comparison with the non-conditional estimator proposed in [2]:

θ̂NCEn =

∑kn
i=1 (logYn−i+1,n − logYn−kn+1,n)∑kn
i=1

(
log−2(n/i)− log−2(n/kn)

) .
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Influence of the exponent p

Let ei,`,p be the relative error obtained on the ith replication using the

semi-metric d` and the estimator θ̂(p).

Left: histogram of e•,1,3 − e•,1,1 (semi-metric d1), right: histogram of
e•,2,3 − e•,2,1 (semi-metric d2).

Both histograms are nearly centered, small influence of p.
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Influence of the semi-metric

Recall that ei,`,p is the relative error obtained on the ith replication using

the semi-metric d` and the estimator θ̂(p).

Left: histogram of e•,2,1 − e•,1,1 (p = 1), right: histogram of
e•,2,3 − e•,1,3 (p = 3).

Both histograms are skewed to the right, the semi-metric d1 yields better

result than d2.
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Comparison with the non-conditional estimator

Recall that ei,`,p is the relative error obtained on the ith replication using

the semi-metric d` and the estimator θ̂(p). We moreover denote by ei the

relative error obtained on the ith replication using the non-conditional

estimator θ̂NCEn .

Left: histogram of e• − e•,1,1 (p = 1), right: histogram of e• − e•,1,3
(p = 3).

Both histograms are skewed to the right, the conditional estimator yields

better results than the unconditional one.

28/ 29



References

1 Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987) Regular
Variation, Cambridge University Press.

2 Daouia, A., Gardes, L., Girard, S. (2013). On kernel smoothing for
extremal quantile regression. Bernoulli, 19, 2557–2589.

3 Ferraty, F., Vieu, P. (2006). Nonparametric functional data analysis,
Springer.

4 Gardes, L., Girard, S. (2006). Comparison of Weibull tail-coefficient
estimators. REVSTAT - Statistical Journal, 4(2), 163–188.

5 Gardes, L., Girard, S. (2012). Functional kernel estimators of large
conditional quantiles. Electronic Journal of Statistics, 6, 1715–1744.

6 Gardes, L., Girard, S. (2016). On the estimation of the functional
Weibull tail-coefficient. Journal of Multivariate Analysis, 146,
24–45.

7 Gardes, L., Girard, S., Lekina, A. (2010). Functional nonparametric
estimation of conditional extreme quantiles. Journal of Multivariate
Analysis, 101, 419–433.

29/ 29


	Weibull-tail distributions
	Estimation of extreme conditional quantiles
	Estimation of the functional Weibull-tail coefficient
	Illustration on simulations

