On the asymptotic behaviour of extreme geometric quantiles

Gilles STUPFLER (Aix Marseille Université)
Joint work with Stéphane GIRARD (INRIA Rhône-Alpes)

Workshop on Extreme Value Theory Besançon, France, November 3rd, 2014

Outline Extreme multivariate quantiles? Geometric quantiles Asymptotic behaviour Numerical illustrations Discussion

Outline

- Extreme multivariate quantiles?
- Geometric quantiles
- Asymptotic behaviour
 - A first step
 - ♦ Under moment conditions
 - ♦ In a multivariate regular variation framework
- Numerical illustrations
- Discussion

Extreme multivariate quantiles?

- The natural order on R induces a universal definition of quantiles of underlying univariate distribution functions;
- This is not true in \mathbb{R}^d , $d \ge 2$, since no natural order exists in this case;
- Many definitions of multivariate quantiles have since been suggested in the literature:
 - ♦ Depth-based quantiles: Liu et al. (1999), Zuo and Serfling (2000);
 - ♦ Norm minimisation: Abdous and Theodorescu (1992), Chaudhuri (1996);
 - ♦ Generalised quantile processes: Einmahl and Mason (1992).

For a review, see e.g. Serfling (2002).

Furthermore, although extreme univariate quantiles are now used in many real-life applications (climatology, actuarial science, finance...), very few works actually study extreme multivariate quantiles:

- Chernozhukov (2005): extreme quantile estimation in a linear quantile regression model:
- Cai et al. (2011) and Einmahl et al. (2013): study of the extreme level sets of the underlying probability density function.

Goal of this talk: to introduce and study a possible notion of extreme multivariate quantile.

Geometric quantiles

If X is a real-valued random variable, the univariate p-th quantile $x_p := \inf\{t \in \mathbb{R} \mid \mathbb{P}(X \leq t) \geq p\}$ of X can be obtained by solving the optimisation problem

$$rg \min_{oldsymbol{q} \in \mathbb{R}} \mathbb{E}(\phi(2p-1,X-oldsymbol{q}) - \phi(2p-1,X))$$

where $\phi(u,t) = |t| + ut$.

• When |X| has a finite expectation, this problem becomes

$$rg \min_{q \in \mathbb{R}} \mathbb{E}|X-q| + (2p-1)\mathbb{E}(X-q).$$

In particular, the median $x_{1/2}$ of X is obtained by minimising $\mathbb{E}|X-q|$ with respect to q:

• Subtracting $\phi(2p-1,X)$ makes the cost function well-defined even when |X| has an infinite expectation.

In \mathbb{R}^d , $d \geq 2$, analogues of the absolute value $|\cdot|$ and product \cdot are given by the Euclidean norm $||\cdot||$ and Euclidean inner product $\langle\cdot,\cdot\rangle$.

When X is a multivariate random vector, the geometric quantiles of X, introduced by Chaudhuri (1996), are thus obtained by adapting and solving the aforementioned problem in the multivariate context.

In \mathbb{R}^d , $d \geq 2$, analogues of the absolute value $|\cdot|$ and product \cdot are given by the Euclidean norm $||\cdot||$ and Euclidean inner product $\langle\cdot,\cdot\rangle$.

When X is a multivariate random vector, the geometric quantiles of X, introduced by Chaudhuri (1996), are thus obtained by adapting and solving the aforementioned problem in the multivariate context.

Definition 1 (Chaudhuri 1996)

If $u \in \mathbb{R}^d$ is an arbitrary vector, a geometric u-th quantile of X, if it exists, is a solution of the optimisation problem

$$\underset{q \in \mathbb{R}^d}{\arg\min} \, \mathbb{E}(\phi(u, X - q) - \phi(u, X)) \tag{P_u}$$

with $\phi(u, t) = ||t|| + \langle u, t \rangle$.

- For every u in the unit open ball B^d of \mathbb{R}^d , there exists a unique geometric u-th quantile whenever the distribution of X is not concentrated on a single straight line in \mathbb{R}^d (Chaudhuri, 1996);
- They are equivariant under any orthogonal transformation (Chaudhuri, 1996);
- The geometric quantile function characterises the associated distribution (Koltchinskii, 1997).

They make reasonable candidates when trying to define multivariate quantiles. Our focus here is to define and study the properties of extreme geometric quantiles.

Asymptotic behaviour: a first step

From now on, we assume that the distribution of X is not concentrated on a single straight line in \mathbb{R}^d and non-atomic. Then:

- For every $u \in B^d$, the u-th geometric quantile exists and is unique;
- For any $u \in \mathbb{R}^d$, if there is a solution $q(u) \in \mathbb{R}^d$ to problem (P_u) , then the gradient of the cost function must be zero at q(u), that is

$$u + \mathbb{E}\left(\frac{X - q(u)}{\|X - q(u)\|}\right) = 0.$$

From now on, we assume that the distribution of X is not concentrated on a single straight line in \mathbb{R}^d and non-atomic. Then:

- For every $u \in B^d$, the u-th geometric quantile exists and is unique;
- For any $u \in \mathbb{R}^d$, if there is a solution $q(u) \in \mathbb{R}^d$ to problem (P_u) , then the gradient of the cost function must be zero at q(u), that is

$$u + \mathbb{E}\left(\frac{X - q(u)}{\|X - q(u)\|}\right) = 0.$$

Proposition 1 (Chaudhuri 1996, Girard and S. 2014)

The optimisation problem (P_u) has a solution if and only if $u \in B^d$.

It follows from the previous result that:

- We cannot compute a geometric quantile with unit index vector, unlike in the univariate case if the distribution has a finite (left or right) endpoint;
- We may nevertheless study the asymptotics of a geometric quantile q(v) when v approaches the unit sphere: such quantiles will be referred to as extreme geometric quantiles.

- We cannot compute a geometric quantile with unit index vector, unlike in the univariate case if the distribution has a finite (left or right) endpoint;
- We may nevertheless study the asymptotics of a geometric quantile q(v) when v approaches the unit sphere: such quantiles will be referred to as extreme geometric quantiles.

Theorem 1 (Girard and S. 2014)

Let S^{d-1} be the unit sphere of \mathbb{R}^d .

- (i) It holds that $\|q(v)\| \to \infty$ as $\|v\| \to 1$.
- (ii) Moreover, if $v \to u$ with $u \in S^{d-1}$ and $v \in B^d$ then

$$\frac{q(v)}{\|q(v)\|} \to u$$

Theorem 1 shows two properties of geometric quantiles:

- The magnitude of extreme geometric quantiles diverges to infinity.
 - ♦ Rather intriguing: it holds true even if the distribution of X has a compact support;
 - ♦ Related point: sample geometric quantiles do not necessarily lie within the convex hull of the sample, see Breckling *et al.* (2001).
- If $v \to u \in S^{d-1}$ then the extreme geometric quantile q(v) has asymptotic direction u.

Our main results specify the convergences in Theorem 1 under further assumptions.

Asymptotic behaviour: when there are finite moments

Our first result is obtained in the case when ||X|| satisfies certain moment conditions. It focuses on extreme geometric quantiles in the direction $u \in S^{d-1}$, *i.e.* having the form $g(\lambda u)$, with $\lambda \uparrow 1$.

Asymptotic behaviour: when there are finite moments

Our first result is obtained in the case when $\|X\|$ satisfies certain moment conditions. It focuses on extreme geometric quantiles in the direction $u \in S^{d-1}$, *i.e.* having the form $q(\lambda u)$, with $\lambda \uparrow 1$.

Theorem 2 (Girard and S. 2014)

Let $u \in S^{d-1}$. Define $\Pi_u(x) = x - \langle x, u \rangle u$.

(i) If $\mathbb{E}||X|| < \infty$ then

$$\|q(\lambda u)\|\left(rac{q(\lambda u)}{\|q(\lambda u)\|}-u
ight) o \mathbb{E}(\Pi_u(X)) \ \ ext{as} \ \ \lambda\uparrow 1.$$

(ii) If $\mathbb{E}||X||^2 < \infty$ and Σ denotes the covariance matrix of X then

$$\|\textit{q}(\lambda \textit{u})\|^2(1-\lambda) \to \frac{1}{2}\left(\text{tr}\,\Sigma - \textit{u}'\Sigma \textit{u}\right) > 0 \ \text{as} \ \lambda \uparrow 1.$$

Consequences of Theorem 2

If ||X|| has a finite second moment, then asymptotically:

- the asymptotic direction of an extreme geometric quantile in the direction u is exactly u;
- the magnitude of an extreme geometric quantile in the direction u is asymptotically determined by u and the covariance matrix Σ of X.

In particular, the extreme geometric quantiles of two probability distributions which admit the same finite covariance matrix are asymptotically equivalent.

 \Rightarrow no information can be recovered on the behaviour of X far from the origin basing solely on extreme geometric quantiles.

Asymptotic behaviour: in a multivariate regular variation framework

Asymptotic behaviour

When the moment conditions in Theorem 2 are no longer satisfied, the asymptotic properties of extreme geometric quantiles can be studied in a multivariate regular variation framework:

 (M_{α}) The random vector X has a probability density function f which is continuous on a neighborhood of infinity and such that:

- the function $y \mapsto ||y||^d f(y)$ is bounded in any compact neighborhood of 0;
- there exist a positive function Q on \mathbb{R}^d and a function V which is regularly varying at infinity with index $-\alpha < 0$, such that

$$orall y
eq 0, \ \left| rac{f(ty)}{t^{-d}V(t)} - Q(y)
ight| \ o 0$$
 and $\sup_{w \in S^{d-1}} \left| rac{f(tw)}{t^{-d}V(t)} - Q(w)
ight| \ o 0$ as $t o \infty$.

- The function Q is a homogeneous continuous function of degree $-d-\alpha$ on $\mathbb{R}^d\setminus\{0\}$;
- We have that $f(y) = ||y||^{-d}V(||y||)Q(y/||y||)(1 + o(1))$ for large ||y|| and thus f(y) is roughly of order $||y||^{-d-\alpha}$;
- The expectation $\mathbb{E}||X||^{\beta}$ is finite if $\beta < \alpha$.

In particular, the case $\alpha > 2$ is covered by Theorem 2.

Theorem 3 (Girard and S. 2014)

Let $u \in S^{d-1}$.

(i) If (M_{α}) holds with $\alpha \in (0,1)$, then

$$\frac{1}{V(\|q(\lambda u)\|)}\left(\frac{q(\lambda u)}{\|q(\lambda u)\|}-u\right)\to \int_{\mathbb{R}^d}\frac{\Pi_u(y)}{\|y-u\|}Q(y)dy \ \ \text{as} \ \ \lambda\uparrow 1.$$

Geometric quantiles

(ii) If (M_{α}) holds with $\alpha \in (0,2)$, then

$$\frac{1-\lambda}{V(\|g(\lambda u)\|)} \to \int_{\mathbb{P}^d} \left(1 + \frac{\langle y-u, u \rangle}{\|y-u\|}\right) Q(y) dy \quad \text{as} \quad \lambda \uparrow 1.$$

Since V is regularly varying with index $-\alpha$, it follows that when $\alpha \in (0,2)$, the magnitude of an extreme geometric quantile behaves roughly like $(1-\lambda)^{-1/\alpha}$ as $\lambda \uparrow 1$.

 \Rightarrow In this case, the magnitude of an extreme geometric quantile features the behaviour of the distribution of X far from the origin.

However, Theorem 3 excludes the limit cases $\alpha=1$ for the asymptotic direction and $\alpha=2$ for the asymptotic magnitude.

To give an idea of what can be said when $\alpha = 1$ or $\alpha = 2$, we introduce the following sub-model of (M_{α}) :

$$(M'_{\alpha})$$
 For all $x \neq 0$, $f(x) = (x'\Sigma^{-1}x)^{\alpha/2}Q(x)V((x'\Sigma^{-1}x)^{1/2})$ where

- Σ is a positive definite $d \times d$ symmetric matrix;
- $Q(x) = (x'\Sigma^{-1}x)^{(-d-\alpha)/2}\psi(x/(x'\Sigma^{-1}x)^{1/2})$ where ψ is positive and continuous on the ellipsoid $E_{\Sigma}^{d-1} = \{x \in \mathbb{R}^d \mid x' \Sigma^{-1} x = 1\};$
- $V: t \mapsto t^{-\alpha}L(t)$ is a bounded function, with L being a slowly varying function at infinity which is continuous in a neighborhood of infinity and is such that

$$\int_0^\infty L(r) \frac{dr}{r^{1+\alpha}} < \infty \ \text{ and } \ \mathcal{L}(t) := \int_1^t L(r) \frac{dr}{r} \to \infty \ \text{ as } \ t \to \infty.$$

If (M'_{α}) holds, then:

- The expectation $\mathbb{E}||X||^{\beta}$ is finite if and only if $\beta < \alpha$;
- We may define a surface measure on the ellipsoid E_{Σ}^{d-1} by

$$\mu_{\Sigma}(C) = (\det \Sigma)^{1/2} \sigma \left(\Sigma^{-1/2} C \right)$$

where σ is the standard surface measure on S^{d-1} .

Theorem 4 (Girard and S. 2014)

Let $u \in S^{d-1}$.

(i) If (M'_1) holds then, as $\lambda \to 1$:

$$\frac{\|q(\lambda u)\|}{\mathcal{L}(\|q(\lambda u)\|)} \left(\frac{q(\lambda u)}{\|q(\lambda u)\|} - u\right) \to \int_{E_{\Sigma}^{d-1}} \Pi_u(w) \psi(w) \mu_{\Sigma}(dw).$$

Geometric quantiles

(ii) If (M_2') holds then, as $\lambda \to 1$:

$$\frac{\|q(\lambda u)\|^2}{\mathcal{L}(\|q(\lambda u)\|)}(1-\lambda)\to \frac{1}{2}\int_{E_{\Sigma}^{d-1}}\langle \Pi_u(w),\ w\rangle\psi(w)\mu_{\Sigma}(dw).$$

Comments on Theorem 4

A particular consequence is that if (M'_2) holds then the magnitude of an extreme geometric quantile does again feature the behaviour of the distribution of X far from the origin, through the function L.

A particular consequence is that if (M'_2) holds then the magnitude of an extreme geometric quantile does again feature the behaviour of the distribution of X far from the origin, through the function L.

Example

If $L(t) \propto (\log t)^{\beta}$ on $(1, \infty)$, where $\beta > -1$, then:

$$\|q(\lambda u)\| \propto (1-\lambda)^{-1/2} \left[\log\left(rac{1}{1-\lambda}
ight)
ight]^{(eta+1)/2} \;\; ext{as} \;\; \lambda \uparrow 1.$$

Thus, the slower f converges to 0 at infinity, the larger are the extreme geometric quantiles.

Consequences of our main results

For all $\alpha > 0$, we can write

$$rac{q(\lambda u)}{\|q(\lambda u)\|} - u \propto R_{1,lpha}((1-\lambda)^{-1})$$
 and $\|q(\lambda u)\| \propto R_{2,lpha}((1-\lambda)^{-1})$ as $\lambda \uparrow 1$,

where $R_{1,\alpha}$ and $R_{2,\alpha}$ are regularly varying functions with respective indices $-\min(1,\alpha)/\min(2,\alpha)$ and $1/\min(2,\alpha)$.

 \Rightarrow Extreme geometric quantiles feature the behaviour of X far from the origin only when the distribution function of $\|X\|$ decays sufficiently slowly at infinity.

Numerical illustrations: Theorem 2

We choose d=2 to make the display easier. The following two bivariate distributions are considered:

• the centred Gaussian bivariate distribution $\mathcal{N}(0, v_X, v_Y, v_{XY})$, whose probability density function is:

$$f(x,y) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2} \begin{pmatrix} x \\ y \end{pmatrix}' \Sigma^{-1} \begin{pmatrix} x \\ y \end{pmatrix}\right)$$
with $\Sigma = \begin{pmatrix} v_X & v_{XY} \\ v_{XY} & v_Y \end{pmatrix}$.

• a double exponential distribution $\mathcal{E}(\lambda_-, \mu_-, \lambda_+, \mu_+)$, with λ_- , $\mu_-, \lambda_+, \mu_+ > 0$, whose probability density function is:

Geometric quantiles

$$f(x,y) = \begin{cases} \frac{\lambda_{+}\mu_{+}}{4}e^{-\lambda_{+}|x|-\mu_{+}|y|} & \text{if } xy > 0, \\ \frac{\lambda_{-}\mu_{-}}{4}e^{-\lambda_{-}|x|-\mu_{-}|y|} & \text{if } xy \leq 0. \end{cases}$$

In this case, X is centred and has covariance matrix:

$$\Sigma = \begin{pmatrix} \frac{1}{\lambda_{-}^{2}} + \frac{1}{\lambda_{+}^{2}} & \frac{1}{2} \left[\frac{1}{\lambda_{+}\mu_{+}} - \frac{1}{\lambda_{-}\mu_{-}} \right] \\ \frac{1}{2} \left[\frac{1}{\lambda_{+}\mu_{+}} - \frac{1}{\lambda_{-}\mu_{-}} \right] & \frac{1}{\mu^{2}} + \frac{1}{\mu_{+}^{2}} \end{pmatrix}.$$

$$q_{\mathrm{eq}}(\lambda u) := (1-\lambda)^{-1/2} \left[\frac{1}{2} \left(\mathrm{tr} \, \Sigma - u' \Sigma u \right) \right]^{1/2} u.$$

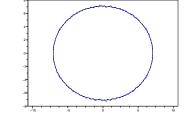
⇒ Goal: to show that for these two distributions, equal covariance matrices induce equivalent extreme geometric quantiles, and to assess the accuracy of the asymptotic equivalent.

We choose three different sets of parameters, in order that the related covariance matrices coincide:

- $\mathcal{N}(0, 1/2, 1/2, 0)$ and $\mathcal{E}(2, 2, 2, 2)$ with spherical covariance matrices:
- $\mathcal{N}(0, 1/8, 3/4, 0)$ and $\mathcal{E}(4, 2\sqrt{2/3}, 4, 2\sqrt{2/3})$ with diagonal but non-spherical covariance matrices;
- $\mathcal{N}(0, 1/2, 1/2, 1/6)$ and $\mathcal{E}(2\sqrt{3}, 2\sqrt{3}, 2\sqrt{3/5}, 2\sqrt{3/5})$ with full covariance matrices.

Any $u \in S^1$ can be written $u = u_\theta = (\cos \theta, \sin \theta), \ \theta \in [0, 2\pi)$. We let $\lambda = 0.995$ and in each case, we compute:

- the true iso-quantile curve $Cq(\lambda) = \{q(\lambda u_{\theta}), \ \theta \in [0, 2\pi)\};$
- its asymptotic equivalent $\mathcal{C}q_{eq}(\lambda) = \{q_{eq}(\lambda u_{\theta}), \theta \in [0, 2\pi)\}.$



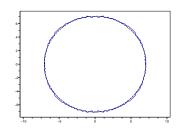
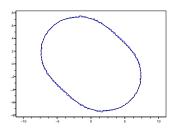


Figure 1: Case of the Gaussian $\mathcal{N}(0, 1/2, 1/2, 0)$ (left) and double exponential $\mathcal{E}(2,2,2,2)$ (right) distributions for $\lambda=0.995$. Iso-quantile curves $Cq(\lambda)$ (full blue line) and $Cq_{eq}(\lambda)$ (dashed black line).

Outline



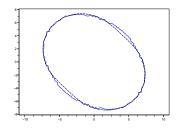
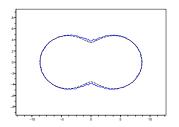


Figure 2: Case of the Gaussian $\mathcal{N}(0,1/2,1/2,1/6)$ (left) and double exponential $\mathcal{E}(2\sqrt{3},2\sqrt{3},2\sqrt{3/5},2\sqrt{3/5})$ (right) distributions for $\lambda=0.995$. Iso-quantile curves $\mathcal{C}q(\lambda)$ (full blue line) and $\mathcal{C}q_{\rm eq}(\lambda)$ (dashed black line).

Outline



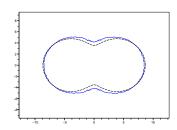


Figure 3: Case of the Gaussian $\mathcal{N}(0, 1/8, 3/4, 0)$ (left) and double exponential $\mathcal{E}(4, 2\sqrt{2/3}, 4, 2\sqrt{2/3})$ (right) distributions for $\lambda = 0.995$. Iso-quantile curves $\mathcal{C}q(\lambda)$ (full blue line) and $\mathcal{C}q_{eq}(\lambda)$ (dashed black line).

Numerical illustrations: Theorem 3

Here, we consider a bivariate Pareto $(\alpha, \sigma_1, \sigma_2)$ distribution, whose probability density function is:

$$f(x,y) = \frac{\alpha}{2\sigma_1\sigma_2\pi} \left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2}\right)^{(-2-\alpha)/2} 1_{[1,\infty)} \left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2}\right)$$

where α , σ_1^2 and $\sigma_2^2 > 0$. When $\alpha > 2$, this distribution has covariance matrix:

$$M = \frac{1}{2} \cdot \frac{\alpha}{\alpha - 2} \Sigma$$
, with $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$.

Clearly, for any $\alpha > 0$, this distribution is part of the class (M'_{α}) , with

Asymptotic behaviour

$$Q(x) = (x'\Sigma^{-1}x)^{(-2-\alpha)/2}$$

and
$$V(t) = \frac{\alpha}{2\sigma_1\sigma_2\pi}t^{-\alpha}\mathbb{1}_{[1,\infty)}(t).$$

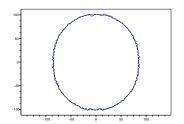
Theorems 2 and 3 thus entail that the extreme geometric quantiles of this distribution are asymptotically equal to:

$$q_{\rm eq}(\lambda u) := (1-\lambda)^{-1/\alpha} I(\alpha, \sigma_1, \sigma_2)$$
 if $\alpha < 2$

where $I(\alpha, \sigma_1, \sigma_2)$ is a positive constant, and

$$q_{\mathrm{eq}}(\lambda u) := (1-\lambda)^{-1/2} \left[\frac{1}{2} \left(\operatorname{tr} M - u' M u \right) \right]^{1/2} u \text{ if } \alpha > 2.$$

⇒ Goal: to examine if both these approximations are satisfactory on this heavy-tailed example.



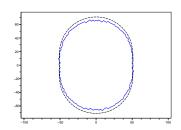
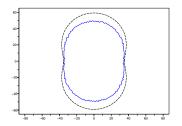


Figure 4: Case of the Pareto($\alpha,2,1/2$) model, with $\alpha=1.3$ (left) and $\alpha=1.5$ (right) for $\lambda=0.995$. Iso-quantile curves $\mathcal{C}q(\lambda)$ (full blue line) and $\mathcal{C}q_{\rm eq}(\lambda)$ (black dashed line).



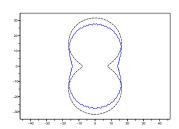
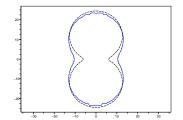


Figure 5: Case of the Pareto($\alpha,2,1/2$) model, with $\alpha=1.7$ (left) and $\alpha=2.5$ (right) for $\lambda=0.995$. Iso-quantile curves $\mathcal{C}q(\lambda)$ (full blue line) and $\mathcal{C}q_{\rm eq}(\lambda)$ (black dashed line).



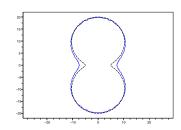


Figure 6: Case of the Pareto(α , 2, 1/2) model, with α = 3 (left) and α = 4 (right) for $\lambda = 0.995$. Iso-quantile curves $\mathcal{C}q(\lambda)$ (full blue line) and $\mathcal{C}q_{\rm eq}(\lambda)$ (black dashed line).

Discussion

- Extreme geometric quantiles in the direction u have asymptotic direction u:
- They are asymptotically equal for two distributions which have the same finite covariance matrix, which is not satisfying from the extreme value perspective;
- They do however feature the behaviour of X far from the origin in a multivariate regular variation context when the tail of ||X|| is sufficiently heavy.

- In model (M_{α}) , obtaining an estimator of α when $\alpha < 2$;
- Working on a modification of geometric quantiles which takes the behaviour of X far from the origin in all cases;
- Trying to obtain analogue results for depth-based quantiles or generalised quantile processes.

References

Abdous, B., Theodorescu, R. (1992) Note on the spatial quantile of a random vector. Statistics and Probability Letters 13: 333–336.

Breckling, J., Kokic, P., Lübke, O. (2001) A note on multivariate M-quantiles, Statistics and Probability Letters **55**: 39–44.

Cai, J.-J., Einmahl, J.H.J., de Haan, L. (2011) Estimation of extreme risk regions under multivariate regular variation, Annals of Statistics **39**(3): 1803–1826.

Chaudhuri, P. (1996) On a geometric notion of quantiles for multivariate data, Journal of the American Statistical Association **91**(434): 862–872.

Chernozhukov, V. (2005) Extremal quantile regression, The Annals of Statistics **33**(2): 806–839.

Einmahl, J.H.J., de Haan, L., Krajina, A. (2013) Estimating extreme bivariate quantile regions, Extremes 16(2): 121–145.

Discussion

- Einmahl, J.H.J., Mason, D.M. (1992) Generalized quantile processes, Annals of Statistics 20: 1062–1078.
- S. Girard and G. Stupfler (2014) Asymptotic behaviour of extreme geometric quantiles and their estimation under moment conditions. Available at http://hal.inria.fr/hal-01060985.
- S. Girard et G. Stupfler (2014) Extreme geometric quantiles in a multivariate regular variation framework, working paper.
- Koltchinskii, V.I. (1997) M-estimation, convexity and quantiles, Annals of Statistics **25**(2): 435–477.
- Serfling, R. (2002) Quantile functions for multivariate analysis: approaches and applications, Statistica Neerlandica 56(2): 214–232.
- Zuo, Y., Serfling, R. (2000) General notions of statistical depth function, Annals of Statistics 28: 461–482.

Thanks for listening!