Estimation of tail risk based on extreme expectiles

Stéphane GIRARD (Inria Grenoble Rhône-Alpes) Joint work with Abdelaati DAOUIA (Toulouse School of Economics), Gilles STUPFLER (Université Aix-Marseille)

Luminy, February 2016

Outline

- Quantiles, expectiles & expected-shortfall.
- Tail behaviour, application to inference:
 - Intermediate vs extreme levels,
 - Asymptotic results,
 - Illustration on simulations.
- Application on a real data example.

Quantiles

If X is a real-valued random variable, its univariate auth quantile

 $q_{\tau} := \inf\{t \in \mathbb{R} \; \text{ s.t. } \mathbb{P}(X \leq t) \geq \tau\}$

can be obtained by solving the optimisation problem (Koenker & Bassett, 1978)

$$q_{ au} = rgmin_{q \in \mathbb{R}} \mathbb{E}(arphi_{ au}(X - q) - arphi_{ au}(X))$$

where φ_τ is the "check function" defined by

$$\varphi_{\tau}(x) = (1-\tau)|x|\mathbb{I}\{x < 0\} + \tau |x|\mathbb{I}\{x \ge 0\}.$$

Remarks:

- Subtracting $\mathbb{E}(\varphi_{\tau}(X))$ makes the cost function well-defined even when $\mathbb{E}|X| = \infty$.
- In particular, the median $q_{1/2}$ of X is obtained by minimising $\mathbb{E}|X q|$ with respect to q.
- q_{τ} is also referred to as the Value-at-Risk (VaR) of level τ .

Expectiles

If X is a real-valued random variable, its univariate τ th expectile is defined by the optimisation problem (Newey & Powell, 1987)

$$\xi_{ au} = rgmin_{ heta \in \mathbb{R}} \mathbb{E}(\eta_{ au}(X - heta) - \eta_{ au}(X))$$

where η_{τ} is the function defined by

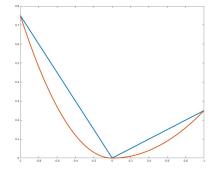
$$\eta_{\tau}(x) = (1 - \tau) x^2 \mathbb{I}\{x < 0\} + \tau x^2 \mathbb{I}\{x \ge 0\}.$$

Remarks:

- Subtracting 𝔼(η_τ(X)) makes the cost function well-defined provided that 𝔼|X| < ∞.
- In particular, the mean $\xi_{1/2}$ of X is obtained by minimising $\mathbb{E}(X \theta)^2$ with respect to θ .

Application

Comparison of cost functions



Red: expectiles η_{τ} , blue: quantiles φ_{τ} with $\tau = 1/3$.

Expectiles vs quantiles

Theoretical point of view

- Both families of quantiles and expectiles are embedded in the more general class of M-quantiles (Breckling & Chambers (1988)) as the minimizers of an asymmetric convex loss function.
- The only M-quantiles that are coherent risk measures are the expectiles, for $\tau > 1/2$ (Bellini *et al.* (2014)).

Practical point of view

- Expectiles are more sensitive to the magnitude of extremes than quantiles are.
- Sample expectiles provide a class of smooth curves as functions of the level τ , which is not the case for sample quantiles.
- Expectiles do not have an intuitive interpretation as direct as quantiles.

Outline

Expected shortfall

 The (quantile-based) expected shortfall, also known under the names Conditional Value at Risk or Average Value at Risk, is defined as the average of the quantile function above a given confidence level *τ*:

$$\operatorname{QES}(\tau) := rac{1}{1- au} \int_{ au}^{1} q_{lpha} dlpha.$$

When X is continuous, $QES(\tau) = \mathbb{E}(X|X > q_{\tau})$.

• Similarly, one may define an alternative expectile-based expected-shortfall as

$$XES(\tau) := \frac{1}{1-\tau} \int_{\tau}^{1} \xi_{\alpha} d\alpha.$$

Contributions

Let X_1, \ldots, X_n be an i.i.d. sample from F. Our aim is to estimate expectiles ξ_{τ_n} and the associated expectile-based expected-shortfall $XES(\tau_n)$ when $\tau_n \to 1$ as $n \to 1$ when F is an heavy-tailed distribution. Two situations are investigated:

- Intermediate levels, $n(1 \tau_n) \rightarrow \infty$,
- Extreme levels, $n(1 \tau_n) \rightarrow c \ge 0$ (extrapolation needed).

Inference (for intermediate levels)

We assume $\tau_n \to 1$ and $n(1 - \tau_n) \to \infty$ as $n \to \infty$ (intermediate level). Let $k = [n(1 - \tau_n)]$ be an intermediate sequence.

• Intermediate quantile (Thm 2.4.1, de Haan & Ferreira (2006)):

$$\hat{q}_{\tau_n}=X_{n-k,n},$$

• Intermediate quantile-based expected-shortfall (Elmethni et al., 2014):

$$\widehat{ ext{QES}}(au_n) = rac{1}{k}\sum_{i=1}^n X_i \mathbb{I}\left(X_i > \hat{q}_{ au_n}
ight),$$

Intermediate expectile:

$$ilde{\xi}_{ au_n} = \arg\min_{u\in\mathbb{R}}rac{1}{n}\sum_{i=1}^n\eta_{ au_n}(X_i-u),$$

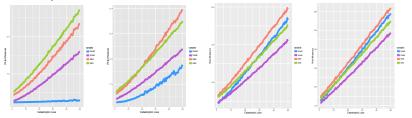
• Intermediate expectile-based expected-shortfall:

$$\widetilde{\mathrm{XES}}(au_n) = rac{1}{k}\sum_{i=1}^n X_i\mathbb{I}(X_i > ilde{\xi}_{ au_n}).$$

Outline

Numerical illustration

Duffie & Pan (1997): X is simulated from the mixture model $X \sim (1-p)\mathcal{N}(0, 1/(1-p)) + p\mathcal{N}(c, 1/p)$ where p = 0.005 and $c \in [1, 50]$. The sample size is n = 1000.



Horizontally: *c*, vertically: Monte-Carlo averages (over 1000 replications) of the estimated risk measures. Blue: quantile \hat{q}_{τ} , violet: expectile $\tilde{\xi}_{\tau}$, red: quantile-ES $\widehat{\text{QES}}(\tau)$ and green: expectile-ES $\widetilde{\text{XES}}(\tau)$ for $\tau \in \{0.99, 0.995, 0.999, 0.9995\}$.

Heavy-tailed distributions

Definition. The cumulative distribution function F is said to be heavy-tailed if it belongs to Fréchet Maximum Domain of Attraction *i.e.*

 $F(x) = 1 - x^{-1/\gamma} \ell(x), \ x > 0$

where

- $\gamma > 0$ is the extreme-value index (or tail index),
- ℓ is a slowly-varying function *i.e.* such that $\ell(tx)/\ell(t) \to 1$ as $t \to \infty$ for all x > 0.

Consequences.

- $\gamma < 1$ implies $E|X| < \infty$ and thus the existence of expectiles.
- The survival function $\overline{F} := 1 F$ is said to be regularly-varying with index $-1/\gamma$ *i.e.* $\overline{F}(tx)/\overline{F}(t) \to x^{-1/\gamma}$ as $t \to \infty$ for all x > 0.
- Equivalently, the tail quantile function U := (1/F)[←] is regularly-varying with index γ.

Second order condition

- The regular-variation property is also referred to as a first order condition: U(tx)/U(t) → x^γ as t → ∞ for all x > 0.
- The goal of the second order condition is to quantify the rate of convergence: there exist γ > 0, ρ ≤ 0, and a function A converging to 0 at infinity such that for all x > 0,

$$\lim_{t\to\infty}\frac{1}{A(t)}\left[\frac{U(tx)}{U(t)}-x^{\gamma}\right]=x^{\gamma}\frac{x^{\rho}-1}{\rho}.$$

This condition is denoted by $C_2(\gamma, \rho, A)$. Note that $(x^{\rho} - 1)/\rho$ is to be understood as log x when $\rho = 0$.

Asymptotic distribution of $\tilde{\xi}_{\tau_n}$

From the continuity and the convexity of η_{τ_n} and a result of Geyer (1996):

Theorem 1

If F is heavy-tailed with $0 < \gamma < 1/2$ and $\tau_n \rightarrow 1$ is such that $n(1 - \tau_n) \rightarrow \infty$, then

- No need for a second-order condition,
- Restriction on the extreme-value index.

First order expansions

Proposition 1

For all heavy-tailed distribution such that $0 < \gamma < 1$, when $\tau \rightarrow 1$, one has

- Second order approximations have been established under $C_2(\gamma, \rho, A)$ (Daouia *et al.*, 2016).
- If $\gamma < 1/2$ then, asymptotically, $XES(\tau) < QES(\tau)$ and $\xi_{\tau} < q_{\tau}$.

Inference for heavy-tailed distributions

The order statistics are denoted by $X_{1,n} \leq \cdots \leq X_{n,n}$.

• Hill estimator for the tail index (Hill, 1975)

$$\hat{\gamma}_{H} = rac{1}{k}\sum_{i=1}^k \log rac{X_{n-i+1,n}}{X_{n-k,n}},$$

• Weissman estimator for extreme quantiles (Weissman, 1978)

$$\hat{q}^{\star}_{ au^{\prime}_{n}} = \hat{q}_{ au_{n}} \left(rac{1- au_{n}}{1- au^{\prime}_{n}}
ight)^{\widehat{\gamma}_{H}},$$

• Estimator of the quantile-ES (Elmethni et al., 2014)

$$\widehat{\text{QES}}^{\star}(\tau_n') = \widehat{\text{QES}}(\tau_n) \left(\frac{1-\tau_n}{1-\tau_n'}\right)^{\widehat{\gamma}_H}$$

An alternative estimator of the (intermediate) expectile

The property $\xi_{\tau} \sim q_{\tau} (\gamma^{-1} - 1)^{-\gamma}$ as $\tau \to 1$ suggests an estimator based on an intermediate quantile:

$$\hat{\xi}_{\tau_n} = X_{n-k,n} (\hat{\gamma}_H^{-1} - 1)^{-\hat{\gamma}_H}$$

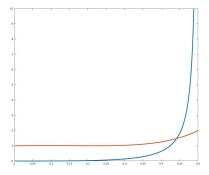
Theorem 2

If F verifies $C_2(\gamma, \rho, A)$ with $0 < \gamma < 1$ and $\tau_n \to 1$ is such that $n(1 - \tau_n) \to \infty$, $\sqrt{n(1 - \tau_n)}q_{\tau_n}^{-1} \to 0$ and $\sqrt{n(1 - \tau_n)}A((1 - \tau_n)^{-1}) \to 0$, then $\sqrt{n(1 - \tau_n)}\left(\frac{\hat{\xi}_{\tau_n}}{\xi_{\tau_n}} - 1\right) \xrightarrow{d} \mathcal{N}(0, V_2(\gamma))$ with $V_2(\gamma) = 1 + \left(\frac{\gamma}{1 - \gamma} - \gamma \log\left(\frac{1}{\gamma} - 1\right)\right)^2$.

- Need for a second-order condition,
- Bias conditions on τ_n .

Application

Comparison of asymptotic variances



Horizontally: $\gamma \in (0, 1/2)$, Vertically: asymptotic variances $V_1(\gamma)$ in blue and $V_2(\gamma)$ in red.

Estimation of extreme expectiles

Let $\tau'_n \to 1$ and $n(1 - \tau'_n) \to c \ge 0$ as $n \to \infty$ (extreme level).

The property $\xi_{\tau} \sim q_{\tau}(\gamma^{-1}-1)^{-\gamma}$ as $\tau \to 1$ also entails $\xi_{\tau'}/\xi_{\tau} \sim q_{\tau'}/q_{\tau}$ as both $\tau \to 1$ and $\tau' \to 1$. Thus, the same extrapolation factor can be applied for expectiles and quantiles leading to two possible estimators for extreme expectiles:

$$\tilde{\xi}_{\tau_n'}^{\star} = \tilde{\xi}_{\tau_n} \left(\frac{1 - \tau_n}{1 - \tau_n'} \right)^{\hat{\gamma}_{\mu}}$$

and

$$\hat{\xi}_{\tau_n'}^{\star} = \hat{\xi}_{\tau_n} \left(\frac{1 - \tau_n}{1 - \tau_n'} \right)^{\hat{\gamma}_H} = X_{n-k,n} (\hat{\gamma}_H^{-1} - 1)^{-\hat{\gamma}_H} \left(\frac{1 - \tau_n}{1 - \tau_n'} \right)^{\hat{\gamma}_H} = \hat{q}_{\tau_n'}^{\star} (\hat{\gamma}_H^{-1} - 1)^{-\hat{\gamma}_H}.$$

In the following slide, we focus on the first estimator.

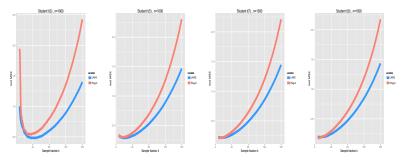
Asymptotic distribution of $\tilde{\xi}_{\tau'}^{\star}$

Theorem 3

If F verifies $C_2(\gamma, \rho, A)$ with $0 < \gamma < 1/2$, $\rho < 0$ and $\tau_n \to 1$, $\tau'_n \to 1$ are such that $n(1 - \tau_n) \to \infty$, $n(1 - \tau'_n) \to c \ge 0$, $\sqrt{n(1 - \tau_n)}q_{\tau_n}^{-1} \to 0$ and $\sqrt{n(1 - \tau_n)}A((1 - \tau_n)^{-1}) \to 0$, then $\frac{\sqrt{n(1 - \tau_n)}}{\log[(1 - \tau_n)/(1 - \tau'_n)]} \left(\frac{\tilde{\xi}_{\tau'_n}}{\xi_{\tau'}} - 1\right) \xrightarrow{d} \mathcal{N}(0, \gamma^2).$

A similar asymptotic result is available for $\hat{\xi}^{\star}_{\tau'}$ (Daouia *et al.*, 2016).

Numerical illustration



Horizontally: k, vertically: root MSE estimates (over 10,000 replications) for the t_3 , t_5 , t_7 and t_9 -distributions, with sample size n = 1000. Red: $\hat{\xi}^{\star}_{\tau'_n}$, blue: $\tilde{\xi}^{\star}_{\tau'_n}$.

Estimation of the extreme expectile-based expected-shortfall

The property $XES(\tau) \sim \xi_{\tau}/(1-\gamma)$ as $\tau \to 1$ suggests two possible estimators for the extreme expectile-based expected-shortfall:

 $\widetilde{\mathrm{XES}}^{\star}(\tau_n') = \tilde{\xi}_{\tau_n'}^{\star}/(1-\hat{\gamma}_H) \quad \text{and} \quad \widehat{\mathrm{XES}}^{\star}(\tau_n') = \hat{\xi}_{\tau_n'}^{\star}/(1-\hat{\gamma}_H).$

In the following theorem, we focus on the first estimator.

Theorem 4

Under the assumptions of Theorem 3,

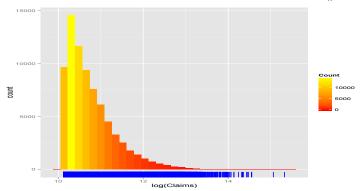
$$\frac{\sqrt{n(1-\tau_n)}}{\log[(1-\tau_n)/(1-\tau'_n)]} \left(\frac{\widetilde{XES}^{\star}(\tau'_n)}{XES(\tau'_n)} - 1\right) \xrightarrow{d} \mathcal{N}\left(0,\gamma^2\right)$$

A similar asymptotic result is available for $\widehat{XES}^{*}(\tau'_{n})$ (Daouia *et al.*, 2016).

Application

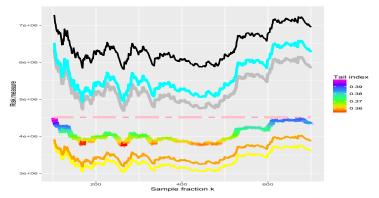
Illustration on real data

The Society of Actuaries Group Medical Insurance Large Claims Database records all the claim amounts exceeding 25,000 USD over the period 1991-92. As in Beirlant *et al.* (2004), we only deal here with the n = 75,789 claims for 1991. Moreover, we focus on the extreme level $\tau'_n = 1 - 10^{-5}$.



Application

Results



Horizontally: k, vertically: expectiles $\hat{\xi}_{\tau_n}^{\star}$ in yellow and $\tilde{\xi}_{\tau_n}^{\star}$ in orange, expectile-based expected-shortfall $\widehat{XES}^{\star}(\tau_n')$ in gray and $\widehat{XES}^{\star}(\tau_n')$ in cyan, quantile $\hat{q}_{\tau_n'}^{\star}$ as a rainbow curve, $\widehat{QES}^{\star}(\tau_n')$ in black, sample maximum $Y_{n,n}$ as an horizontal pink line. The estimated sample fraction is $\hat{k} = 486$ (Beirlant *et al.* (2004)).

References

- Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of extremes: Theory and applications, Wiley.
- Bellini, F., Klar, B., Müller, A. and Gianina, E.R. (2014). Generalized quantiles as risk measures, *Insurance: Mathematics and Economics*, **54**, 41–48.
- Breckling, J. and Chambers, R. (1988). M-quantiles, Biometrika, 75, 761-772.
- Daouia, A., Girard, S. and Stupfler, G. (2016). Estimation of tail risk based on extreme expectiles. https://hal.archives-ouvertes.fr/hal-01142130
- Duffie, D. and Pan, J. (1997). An overview of value at risk, Journal of Derivatives, 4, 7-49.
- El Methni, J., Gardes, L. and Girard, S. (2014). Nonparametric estimation of extreme risks from conditional heavy-tailed distributions, *Scandinavian Journal of Statistics*, **41** (4), 988–1012.
- Geyer, C.J. (1996). On the asymptotics of convex stochastic optimization, unpublished manuscript.
- de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.
- Koenker, R. and Bassett, G. S. (1978). Regression Quantiles, Econometrica, 46, 33-50.
- Newey, W.K. and Powell, J.L. (1987). Asymmetric least squares estimation and testing, Econometrica, 55, 819-847.