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EMS 2017 Conference
Helsinki, Finland, 24th July 2017

1/ 16



Outline Context Constructing the estimator Asymptotic results Finite-sample results Discussion

Outline

Context

Constructing the estimator

Asymptotic results

Finite-sample results

Discussion

2/ 16



Outline Context Constructing the estimator Asymptotic results Finite-sample results Discussion

Context

We assume that Y is a univariate random variable recorded along with a
finite-dimensional covariate X . Suppose that Y given X = x has a finite
right endpoint g(x):

g(x) := sup{y ∈ R |P(Y ≤ y |X = x) < 1} <∞.

We address the problem of estimating the frontier function x 7→ g(x).

Practical relevance:

Temperature/wind speed as a function of 2D/3D coordinates.

Performance in athletics as a function of age.

Life span as a function of socioeconomic status.

Production level as a function of input.

3/ 16



Outline Context Constructing the estimator Asymptotic results Finite-sample results Discussion

Specifically, assume that the distribution of (X ,Y ) has support

S = {(x , y) ∈ Ω× R | 0 ≤ y ≤ g(x)}

where

X has a pdf f on the compact subset Ω of Rd having nonempty
interior int(Ω);

g is a positive Borel measurable function on Ω.

We consider pointwise estimation of the function g on int(Ω), given an
n−sample of i.i.d. replications of (X ,Y ).
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Figure 1: Frontier g (solid line), data points (+). The sample size is n = 200.
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Some existing methods

Extreme-value based estimators: Geffroy (1964), Gardes (2002),
Girard and Jacob (2003a, 2003b, 2004), Girard and Menneteau
(2005), Menneteau (2008).
Optimization methods and linear programming: Bouchard et al.
(2004, 2005), Girard et al. (2005), Nazin and Girard (2014).
Piecewise polynomial estimators: Korostelev and Tsybakov (1993),
Korostelev et al. (1995), Härdle et al. (1995).
Projection estimators: Jacob and Suquet (1995).

If g is nondecreasing and concave:

DEA/FDH estimators and improvements: Deprins et al. (1984),
Farrell (1957), Gijbels et al. (1999).
Robust estimators: Aragon et al. (2005), Cazals et al. (2002),
Daouia and Simar (2005), Daouia et al. (2012).
Local MLE (with random noise): Aigner et al. (1976), Fan et al.
(1996), Kumbhakar et al. (2007), Simar and Zelenyuk (2011).
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Constructing the estimator

Assume first that Y is a positive random variable with finite right
endpoint θ. Denote by µp := E(Y p).

Proposition 1

It holds that µp/µp+1 → 1/θ as p →∞.

Given data points Y1, . . . ,Yn, this opens a number of ways to estimate θ
from the class of empirical high-order moments

µ̂p =
1

n

n∑
k=1

Y p
k with p = pn →∞.

However, the most direct of such estimators, namely θ̃n = µ̂pn+1/µ̂pn , is
in practice too biased to be used.
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A better alternative is given by, for some tuning constant a > 0,

1

θ̂n
=

1

apn

[
((a + 1)pn + 1)

µ̂(a+1)pn

µ̂(a+1)pn+1
− (pn + 1)

µ̂pn
µ̂pn+1

]
.

This estimator is motivated by the elimination of the bias term when
the survival function of Y is

∀y ∈ [0, θ], F (y) := P(Y > y) =
(

1− y

θ

)α
.

High-order moments allow to control the bias brought by general
survival functions with polynomial decay near the endpoint.
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High-order moments frontier estimator

Our previous construction suggests the following estimator of g(x):

1

ĝn(x)
=

1

apn

[
((a + 1)pn + 1)

µ̂(a+1)pn(x)

µ̂(a+1)pn+1(x)
− (pn + 1)

µ̂pn(x)

µ̂pn+1(x)

]
where µ̂p(x) is a well-behaved estimator of the conditional pth order
moment µp(x) := E(Y p|X = x).

We choose this estimator to be the smoothed estimator

µ̂p,hn(x) :=
1

nhdn

n∑
k=1

Y p
k K

(
x − Xk

hn

)
.

Here, K is a kernel function, i.e. a bounded pdf on Rd with support
included in the unit Euclidean ball B ⊂ Rd , and hn > 0 is a bandwidth
sequence that converges to 0.
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Our (kernel) estimator ĝn(x) of g(x) is then defined by

apn
ĝn(x)

= ((a + 1)pn + 1)
µ̂(a+1)pn,hn(x)

µ̂(a+1)pn+1,hn(x)
− (pn + 1)

µ̂pn,hn(x)

µ̂pn+1,hn(x)
.

For ease of exposition, assume that we work in the parametric setting

(P) ∀y ∈ [0, g(x)], F (y |x) = (1− y/g(x))−1/γ(x), with γ(x) < 0.

(A) f , g and γ are positive and Hölder continuous on Ω with respective
exponents ηf , ηg and ηγ .

A departure from (P) is actually allowed (if we stay within the Hall class).

10/ 16



Outline Context Constructing the estimator Asymptotic results Finite-sample results Discussion

Asymptotic results

Theorem 1 (Pointwise consistency, frontier estimator)

If np
1/γ(x)
n hdn →∞ and pn h

ηg
n → 0, then ĝn(x)

P−→ g(x).

Theorem 2 (Asymptotic normality, frontier estimator)

If np
1/γ(x)
n hdn →∞, np

2+1/γ(x)
n h

d+2ηg
n → 0 and np

1/γ(x)
n hd+2ηα

n → 0, then√
np

2+1/γ(x)
n hdn

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0,

∫
B K 2

f (x)
V (γ(x), a)

)

where V (γ, a) is explicitly known.

Uniform consistency results on compacta E ⊂ int(Ω) are also available.
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Finite-sample results

We examined the finite-sample performance of the estimator depending
on the value of:

the frontier function g (smooth or not),

the extreme-value index function γ (constant or not),

the dimension d = 1 or 2.

We also checked for robustness against a violation of model (P), and we
compared the estimator to:

the block maxima estimator of Geffroy (1964),

a primitive version of the high order moments method, constructed
for a conditional uniform model by Girard and Jacob (2008).

In general, the estimator ĝn significantly outperformed these competitors
w.r.t. the L1 metric, even though the choices of a, pn and hn were crude.
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Figure 2: Case γ(x) = −2[2.5 + | cos(2πx)|]−1: frontier function g (solid line),
high-order moments estimate ĝn (dotted line) corresponding to the best result
among 500 replications of a sample of size 500.
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Figure 3: Case γ(x) = −2[2.5 + | cos(2πx)|]−1: frontier function g (solid line),
high-order moments estimate ĝn (dotted line) corresponding to the worst result
among 500 replications of a sample of size 500.
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Discussion

Conclusions:

High order moments provide a class of interesting devices when it
comes to estimating an endpoint/frontier function.

The order pn is a substitute for the effective sample size kn of
extreme-value methods.

The presented estimator has satisfactory finite-sample performance
even with fairly simple choices of tuning parameters.

Some ideas for further studies:

Development of data-driven choice procedures of tuning parameters;

Construction of outlier-resistant high order moments procedures;

Building estimators adapted to high-dimensional data sets.
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Thanks for listening!
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