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The problem

Let (X1, . . . , Xn) be n independent copies of a positive random
variable X , with bounded support [0, θ]:

θ := sup{x > 0 |P(X ≤ x) < 1}

is the right endpoint of the distribution of X .

We address the problem of estimating θ.
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Some existing methods

1 The maximum estimator and its improvements: Quenouille
(1949), Miller (1964), Robson and Whitlock (1964), Cooke
(1979), de Haan (1981).
Drawback: Huge loss of information.

2 The maximum likelihood estimator in the Hall class: Hall
(1982), Li and Peng (2009). This method uses the rn largest
statistics of the sample, with rn →∞, rn/n→ 0 as n→∞.

3 The POT approach (general threshold estimators): probability
weighted moments estimators (Hosking and Wallis, 1987),
maximum likelihood estimator (Smith, 1987), moment
estimator (Dekkers et al., 1989).
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The estimator

Let Z be a random variable with survival function

∀ z ∈ [0, θ], G (z) = P(Z > z) = (1− z/θ)α,

where θ, α > 0. We get

∀ p ≥ 1, Mp := E(Zp) = α θp B(p + 1, α)

where B(x , y) =

∫ 1

0
tx−1 (1− t)y−1 dt is the Beta function.
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Then, for all n ∈ N \ {0}, every arbitrary sequence (pn) and all
a > 0

1

θ
=

1

apn

[
((a + 1)pn + 1)

M(a+1)pn

M(a+1)pn+1
− (pn + 1)

Mpn

Mpn+1

]
.

Our estimator is defined in two steps:

1 Replace Mpn by the exact moment µpn := E(X pn).

2 Estimate µpn by its empirical counterpart

µ̂pn =
1

n

n∑
k=1

X pn
k .
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This yields our high order moments estimator:

1

θ̂n
=

1

apn

[
((a + 1)pn + 1)

µ̂(a+1)pn

µ̂(a+1)pn+1
− (pn + 1)

µ̂pn
µ̂pn+1

]
where pn →∞.

1 Using (pn) gives (exponentially) more weight to the Xi close
to θ.

2 Idea first suggested by Girard and Jacob (2008) to estimate
the support S of a bivariate distribution: the goal is essentially
to use the points located in the neighborhood of the boundary
of S .
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Consistency

Theorem (Consistency)

Provided that n
µ(a+1)pn

θ(a+1)pn
→∞, we have θ̂n

P−→ θ as n→∞.

⇒ consistency holds no matter what the distribution of X is, if a
condition on the rate of divergence of the sequence (pn) is satisfied.
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Asymptotic normality

To examine the asymptotic normality of θ̂n, we need some more
hypotheses:

(A1) ∀ x ∈ [0, θ], F (x) = (1− x/θ)α L((1− x/θ)−1) where
θ, α > 0 and L is a slowly varying function.

(A1) is the classical model for F in the extreme value framework.
Note that if (A1) holds, then F has extreme value index γ = −1/α.
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(A2) L is normalised:

L(x) = exp

(∫ x

1

η(t)

t
dt

)
,

where η goes to 0 at ∞, is continuously derivable in (1, ∞),
ultimately monotonic, non identically 0, and

∃ ν ≤ 0, x
η′(x)

η(x)
→ ν as x →∞.

(A2) is a classical second order condition on F , which helps specify
its behaviour in the neighborhood of θ.



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

(A2) L is normalised:

L(x) = exp

(∫ x

1

η(t)

t
dt

)
,

where η goes to 0 at ∞, is continuously derivable in (1, ∞),
ultimately monotonic, non identically 0, and

∃ ν ≤ 0, x
η′(x)

η(x)
→ ν as x →∞.

(A2) is a classical second order condition on F , which helps specify
its behaviour in the neighborhood of θ.



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

(A2) L is normalised:

L(x) = exp

(∫ x

1

η(t)

t
dt

)
,

where η goes to 0 at ∞, is continuously derivable in (1, ∞),
ultimately monotonic, non identically 0, and

∃ ν ≤ 0, x
η′(x)

η(x)
→ ν as x →∞.

(A2) is a classical second order condition on F , which helps specify
its behaviour in the neighborhood of θ.



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

(A2) L is normalised:

L(x) = exp

(∫ x

1

η(t)

t
dt

)
,

where η goes to 0 at ∞, is continuously derivable in (1, ∞),
ultimately monotonic, non identically 0, and

∃ ν ≤ 0, x
η′(x)

η(x)
→ ν as x →∞.

(A2) is a classical second order condition on F , which helps specify
its behaviour in the neighborhood of θ.



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

(A2) L is normalised:

L(x) = exp

(∫ x

1

η(t)

t
dt

)
,

where η goes to 0 at ∞, is continuously derivable in (1, ∞),
ultimately monotonic, non identically 0, and

∃ ν ≤ 0, x
η′(x)

η(x)
→ ν as x →∞.

(A2) is a classical second order condition on F , which helps specify
its behaviour in the neighborhood of θ.



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

Theorem (Asymptotic normality)

Assume that n p−αn L(pn)→∞ and (A1), (A2) hold. Assume
further that n p−αn L(pn)η2(pn)→ 0. Then

vn

(
θ̂n
θ
− 1

)
d−→ N (0, V (α, a)) as n→∞

with vn =
√
n L(pn) p

−α/2+1
n and

V (α, a) =
α + 1

a2 Γ(α)

[
2−α−2 − 2

(a + 1)α+1

(a + 2)α+2
+ 2−α−2(a + 1)α

]
.
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Numerical study: first case

The performances of our estimator are examined on some finite
sample situations.

First case: X has survival function

∀ x ∈ (0, 1), F (x) =

[
1 +

(
1

x
− 1

)−τ1
]−τ2

with τ1, τ2 > 0.

Namely, X = 1− 1

1 + Y
where Y is Burr type XII distributed:

∀ y > 0, P(Y > y) = (1 + y τ1)−τ2 .
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In this example, θ = 1, α = τ1 τ2,

L(y) =

[
y τ1

1 + (y − 1)τ1

]τ2

and ν = −min(τ1, 1).

In fact, L belongs to the Hall class (Hall 1982):

L(y) = C + D y−β(1 + δ(y)) for large enough y

where δ goes to 0 at ∞; here β = −ν.
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Comparison with classical estimators

We compare our estimator with

1 The (naive) maximum estimator.

2 An estimator based on the extreme value moment estimator
of γ introduced by Dekkers et al. (1989).
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The extreme value moment estimator

Extreme value moment estimator:

Let X1, n ≤ . . . ≤ Xn, n be the nth order statistics of the sample
(X1, . . . , Xn). For j = 1, 2, let

M
(j)
n =

1

k

k−1∑
i=0

[lnXn−i , n − lnXn−k, n]j

where k = k(n)→∞, k/n→ 0.
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Let then

γ̂−n = 1− 1

2

1−

[
M

(1)
n

]2

M
(2)
n


−1

,

γ̂n = M
(1)
n + γ̂−n ,

σ̂n = Xn−1, n ln

[
Xn, n

Xn−1, n

]
(1− γ̂−n ).

The extreme value moment estimator of the endpoint θ is
(Dekkers et al., 1989, Aarssen and de Haan, 1994)

θ̂Mn = Xn−1, n −
σ̂n
γ̂n
.
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Methodology

Parameters:

1000 samples with size n = 500 of random variables with
distribution function F .

Extreme value moment estimator: threshold k varying from 2
to n − 2.

High order moments estimator: pn = n1/α/ ln ln n, and
a ∈ {0.1, 0.2, . . . , 25}.

Mean L1−errors (over the 1000 samples) are computed for both
estimators, for each value of k and a. The minimal mean
L1−errors obtained this way are then recorded.
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positif_evm_burr-eps-converted-to.pdf

Figure 1: x−axis: threshold k . Dashed line: maximum estimator, solid
line: extreme value moment estimator. Top left: (τ1, τ2) = (1, 1), top
right: (τ1, τ2) = (5/6, 6/5), bottom left: (τ1, τ2) = (2/3, 3/2), bottom
right: (τ1, τ2) = (1/2, 2).



The problem The estimator Consistency Asymptotic normality Numerical study Conclusion and forthcoming studies

positif_mom_burr-eps-converted-to.pdf

Figure 2: x−axis: parameter a. Dashed line: maximum estimator, solid
line: high order moments estimator. Top left: (τ1, τ2) = (1, 1), top right:
(τ1, τ2) = (5/6, 6/5), bottom left: (τ1, τ2) = (2/3, 3/2), bottom right:
(τ1, τ2) = (1/2, 2).
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Parameters
Extreme value

θ̂nmoment estimator

(τ1, τ2) = (1, 1)
1.7 · 10−3 1.6 · 10−3

⇒ (α, ν) = (1, −1)

(τ1, τ2) = (5/6, 6/5)
2.1 · 10−3 1.7 · 10−3

⇒ (α, ν) = (1, −5/6)

(τ1, τ2) = (2/3, 3/2)
2.0 · 10−3 1.8 · 10−3

⇒ (α, ν) = (1, −2/3)

(τ1, τ2) = (1/2, 2)
2.4 · 10−3 2.0 · 10−3

⇒ (α, ν) = (1, −1/2)

Table 1: Minimum mean L1−error associated to both estimators.

As |ν| decreases, performances of the estimators decrease. Note
that the high order moments estimator outperforms the extreme
value moment estimator in all four situations.
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Numerical study: second case

Second case: X has survival function

∀ x ∈ (0, 1), F (x) =
1

Γ(b)

∫ ∞
− ln(1−x)

(λt)b−1 λe−λt dt

with b, λ > 0.

Namely, X = 1− e−Y where Y is Gamma(b, λ) distributed.

Here θ = 1, α = λ,

L(y) =
λb−1

Γ(b)
lnb−1(y)

[
1 + (b − 1)

∫ ∞
1

ub−2 e−λ(u−1) ln y du

]
and ν = 0.
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positif_evm_loggamma-eps-converted-to.pdf

Figure 3: x−axis: threshold k . Dashed line: maximum estimator, solid
line: extreme value moment estimator. Top left: (b, λ) = (2, 1), top
right: (b, λ) = (2, 5/4), bottom left: (b, λ) = (2, 5/3), bottom right:
(b, λ) = (2, 5/2).
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positif_mom_loggamma-eps-converted-to.pdf

Figure 4: x−axis: parameter a. Dashed line: maximum estimator, solid
line: high order moments estimator. Top left: (b, λ) = (2, 1), top right:
(b, λ) = (2, 5/4), bottom left: (b, λ) = (2, 5/3), bottom right:
(b, λ) = (2, 5/2).
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Parameters
Extreme value

θ̂nmoment estimator

(b, λ) = (2, 1)
1.9 · 10−4 1.9 · 10−4

⇒ (α, ν) = (1, 0)

(b, λ) = (2, 5/4)
9.2 · 10−4 8.4 · 10−4

⇒ (α, ν) = (5/4, 0)

(b, λ) = (2, 5/3)
4.5 · 10−3 3.9 · 10−3

⇒ (α, ν) = (5/3, 0)

(b, λ) = (2, 5/2)
2.1 · 10−2 1.8 · 10−2

⇒ (α, ν) = (5/2, 0)

Table 2: Minimum mean L1−error associated to both estimators.

Both estimations worsen as α increases. Remark again that the
high order moments estimator performs better than the extreme
value moment estimator in all four situations.
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Conclusion and forthcoming studies

The high order moments method yields satisfactory results, be
them theoretical or practical. Contrary to most methods in
endpoint estimation, the high order moments approach uses the
whole given sample.

Future developments include:

1 Adapting this method to the standard Weibull domain of
attraction.

2 Using the high order moments method to design an estimator
of the extreme value index.
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