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1. Mathematical results

Lemma 1. The expected consumption with one sleep mode between two suc-
cessive printings given X1:i−1 is:

E(h(Xi, τi)|X1:i−1) = aE(Xi|X1:i−1) + (a− b)F̄i(τi)(∆t+ τi)

− (a− b)

∫ +∞

τi

xfi(x)dx.

Lemma 2. The expected consumption with multiple sleep modes between two
successive print requests given X1:i−1 is:

E(h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1) = aE(Xi|X1:i−1)

+
m
∑

j=1

(bj−1 − bj)F̄i(τ
(j)
i )(∆tj + τ

(j)
i )

−

m
∑

j=1

(bj−1 − bj)

∫ +∞

τ
(j)
i

xfi(x)dx.

It is remarkable that the expected energy consumption is expanded as the sum
of m terms, each of them depending on one and only one timeout. Thus, the

minimization of E(h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1) with respect to (τ

(1)
i , . . . , τ

(m)
i )

can be split into m optimization problems leading to explicit optimal timeouts.
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Proposition 1. Two situations are examined, depending on the behavior
of the printing rate function.
a) Suppose that the printing rate function zi(x) is decreasing in x. For each
j = 1, . . . ,m three cases occur:

• If 1/∆tj < ℓi, then τ̂
(j)
i = +∞.

• If ℓi ≤ 1/∆tj ≤ zi(0), then τ̂
(j)
i is the unique solution of zi(τ̂

(j)
i ) = 1/∆tj.

• If zi(0) < 1/∆tj, then τ̂
(j)
i = 0.

b) Suppose that zi is increasing or constant. For each j = 1, . . . ,m four cases
occur:

• If 1/∆tj < zi(0), then τ̂
(j)
i = +∞.

• If zi(0) ≤ 1/∆tj ≤ min (ℓi, 1/E(Xi|X1:i−1)), then τ̂
(j)
i = +∞.

• If max (zi(0), 1/E(Xi|X1:i−1)) < 1/∆tj ≤ ℓi, then τ̂
(j)
i = 0.

• If ℓi < 1/∆tj, then τ̂
(1)
j = 0.

Lemma 3. The expected consumption including user impact is

E(g(Xi, τi)|X1:i−1) = aE(Xi|X1:i−1) + (a− b)F̄i(τi)(∆̃t+τi)

− (a− b)

∫ +∞

τi

xfi(x)dx

with ∆̃t = (c+ d+ δ)/(a− b).

2. M step of the EM algorithm for Weibull HMCs.

This paragraph describes the M step of EM algorithm, dedicated to parameter
re-estimation in HMCs, in the case of Weibull emission distributions.
Generally in HMCs, the re-estimation procedure for the πk and Ak,l parameters
is not specific to the family of emission distributions. In particular, the usual for-
mulae (6.14) and (6.15) in Ephraim and Merhav (2002) hold for Weibull emission

distributions. For all k = 1, ..,K the new values of parameters (λ
(m+1)
k , α

(m+1)
k )

after m iterations of the EM algorithm cancel the partial derivatives of the Q

function (formula (6.13) in Ephraim and Merhav, 2002), and thus satisfy the
system:











∑

t

Pη(m)(St = k|Xn
1 = xn

1 )
∂

∂λk

log fλk,αk
(x) = 0

∑

t

Pη(m)(St = k|Xn
1 = xn

1 )
∂

∂αk

log fλk,αk
(x) = 0.

(1)
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Let ξ
(t)
k = Pη(m)(St = k|Xn

1 = xn
1 ). Since for Weibull emission distributions,

log fλk,αk
(x) = log(αk) + αk log(λk) + (αk − 1) log(x)− (λkx)

αk ,

we have

∂ log fλk,αk
(x)

∂λk

=
αk

λk

− αkx
αkλαk−1

k

and

∂ log fλk,αk
(x)

∂αk

=
1

αk

+ log(λk) + log x− (log(λkx))(λkx)
αk .

The first equation of the system (1) can be rewritten as

∑

t

ξ
(t)
k

∂

∂λk

log fλk,αk
(xt) =

∑

t

ξ
(t)
k

[

αk

λk

− αkx
αk

t λαk−1
k

]

= 0

⇔
αk

λk

∑

t

ξ
(t)
k − αkλ

αk−1
k

∑

t

ξ
(t)
k xαk

t = 0 ⇔
∑

t

ξ
(t)
k = λαk

k

∑

t

ξ
(t)
k xαk

t (2)

⇔ λk =

[

∑

t ξ
(t)
k xαk

t
∑

t ξ
(t)
k

]− 1
αk

. (3)

Replacing the expression of λk obtained in equation (3) into the second equation
of the system (1) yields

0 =
∑

t

ξ
(t)
k

∂

∂αk

log fλk,αk
(xt)

=
∑

t

ξ
(t)
k

[

1

αk

+ logλk + log xt − (log(λkxt))(λkxt)
αk

]

=
∑

t

ξ
(t)
k

(

1

αk

+ log xt + logλk

)

− λαk

k

∑

t

ξ
(t)
k xαk

t (logλk + log xt)

=
∑

t

ξ
(t)
k

(

1

αk

+ log xt

)

− λαk

k

∑

t

ξ
(t)
k xαk

t log xt

+ logλk

[

∑

t

ξ
(t)
k − λαk

k

∑

t

ξ
(t)
k xt

αk

]

. (4)
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Using equations (2) and (3) in (4) yields

0 =
∑

t

ξ
(t)
k log xt −







∑

t

ξ
(t)
k

∑

t

ξ
(t)
k xαk

t







∑

t

ξ
(t)
k xαk

t log xt +
1

αk

∑

t

ξ
(t)
k

⇔ 0 = αk







∑

t

ξ
(t)
k log xt

∑

t

ξ
(t)
k

−

∑

t

ξ
(t)
k xαk

t log xt

∑

t

ξ
(t)
k xαk

t






+ 1. (5)

Equation (5) has no known solution; hence it has to be solved numerically, by
the algorithm described in Forsythe et al. (1976) in the circumstances.

3. Markov decision processes

In this Section, a connection between our approach and the theory of Markov
decision processes (MDPs) is established. More specifically, the problem of de-
termining the optimal timeout period by minimizing the expected consumption
up to following request is shown to be a particular case of an MDP with a con-
tinuous action space, if the times between printings are independent random
variables. The value function with (finite) horizon 1 of the corresponding MDP
is shown to be the opposite of the expected future cost. Moreover, this MDP has
a single possible state, which explains why an explicit solution of this problem
could be derived in Proposition 1.

3.1. General principle
Markov decision processes are a class of optimization problems for controlling
the temporal evolution of an agent in a given environment characterized by a set
of states S. At each time step t, given the state St of the environment, the agent
is allowed to perform an action At chosen from a set A. The chosen action may
modify the next state St+1 of the environment, and brings a scalar reward Rt+1

to the agent. All the quantities At, St and Rt constitute a homogeneous random
process. The problem is to determine the distribution for At that maximizes
the expected future rewards given the current state St.

The process (At, St, Rt)t∈N is supposed to obey the Markov property. More-
over, under the three following assumptions:

(a) the action At+1 is independent on the past of the three processes up to
time t, and on Rt+1, given state St+1;

(b) the reward Rt+1 is independent on the past of the three processes up to
time t given the states St and St+1, and given At;
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(c) St+1 is independent on the past of the three processes up to time t given
St and At;

an MDP is totally specified by the following distributions:

• the transition probabilities Pa
ss′ = P(St+1 = s′|St = s, At = a), which

define how next state is affected by current state s and the chosen action
a;

• the policy function π(s, a) = P(At = a|St = s), which defines what action
to choose given current state s;

• the reward distribution, i.e. the distribution of Rt+1 given St = s, At = a
and St+1 = s′.

The optimization problem associated with this MDP consists in finding the
policy π : S × A → [0, 1] that maximizes the expected future rewards (under
the constraints

∑

a π(s, a) = 1 and ∀(a, s), π(a, s) ≥ 0). The future rewards
are modelled through the random variable Rt =

∑∞
k=0 γkRt+k+1, where ∀k, γk

represents the weight of the reward after k+1 time steps. The sequence (γk)k∈N

is referred to the discount sequence. The function to be maximized is called the
value function and is denoted by V π; it corresponds to the expectation of Rt

given the value s of current state. This leads to the following formal definitions:

V π(s) = E(Rt|St = s) =

∞
∑

k=0

γkE(Rt+k+1|St = s) (6)

and π̂(s, .) = arg max
π(s,.)

V π(s). (7)

The reward distribution P(Rt+1|St = s, At = a, St+1 = s′) is only involved
through its expectation Ra

ss′ = E(Rt+1|St = s, At = a, St+1 = s′); consequently,
only Ra

ss′ needs to be defined explicitly.
There are two particular cases of interest for the sequence (γk)k∈N:

• ∀k, γk = γk, where 0 ≤ γ < 1. In this case, V π(s) satisfies a fixed point
equation known as the Bellman equation. Generally, no closed form is
available for the optimal policy.

• ∀k, γk = δ0(k) =

{

1 if k = 0

0 otherwise
, where δ denotes the Kronecker symbol.

Then, it is easily shown that:

V π(s) =
∑

a

π(s, a)
∑

s′

Pa
ss′R

a
ss′ . (8)
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Lemma 4. In the case where the sequence (γk)k∈N is defined by γk = δ0(k),
the optimal policy is:

π̂(s, a′) =







1 if a′ = argmax
a

∑

s′

Ra
ss′P

a
ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where
∀k, γk = γk, the optimal policy is:

π̂(1, a′) =







1 if a′ = argmax
a

Ra
1,1

0 otherwise.

Thus, the optimal policy corresponds to a deterministic strategy. Given current

state s, the chosen action systematically is the one that maximizes
∑

s′

Ra
ss′P

a
ss′

or Ra
1,1 (depending on the sequence (γk)k∈N), with respect to a.

3.2. Connection of our approach with MDPs
In this paragraph, our approach is shown to be a particular case of MDP. The
proof is derived in the case of one single sleep mode printer for the sake of
simplicity, but can easily be extended to an arbitrary number of sleep modes.

In our context, the set of actions for the printer is the timeout period a ∈
A = R+, which corresponds to τ (1) in previous paragraphs. The decision is
taken after each print job, after which the printer is necessarily in idle mode.
Consequently, the state space is S = {idle}. In our problem, the reward is
minus the cost between two successive printings. It only depends on the time
between printings Xi and on the action a, i.e. the timeout period.

The time index i ∈ N represents the number of past printings requests.
Hence, even if the times of requests Ti take continuous values, the MDP is
essentially a discrete-time problem, where decisions are taken after each print
job only.

Let the expected reward be defined as Ra = −E(h(Xi, a)), where h is the
cost between two successive print jobs defined by equation (10) in the case of
multiple sleep modes. The transition probabilities are Pa

ss′ = 1, ∀ a, s and s′,
since the printer is always in idle state when a decision is taken.
As a consequence, from equation (8), the value function V π(s) for γk = δ0(k)
is:

V π(s) = −
∑

a

π(s, a)E(h(Xi, a)),
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and according to Lemma 4, the optimal policy is:

π(s, a′) =

{

1 if a′ = argmaxa −E(h(Xi, a)) = argmina E(h(Xi, a))

0 otherwise,

which corresponds to the optimization problem τ̂i ∈ argminτ E(h(Xi, τ)|X1:i−1),
in the case where the times between printings Xi are independent random vari-
ables.

To conclude, our approach is a degenerate case of an MDP problem with a
continuous action space and with one single state. Using the particular discount
sequence γk = δ0(k), the expected future cost coincides with the value function
of the MDP with (finite) horizon 1. Since the state space is reduced to a single
state, an explicit solution of this problem can be derived. This solution is given
in Proposition 1.

4. Proofs

Proof of Lemma 1

In view of Section 2, the consumption between two successive printings is

h(Xi, τi) = (aXi)(1 − 11{Xi>τi}) + (aτi + c+ b(Xi − τi) + d)11{Xi>τi}.

Introducing ∆t = (c+ d)/(a− b), the consumption can be rewritten as

h(Xi, τi) = aXi + (a− b)(∆t+ τi −Xi)11{Xi>τi}.

As a consequence, the expected consumption between two successive printings
given X1:i−1 is

E(h(Xi, τi)|X1:i−1) = aE(Xi|X1:i−1) + (a− b)F̄i(τi)(∆t+ τi)

− (a− b)

∫ +∞

τi

xfi(x)dx.

and the result is proved.
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Proof of Lemma 2.

The consumption h between two successive print requests is given by:

h(Xi, τ
(1)
i , . . . , τ

(m)
i ) (9)

=aXi11{Xi≤τ
(1)
i

}

+
m−1
∑

r=1

r−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

11
{τ

(r)
i

<Xi≤τ
(r+1)
i

}

+

m−1
∑

r=1

(

aτ
(1)
i + br(Xi − τ

(r)
i ) + cr + dr

)

11
{τ

(r)
i

<Xi≤τ
(r+1)
i

}

+

m−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

11
{Xi>τ

(m)
i

}

+
(

aτ
(1)
i + cm + bm(Xi − τ

(m)
i ) + dm

)

11
{Xi>τ

(m)
i

}
. (10)

Letting a = b0 yields

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= b0E
(

Xi11{Xi<τ
(1)
i

}
|X1:i−1

)

+
m−1
∑

r=1

brE
(

Xi11{τ (r)
i

<Xi≤τ
(r+1)
i

}
|X1:i−1

)

+ bmE

(

Xi11{Xi>τ
(m)
i

}
|X1:i−1

)

+

m−1
∑

r=1

P

(

τ
(r)
i < Xi ≤ τ

(r+1)
i |X1:i−1

)





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr





+ P

(

Xi > τ
(m)
i |X1:i−1

)





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm



 .

Taking account of

E

(

Xi11{τ (r)
i

<Xi≤τ
(r+1)
i

}
|X1:i−1

)

= E

(

Xi11{Xi>τ
(r)
i

}
|X1:i−1

)

− E

(

Xi11{Xi>τ
(r+1)
i

}
|X1:i−1

)

,

E

(

Xi11{Xi<τ
(1)
i

}
|X1:i−1

)

= E (Xi|X1:i−1)

− E

(

Xi11{Xi>τ
(1)
i }

|X1:i−1

)
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the expected consumption can be rewritten as

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+ b0E(Xi|X1:i−1)

+
(

1− FXi|X1:i−1
(τ

(m)
i )

)





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm





+

m−1
∑

r=1





(

Fi(τ
(r+1)
i )− Fi(τ

(r)
i )
)





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr







 .

Splitting the second right-hand term into two parts yields

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −
m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+
m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm

+ b0E(Xi|X1:i−1) +

m
∑

r=2

Fi(τ
(r)
i )





r−1
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr−1





−
m
∑

r=1

Fi(τ
(r)
i )





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr





and collecting the two last right-hand terms we obtain

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+ b0E(Xi|X1:i−1)

+





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm



− Fi(τ
(1)
i )

(

τ
(1)
i (b0 − b1) + d1

)

−

m
∑

j=2

Fi(τ
(j)
i )

(

τ
(j)
i (bj−1 − bj) + cj + dj − dj−1

)

.
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Finally, letting ∆tj = (cj + dj − dj−1)/(bj−1 − bj) with the convention d0 = 0,
we have

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+

m
∑

j=1

(τ
(j)
i +∆tj)(bj−1 − bj)

−

m
∑

j=1

(bj−1 − bj)Fi(τ
(r)
i )(τ

(j)
i −∆tj) + b0E(Xi|X1:i−1)

=

m
∑

j=1

(bj−1 − bj)

[

(

1− Fi(τ
(j)
i )
)(

∆tj + τ
(j)
i

)

−

∫ +∞

τ
(j)
i

xfi(x)dx

]

+ b0E(Xi|X1:i−1), (11)

and the conclusion follows.

Proof of Proposition 1

Differentiating the above expected consumption with respect to τi yields

dE(h(Xi, τi)|X1:i−1)

dτi
= (a− b1)F̄i(τi)(1 −∆tzi(τi)). (12)

Let us recall that a > b. Two main cases are considered:
(i) Suppose that zi is decreasing. Three situations occur:
- If 1/∆t < lim

x→+∞
zi(x), then the derivative (12) is negative, the expected con-

sumption is a stricly decreasing function of τi and thus τ̂i = +∞.
- If lim

x→+∞
zi(x) ≤ 1/∆t ≤ zi(0), then the following equation

zi(τ
(1)
i ) = 1/∆t (13)

has an unique root τi in (0,+∞) which is the unique minimum of the expected
consumption.
- Finally, if zi(0) < 1/∆t, then the derivative (12) is positive, the expected
consumption is a strictly increasing function of τi and thus τ̂i = 0.
(ii) Suppose that zi is increasing or constant. Three situations occur:
- If 1/∆t ≤ zi(0), then the derivative (12) is non-positive, the expected con-
sumption is a non-increasing function of τi and thus τ̂i = +∞.
- If zi(0) < 1/∆t < lim

x→+∞
zi(x) then equation (13) has an unique root in (0,+∞)
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and the expected consumption is a concave function of τi. As a consequence,
τ̂i = 0 if E (h(Xi, 0)|X1:i−1) < lim

x→∞
E (h(Xi, x)|X1:i−1) and τ̂i = +∞ otherwise.

Since

E (h(Xi, 0)|X1:i−1)− lim
x→∞

E (h(Xi, x)|X1:i−1) = (a− b)(∆t− E(Xi|X1:i−1)),

the conclusion follows.
- Finally, if lim

x→+∞
zi(x) ≤ 1/∆t, then the derivative (12) is non-negative, the

expected consumption is a non-decreasing function of τi and τ̂i = 0.

Proof of Proposition 1 is quite similar to that of Proposition 1, and thus is
omitted. This is also the case for Lemma 3, which proof is similar to that of
Lemma 1.

Proof of Lemma 4. In the case where γk =

{

1 if k = 0

0 else
, then

V π(s)

= E(Rt+1|St = s)

=
∑

a

π(s, a)
∑

s′

E(Rt+1|St = s, St+1 = s′, At = a)P(St+1 = s′|St = s, At = a)

=
∑

a

π(s, a)
∑

s′

Ra
ss′P

a
ss′ . (14)

The optimal policy is the policy π maximizing the value function V π:

π̂ = argmax
π

(

∑

a

π(s, a)
∑

s′

Ra
ss′P

a
ss′

)

with
∑

a

π(s, a) = 1 and π(s, a) ≥ 0 ∀(s, a).

In the case where the state space is reduced to a singleton S = {1}, and if
γk = γk ∀k, the optimal policy is, from Bellman equation (see Sutton and
Barto (1998)):

V π(1) =
∑

a

π(s, a)
∑

s′

Pa
ss′ [R

a
ss′ + γV π(s′)]

=
∑

a

π(1, a)Ra
1,1 + γV π(1)

∑

a

π(1, a)
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since S = {1} and ∀a, Pa
ss′ = 1. Remarking that

∑

a π(1, a) = 1, we have

(1 − γ)V π(1) =
∑

a

π(1, a)Ra
1,1

⇔ V π(1) =
1

(1− γ)

∑

a

π(1, a)Ra
1,1. (15)

In both equations (14) and (15), for each s, V π(s) is a linear function with
respect to π(s, a). Thus, a classical result of the optimization theory states that
the maximum of V π(s) is achieved on an endpoint of an edge of the simplex
{

π(s, a)|a ∈ R, π(s, a) ≥ 0 and
∑

a

π(s, a) = 1

}

.

As a consequence, in the case where the sequence (γk)k∈N is defined by γk =
δ0(k), the optimal policy is:

π̂(s, a′) =







1 if a′ = argmax
a

∑

s′

Ra
ss′P

a
ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where
∀k, γk = γk, the optimal policy is:

π̂(1, a′) =







1 if a′ = argmax
a

Ra
1,1

0 otherwise.
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5. Figures

Figure 1. Print Process. Process {Nt}t≥0 refers to the counting process of print re-
quests, which is defined as the cumulative number of print requests between 0 and t,
that is, Nt = max{i ∈ N;Ti ≤ t}. On the x-axis, the times of print requests Ti and the
times between requests Xi are also depicted. The three processes can be deduced
from each other.
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(a) When Xi ≤ τ
(1)
i

(b) When Xi > τ
(1)
i

Figure 2. Energy consumption between Ti−1 and Ti according to the position of Ti−1,
Ti and Ti−1 + τ

(1)
i

Figure 3. Graphical interpretation of ∆t1
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Figure 4. Histogram and fitted Weibull and Gamma pdfs for the WorkCentre 238 dataset
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Figure 5. Histogram and fitted Weibull and Gamma pdfs for the Phaser 4500 dataset
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6. Tables

Table 1. Empirical skewness and kurtosis for
the WorkCentre 238 and Phaser 4500 datasets

WorkCentre 238 Phaser 4500

Skewness 2.98 2.39

Kurtosis 14.7 9.5

Table 2. Energy consumption and mean computation time associated to the different strategies
(including variants based on filtering and full conditional distribution in HMC models).

Total consumption Standard deviation Mean computation time
(kWh ) of consumption by sample (ms )

Sample size 361 121 61 361 121 61 361 121 61

Energy Star 500 500 500 7.99 4.73 3.04 1.2e+00 1.0e+00 2.0e+00

τ
(1) = τ

(2) = 0 498 498 498 6.77 3.76 2.55 2.0e+00 1.0e+00 1.0e+00

Exhaustive search 446 446 447 6.86 4.17 2.76 6.6e+04 1.5e+05 2.7e+05

Oracle 399 399 399 7.13 4.11 2.72 2.0e+00 2.0e+00 2.0e+00

c-competitive 471 471 471 7.66 4.54 2.94 5.0e-01 1.0e+00 2.0e+00

Static 446 446 446 7.02 4.13 2.77 2.0e+01 5.0e+01 9.0e+01

Sliding window 445 445 444 7.02 4.18 2.77 5.2e+05 1.5e+05 6.6e+04

Viterbi 471 464 462 8.07 3.97 2.64 1.0e+04 4.3e+03 2.8e+03

Filtering 472 462 462 8.29 3.93 2.62 1.3e+03 1.7e+02 1.9e+02

Conditional 456 454 450 5.62 4.04 2.72 5.8e+04 5.4e+04 6.0e+04


