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A simple way to assess the (environmental) risk is to compute a measure
linked to the value Y of the phenomenon of interest (rainfall height, wind
speed, river flow, etc.):

quantiles (= Value at Risk = return level),

expectiles,

conditional tail moments,

spectral risk measures,

distortion risk measures, etc.

Here, we focus on the first three measures: quantiles, expectiles and
conditional tail moments.

We shall see how to estimate some extensions of such measures: Lp−
quantiles and regression risk measures.
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Quantiles

Let Y be a random variable with cumulative distribution function (cdf) F .

Definition (Quantile)

The quantile associated with Y is the function q defined on (0, 1) by

q(τ) = inf{t ∈ R |F (t) ≥ τ}.

In other words, the quantile q(τ) of level τ is the smallest real value
exceeded by Y with probability less than 1− τ .

For the sake of simplicity, we assume Y ≥ 0 and F is continuous and
strictly increasing.
Then, the quantile q(τ) is the unique real value such that

F (q(τ)) = τ.
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Quantiles from an optimization point of view

From Koenker & Bassett (1978),

q(τ) = arg min
q∈R

E(ητ (Y − q, 1)− ητ (Y , 1)).

with the so-called check function

ητ (x , 1) = |τ − 1l{x≤0}||x |.

The initial motivation was to estimate quantiles in a linear regression
framework, thanks to a minimization problem.

The second term E(ητ (Y , 1)) does not play any role in the
minimization, but it ensures that the cost function exists even when
E(Y ) =∞.

In particular, the median is the best L1 predictor of Y :

q(1/2) = arg min
q∈R

E|Y − q|.
5/ 45



Risk measures Quantiles, expectiles and conditional tail moments Lp−quantiles Numerical experiments

Estimation of extreme quantiles

1) Intermediate level. Let {Y1, . . . ,Yn} be a n− sample from F . The
empirical estimator of q(τ) is given by

q̂n(τ) := Ydnτe,n

where Y1,n ≤ · · · ≤ Yn,n are the order statistics. It can be interpreted both
as a minimizer of the empirical optimization problem:

arg min
q

1

n

n∑
i=1

ητ (Yi − q, 1)

and as a solution of the equation Fn(q) = τ where Fn is the empirical cdf.

The asymptotic properties of this estimator are well-known when τ is fixed.
Here, we focus on the asymptotic behaviour of this estimator when
τ = τn ↑ 1 as n→∞. In such a case, q(τ) = q(τn) is an extreme quantile.
In the situation where, additionally, n(1− τn)→∞, τn is referred to as an
intermediate level.
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In the following, we assume that Y has a heavy right tail.

Assumption (First order condition C1(γ))

The survival function F := 1− F is regularly varying at +∞ with index
−1/γ < 0:

∀x > 0, lim
t→+∞

F (tx)

F (t)
= x−1/γ .

The next condition controls the rate of convergence in C1(γ).

Assumption (Second order condition C2(γ, ρ,A))

There exist γ > 0, ρ < 0 and a function A tending to zero at +∞ with
asymptotically constant sign such that:

∀x > 0, lim
t→∞

1

A(1/F (t))

[
F (tx)

F (t)
− x−1/γ

]
= x−1/γ

xρ/γ − 1

γρ
.

It can be shown that |A| is necessarily regularly varying with index ρ. The
larger |ρ| is, the smaller the approximation error |A| is. 7/ 45
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Under the second order condition, the estimator q̂n(τn) is asymptotically
Gaussian with (relative) rate of convergence

√
n(1− τn):

Theorem (Intermediate extreme quantiles, Theorem 2.4.1, de Haan &
Ferreira, 2006)

Suppose C2(γ, ρ,A) holds. If τn ↑ 1 with n(1− τn)→∞ and√
n(1− τn)A(1/(1− τn))→ λ ∈ R, then

√
n(1− τn)

(
q̂n(τn)

q(τn)
− 1

)
d−→ N (0, γ2) as n→∞.
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2) Arbitrary level. Extreme quantiles of arbitrary large order τ ′n i.e. such
that n(1− τ ′n)→ c <∞ can be estimated thanks to Weissman’s
approximation deduced from condition C1(γ):

q(τ ′n) ≈
(

1− τn
1− τ ′n

)γ
q(τn).

One chooses τn such that n(1− τn)→∞ as well as an estimator γ̂n of γ
(Hill estimator for instance) to compute Weissman estimator (1978):

q̂Wn (τ ′n|τn) =

(
1− τn
1− τ ′n

)γ̂n
q̂n(τn).

q̂Wn (τ ′n|τn) inherits its asymptotic distribution from γ̂n with a slightly slower
rate of convergence.
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Extreme regression quantiles

When a d-dimensional covariate X is recorded simultaneously with Y , the
regression quantile or conditional quantile is defined by

F (q(τ |x)|x) = τ,

where F (.|x) denotes the cdf of Y conditional on X = x .

Kernel estimation. Let K be a kernel (a density on Rd) and hn → 0 a
bandwidth. Letting Khn(·) = h−dn K (h−1n ·), there are two equivalent
methods for estimating q(τ |x).
Consider the locally weighted optimization problem:

q̂n(τ |x) ∈ arg min
q

1

n

n∑
i=1

Khn(x − Xi )ητ (Yi − q, 1).
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One can show that this entails that F̂n(q̂n(τ |x)|x) = τ where F̂n(.|x) is the
kernel estimator of F (.|x):

F̂n(y |x) =

∑n
i=1 Khn(x − Xi )1l{Yi≤y}∑n

i=1 Khn(x − Xi )
.

The asymptotic normality of q̂n(τn|x) has been established in the
intermediate case i.e. when n(1− τn)hdn →∞. An extrapolated version has
also been developped to address arbitrary rates (Daouia et al. 2011).
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Drawbacks of quantiles

The quantile of level τ does not provide information on the extreme values
of Y lying beyond q(τ).

For instance, two distributions may have the same quantile of level 99% but
different tail indices γ.

Similarly, the estimator q̂n(τn) does not use the most extreme values of the
sample (in the intermediate case).

⇒ Loss of tail information.

Our goal: “Adapt” the definition of quantiles to take into account the
whole tail structure of the underlying distribution.
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Regression Conditional Tail Moments

Let a > 0 and x ∈ Rd such that E(Y a|X = x) <∞. The Regression
Conditional Tail Moment of order a and level τ is defined as

RCTMa(τ |x) = E(Y a|Y > q(τ |X ), X = x).

Two particular cases:

Regression Expected Shortfall (mean of losses above the VaR):
RES(τ |x) = RCTM1(τ |x)

Regression Conditional Tail Variance (variance of losses above the
VaR): RCTV(τ |x) = RCTM2(τ |x)− RCTM2

1(τ |x)
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Kernel estimation of RCTM

1) Intermediate level. A two-step procedure is used:

First, the kernel estimator q̂n(τn|x) of the extreme regression quantile
is computed.

Second, a kernel estimator of the conditional expectation is
implemented:

ˆRCTMa(τn|x) =
1

1− τn

∑n
i=1 Khn(x − Xi )Y

a
i 1l{Yi>q̂n(τn|x)}∑n

i=1 Khn(x − Xi )
.

2) Arbitrary level. A Weissman type estimator is constructed remarking
that, under C1(γ(x)),

RCTMa(τ |x)

qa(τ |x)
→ 1

1− aγ(x)
as τ → 1.

Both estimators are asymptotically Gaussian, see Elmethni et al. (2014).
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Expectiles

Let us assume that E(Y ) <∞.

Definition (Expectiles, Newey & Powell, 1987)

The expectile associated with Y is the function ξ defined on (0, 1) by

ξ(τ) = arg min
q∈R

E(|τ − 1l{Y≤q}|(Y − q)2 − |τ − 1l{Y≤0}|Y 2).

To define the expectile, the quantile check function

ητ (x , 1) = |τ − 1l{x≤0}||x |

introduced by Koenker & Bassett (1978) is replaced in the optimization
problem by the function

ητ (x , 2) = |τ − 1l{x≤0}|x2.
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Comparison of cost functions

Red: expectiles ητ (., 2), blue: quantiles ητ (., 1) with τ = 1/3.
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The new cost function is continuously differentiable, the associated first
order condition is:

(1− τ)E(|Y − ξ(τ)|1l{Y≤ξ(τ)}) = τE(|Y − ξ(τ)|1l{Y>ξ(τ)}).

In particular, ξ(1/2) = E(Y ), and more generally:

τ =
E(|Y − ξ(τ)|1l{Y≤ξ(τ)})

E(|Y − ξ(τ)|)
.

An expectile is thus defined in terms of mean distance with respect to Y ,
and not only in terms of frequency.

Besides, the computation of an empirical expectile takes into account the
whole tail information via E(|Y − ξ(τ)|1l{Y>ξ(τ)}).
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Estimation of extreme expectiles

1) Intermediate level. The empirical estimator of ξ(τ) is

ξ̂n(τ) = arg min
ξ∈R

1

n

n∑
i=1

ητ (Yi − ξ, 2).

Under the first order condition, the estimator ξ̂n(τn) is asymptotically
Gaussian with (relative) rate of convergence

√
n(1− τn):

Theorem (Intermediate extreme expectiles, Daouia et al. 2018)

Assume C1(γ) holds with 0 < γ < 1/2. If τn ↑ 1 such as n(1− τn)→∞,
then √

n(1− τn)

(
ξ̂n(τn)

ξ(τn)
− 1

)
d−→ N

(
0, γ2 × 2γ

1− 2γ

)
.

The proof is based on Geyer (1996): since the empirical criterion is convex,
the asymptotic behaviour of the minimizer can be deduced from the
asymptotic behaviour of the criterion itself.
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2) Arbitrary level.

Proposition (Bellini et al. 2014 and Daouia et al. 2018)

Assume C1(γ) holds with 0 < γ < 1. Then,

ξ(τ)

q(τ)
→ (γ−1 − 1)−γ as τ → 1.

Weissman’s approximation thus still holds for expectiles:

ξ(τ ′n) ≈
(

1− τn
1− τ ′n

)γ
ξ(τn).

An extrapolated estimator can then be derived:

ξ̂Wn (τ ′n|τn) =

(
1− τn
1− τ ′n

)γ̂n
ξ̂n(τn)

where n(1− τn)→∞ and n(1− τ ′n)→ c <∞.
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Extreme regression expectiles

Extreme regression expectiles can be estimated following the same scheme
as for extreme regression quantiles.

Considering first the intermediate case, the following locally weighted
optimization problem is introduced.

ξ̂n(τ |x) = arg min
ξ

1

n

n∑
i=1

Khn(x − Xi )ητ (Yi − ξ, 2).

Second, taking account of C1(γ(x)):

ξ(τ |x)

q(τ |x)
→ (γ(x)−1 − 1)−γ(x) as τ → 1,

a Weissman type estimator can also be introduced to estimate
regression expectiles of arbitrary extreme levels.
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Drawbacks of expectiles

Existence of expectiles requires E(Y ) <∞ which amounts to supposing
γ < 1.

In practice, to obtain reasonable estimates, even at the intermediate level,
one needs γ < 1/2.

Similar problems occur when dealing with Expected Shortfall.

⇒ Restricts the range of potential fields of applications.
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Lp−quantiles: Basic idea

Quantile of level τ : solution of the minimization problem

q(τ) = arg min
q∈R

E(|τ − 1l{Y≤q}||Y − q| − |τ − 1l{Y≤0}||Y |).

Expectile of level τ : when E(Y ) <∞, solution of the minimization problem

ξ(τ) = arg min
q∈R

E(|τ − 1l{Y≤q}||Y − q|2 − |τ − 1l{Y≤0}||Y |2).

Definition (Lp−quantile, Chen 1996)

Assume E(Y p−1) <∞. The Lp-quantile associated with Y is the function
q(·, p) defined on (0, 1) as

q(τ, p) = arg min
q∈R

E(|τ − 1l{Y≤q}||Y − q|p − |τ − 1l{Y≤0}||Y |p).
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Advantages and drawbacks

When p > 1, the Lp−quantile q(τ, p) exists, is unique and verifies

τ =
E(|Y − q(τ, p)|p−11l{Y≤q(τ,p)})

E(|Y − q(τ, p)|p−1)
.

It can thus be interpreted in terms of (pseudo-)distance to Y in the
space Lp−1.

The condition for the existence of Lp−quantiles is E(Y p−1) <∞.
When 1 < p < 2, it is a weaker condition than the existence condition
for expectiles.

When p 6= 2, the Lp−quantiles do not define a coherent risk measure
(Bellini et al., 2014) since they are not in general subadditive.
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Estimation of extreme Lp−quantiles

1) Intermediate levels. Introducing

ητ (x , p) = |τ − 1l{x≤0}||x |p,

one has
q(τ, p) = arg min

q∈R
E(ητ (Y − q, p)− ητ (Y , p)).

The empirical estimator of q(τ, p) is obtained by minimizing the empirical
counterpart of the previous criterion:

q̂n(τ, p) = arg min
q∈R

1

n

n∑
i=1

ητ (Yi − q, p).

According to Geyer (1996), since the empirical criterion is convex, the
asymptotic behaviour of the minimizer directly depends on the asymptotic
behaviour of the criterion itself.
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Theorem (Intermediate extreme Lp−quantiles, Daouia et al. 2018)

Let p > 1. Assume C2(γ, ρ,A) holds with 0 < γ < [2(p − 1)]−1.

If τn ↑ 1 such that n(1− τn)→∞ and
√
n(1− τn)A(1/(1− τn))→ λ ∈ R

then,

√
n(1− τn)

(
q̂n(τn, p)

q(τn, p)
− 1

)
d−→ N

(
0, γ2V (γ, p)

)
where V (γ, p) =

Γ(2p − 1)Γ(γ−1 − 2p + 2)

Γ(p)Γ(γ−1 − p + 1)
and Γ(x) is the Gamma

function.
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Behaviour of variances γ ∈ (0, 1/2) 7→ V (γ, p) for some values of p ∈ [1, 2].
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2) Arbitrary levels. In order to remove the condition on τn, one has to
show that Weissman’s approximation is still valid for Lp−quantiles.

Proposition (Daouia et al. 2018)

Let p > 1. Assume C1(γ) with γ < 1/(p − 1). Then,

lim
τ↑1

q(τ, p)

q(τ, 1)
= C (γ, p),

where C (γ, p) =

[
γ

B(p, γ−1 − p + 1)

]−γ
and B(x , y) is the Beta function.

Extreme Lp−quantiles are asymptotically proportional to extreme ordinary
quantiles, for all p > 1.

For p = 2, one has C (γ, 2) = (γ−1 − 1)−γ , which coincides with the
previous result on expectiles.
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Behaviour of constants γ ∈ (0, 1/2) 7→ C (γ, p) for some values of p ∈ [1, 2].
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Weissman’s approximation is thus still valid for Lp−quantiles:

q(τ ′n, p) ≈
(

1− τn
1− τ ′n

)γ
q(τn, p).

An extrapolated estimator can be derived for Lp−quantiles:

q̂Wn (τ ′n|τn, p) =

(
1− τn
1− τ ′n

)γ̂n
q̂n(τn, p)

where n(1− τn)→∞ and n(1− τ ′n)→ c <∞.

Establishing the asymptotic behaviour of this estimator requires to
investigate the error term in Weissman’s approximation.
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Theorem (Arbitrary extreme Lp−quantiles, Daouia et al. 2018)

Suppose C2(γ, ρ,A) holds with γ < [2(p − 1)]−1.
Let τn, τ

′
n ↑ 1 such that n(1− τn)→∞, n(1− τ ′n)→ c <∞ and

√
n(1− τn) max

(
1

q(τn, 1)
, 1− τn, A

(
1

1− τn

))
= O(1)√

n(1− τn)(γ̂n − γ)
d−→ N.

Then, √
n(1− τn)

log([1− τn]/[1− τ ′n])

(
q̂Wn (τ ′n|τn, p)

q(τ ′n, p)
− 1

)
d−→ N.
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3) Exploiting links between quantiles and Lp−quantiles

– First, remark that from the property q(τ, p) ∼ C (γ, p)q(τ, 1), one can
build other estimators of extreme Lp−quantiles:

at intermediate levels: q̃n(τn, p) := C (γ̂n, p)q̂n(τn, 1) where γ̂n is an
estimator of the tail index and q̂n(τn, 1) = Ydnτne,n.

at arbitrary levels: q̃Wn (τ ′n|τn, p) := C (γ̂n, p)q̂Wn (τ ′n|τn, 1) where
q̂Wn (τ ′n|τn, 1) is Weissman’s estimator.

Asymptotic normality results have been established under the condition
γ < (p − 1)−1 instead of γ < [2(p − 1)]−1 in the previous theorem. Such
results are deduced from the (joint) asymptotic normality of γ̂n and extreme
quantile estimators.
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– Second, recall that the Lp−quantile q(τn, p) exists, is unique and verifies

τn =
E(|Y − q(τn, p)|p−11l{Y≤q(τn,p)})

E(|Y − q(τn, p)|p−1)
.

It is thus possible to find levels αn and τn such that q(τn, p) = q(αn, 1) by
imposing

τn =
E(|Y − q(αn, 1)|p−11l{Y≤q(αn,1)})

E(|Y − q(αn, 1)|p−1)
.

Asymptotically, as n→∞, one can show that

1− τn
1− αn

→ 1

γ
B

(
p,

1

γ
− p + 1

)
.

Starting from the two equations in red, one can estimate extreme quantiles
from extreme Lp−quantiles.

32/ 45



Risk measures Quantiles, expectiles and conditional tail moments Lp−quantiles Numerical experiments

Letting

τ̂ ′n(p, αn) := 1− (1− αn)
1

γ̂n
B

(
p,

1

γ̂n
− p + 1

)
,

the extreme quantile q(αn, 1) can be estimated by qn(τ̂ ′n(p, αn)|τn, p)
where qn(·|τn, p) is an estimator of the extreme Lp−quantile q(·, p) i.e.
qn(·|τn, p) = q̂Wn (·|τn, p) or qn(·|τn, p) = q̃Wn (·|τn, p).

Asymptotic normality results have been established for both estimators
q̂Wn (τ̂ ′n(p, αn)|τn, p) and q̃Wn (τ̂ ′n(p, αn)|τn, p).
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Illustration on simulations

We focus on Lp−quantiles for p ∈ (1, 2) (alternative risk measure to
expectiles with a weaker existence condition).

The accuracy is assessed by computing the relative mean-squared error
(MSE) on 3000 replications of samples of size n = 200 from a Fréchet

distribution: F (x) = e−x
−1/γ

, x > 0.

1) Intermediate extreme level

Which Lp−quantiles can be estimated accurately with q̂n(τn, p)?
We consider a Lp−quantile of level τn = 0.9.
In the following, γ ∈ {0.1, 0.15, . . . , 0.45} and p ∈ {1, 1.05, . . . , 2}.
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Relative MSE - Fréchet distribution - Intermediate level
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First conclusions:

The estimation accuracy is getting lower when γ increases.

When γ ≥ 0.2, the estimation of expectiles (p = 2) is more difficult
than the estimation of quantiles (p = 1).

The value of p minimizing the relative MSE depends on the tail index
γ. However, p ∈ [1.2, 1.4] seems to be a good compromise.

2) Arbitrary extreme level

Comparison of:

q̂Wn (τ ′n|τn, p) (based on empirical criterion + extrapolation),

q̃Wn (τ ′n|τn, p) (based on the extreme L1− quantile).

We consider a Lp−quantile of level τ ′n = 1− 1/n.
In the following, τn = 1− k/n where k ∈ {2, . . . , n − 1}, γ̂n is Hill’s
estimator, γ ∈ {0.1, 0.45} and p ∈ {1.2, 1.5, 1.8}.
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Relative MSE - Fréchet distribution - Extreme level
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Relative MSE - Fréchet distribution - Extreme level
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γ = 0.45).
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Relative MSE - Fréchet distribution - Extreme level

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200
k

R
M

S
E

 (i
n 

lo
g 

sc
al

e)

variable
hat

tilde

Fréchet : p=1.8 , gamma=0.1

0.1

0.2

0.3

0.4

0 50 100 150 200
k

R
M

S
E

 (i
n 

lo
g 

sc
al

e)

variable
hat

tilde

Fréchet : p=1.8 , gamma=0.45

Horizontally: k, Vertically: relative MSE (in log scale) of q̂Wn (τ ′n|τn, p = 1.8) and

q̃Wn (τ ′n|τn, p = 1.8) as a function of k ∈ {2, . . . , n − 1} (left: γ = 0.1, right:

γ = 0.45).
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Illustration on real data

S&P500 index from Jan, 4th, 1994 to Sep, 30th, 2016 (5727 trading days).
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To reduce the potential serial dependence, we used lower frequency data by

choosing weekly returns in the same sample period (Cai et al., 2015). This results

in a sample {Y1, . . . ,Y1176} of size 1176. 40/ 45
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Computation of prediction errors

For t = 1, . . . , 656

Starting from {Yt , . . . ,Yt+n−1} a training sample with n = 520,

Our goal is to estimate q(1/n, 1) which can be viewed as the weekly
loss return for a once-per-decade financial crisis.

Three estimators are computed:

q̂Wn (1/n|τn, p = 1) (Weissman estimator for L1− quantiles),
q̂Wn (τ̂ ′n(p, 1/n)|τn, p) and q̃Wn (τ̂ ′n(p, 1/n)|τn, p) (based on estimators for
Lp− quantiles).

The associated prediction errors are computed with respect to Yt+n.
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Prediction errors - Weekly loss returns
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Horizontally: k, Vertically: Prediction error for q̂Wn (τ̂ ′n(p, 1/n)|τn, p) (left),

q̃Wn (τ̂ ′n(p, 1/n)|τn, p) (right) and q̂Wn (1/n|τn, p = 1) (magenta) as a function of k.
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Conclusion

The extreme behaviour of Lp−quantiles has been established.

Classical quantiles as well as expectiles are particular cases of
Lp−quantiles.

In contrast to quantiles, Lp−quantiles take into account the whole tail
structure of the distribution.

The condition for existence of Lp−quantiles is weaker than for
expectiles.

It is possible to extrapolate to arbitrarily large levels.

The theory has been extended to a mixing dependence framework and
to real-valued distributions.

Lp−quantiles may be adapted to the regression framework (work in
progress).
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