nitial question: State-space models with maxima? Linear autoregressive model for Gumbel maxima Simulation results and application to CH4 data Generalization of the model Current work on state-space models

Modèles de Markov cachés en théorie des valeurs extrêmes

Gwladys Toulemonde

Université Montpellier 2, France

AssimilEx-ANR

Séminaire de l'équipe LJK-Statistique, Grenoble.

09/04/2009

nitial question: State-space models with maxima? Linear autoregressive model for Gumbel maxima Simulation results and application to CH4 data Generalization of the model Current work on state-space models

Outline

- Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- 3 Simulation results and application to CH4 data
- 4 Generalization of the model
- 5 Current work on state-space models

Outline

- Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- 3 Simulation results and application to CH4 data
- 4 Generalization of the model
- 5 Current work on state-space models

Series of daily maxima of CH4 in Gif-sur-Yvette

The GEV distribution

$$X_1,...,X_n \sim F \in D(\gamma)$$

$$\lim_{n \to \infty} \mathbb{P}\left\{a_n^{-1}(\max_{1 \le i \le n} X_i - b_n) \le x\right\} = \lim_{n \to \infty} F^n(a_n x + b_n) = H_\gamma(x)$$

where

$$H_{\gamma}(x) = \left\{ \begin{array}{ll} \exp\Big(-\left(1+\gamma x\right)^{-\frac{1}{\gamma}}\Big) & \text{ with } x \text{ such that } 1+\gamma x > 0 \text{, if } \gamma \neq 0 \\ \exp\Big(-\exp(-x)\Big) & \text{ for all } x \in \mathbb{R} \text{, if } \gamma = 0 \end{array} \right.$$

Domain of attraction

$$\left\{ \begin{array}{ll} \gamma>0 & \text{ Fr\'echet, heavy-tailed, } 1-F(x)=x^{-\frac{1}{\gamma}}\ell_F(x), \\ \\ \gamma=0 & \text{ Gumbel, light-tailed,} \\ \\ \gamma<0 & \text{ Weibull, finite endpoint } \tau_F\text{, } 1-F(x)=(\tau_F-x)^{-\frac{1}{\gamma}}\ell_F((\tau_F-x)^{-1}). \end{array} \right.$$

A function $\ell:(0,\infty)\to(0,\infty)$ is called slowly varying if for all t>0

$$\lim_{x \to \infty} \frac{\ell(tx)}{\ell(x)} = 1.$$

Fig. 1: Generalized Extreme Value Distributions

Distribution	1-F(x)	γ
$\boxed{ Burr(\beta,\tau,\lambda),\beta>0,\tau>0,\lambda>0}$	$\left(\frac{\beta}{\beta + x^{\tau}}\right)^{\lambda}$	$\frac{1}{\lambda \tau}$
$Fr\'echet\big(\tfrac{1}{\alpha}\big),\ \alpha>0$	$1 - \exp(-x^{-\alpha})$	$\frac{1}{\alpha}$
$Pareto(\alpha),\ \alpha>0$	$x^{-\alpha}$	$\frac{1}{\alpha}$
$Gumbel(\mu,\sigma),\mu\in\mathbb{R},\sigma>0$	$1 - \exp\left(-\exp\left(-\frac{x-\mu}{\sigma}\right)\right)$	0
Logistique	$\frac{2}{1+\exp(x)}$	0
$Exp(\lambda),\lambda>0$	$\exp(-\lambda x)$	0
$\boxed{ \mbox{ReverseBurr}(\beta,\tau,\lambda,\tau_F), \ \beta>0, \ \tau>0, \ \lambda>0 }$	$\left(\frac{\beta}{\beta + (\tau_F - x)^{-\tau}}\right)^{\lambda}$	$-\frac{1}{\lambda \tau}$
Uniforme(a,b)	$1 - \frac{x-a}{b-a}$	-1

TAB. 1: Some distributions with their associated index

Max-stability

•The max-stable distributions coincide with the extreme value distributions.

Definitions

i) Let $Y_1,Y_2...$ be iid copies of Y with distribution function G. If for every positive integer k there exist $c_k>0$ and d_k such that $\max(Y_1,\ldots,Y_k)\stackrel{d}{=} c_kY+d_k$ then G is max-stable.

$$\iff$$

ii) If for every positive integer k, we can find $c_k>0$ and d_k such that $G^k(c_kx+d_k)=G(x)$ then G is called max-stable.

Fig. 2: Gumbel QQplot (on the left) and scatter plot of successive values, i.e. (X_t, X_{t+1}) (on the right) corresponding to the daily maxima of CH4.

State-space models

Our objective: Propose state-space models that preserve the nature of maxima distributions.

Classical state-space models :

$$Y_t = F_t(X_t, \varepsilon_t)$$
 (observation equation)
 $X_t = G_t(X_{t-1}, \eta_t)$ (state equation)

where we suppose independence between and within noises ε_t and η_t .

Classical extra assumptions:

- Gaussian noises
- Linearity for the observation and state equations

If a record occurs in Y_t , then one expects Y_t to be a GEV. The problem is that a GEV distribution cannot be retrieved through a Gaussian additive state-space model.

A max-stable state-space model

Max-stable processes: Davis and Resnick (1989)

Naveau and Poncet (2007) introduced the following max-stable state-space model

$$Y_t = F_t X_t \vee \varepsilon_t$$
$$X_t = G_t X_{t-1} \vee \eta_t$$

where ε_t and η_t correspond to Frechet noises.

They proposed lower and upper bounds for X_t .

Morales' state-space model (2005)

$$Y_t = \mu + \sigma \frac{X_t^{\gamma} - 1}{\gamma} + \varepsilon_t$$
$$X_t = [\beta \eta_t] \vee [(1 - \beta) \eta_{t-1}]$$

where $a \vee b = \max(a, b)$, η_t unit Fréchet iid r.v. and ε_t Gaussian noise.

Note that
$$\mu + \sigma \frac{X_t^{\gamma} - 1}{\gamma}$$
 is $\mathsf{GEV}(\mu, \sigma, \gamma).$

Use of α -stable variables

- A random variable S is said to be (α)-stable if and only if for all k>1 there exist $c_k>0$ and d_k such that $S_1+\ldots+S_k\stackrel{d}{=}c_kS+d_k$ where $S_1,S_2...$ are iid copies of S.
- Examples and special cases where one can write down explicit expressions for the density: Gaussian, Cauchy, Levy distributions.

A key linear relationship

$$\mathsf{Gumbel}(\mu_1 + \mu_2, \sigma/\alpha) = \mu_2 + \sigma \log S + \mathsf{Gumbel}(\mu_1, \sigma)$$

where $\operatorname{Gumbel}(\mu_1, \sigma)$ denotes a Gumbel r.v. which is independent of S that is a positive α -stable r.v. ($\alpha \in (0,1]$) with Laplace transform

$$\mathbb{E}(\exp(-uS)) = \exp(-u^{\alpha})$$
, for all $u > 0$.

Fougères et al. (2009): If

$$Y_t = F_t \log \left(\sum_{a \in A} c_{t,a} S_a \right) + \varepsilon_t$$
, with $t = 1, \dots, T$,

where $c_{t,a} \geq 0$, where $\{S_a, a \in A\}$ are independent positive α -stable variables and where ε_t follows an iid $\operatorname{Gumbel}(\mu_t, F_t)$, all these variables being mutually independent, then

$$\mathbb{P}(Y_1 \le x_1, \dots, Y_T \le x_T) = \prod_{a \in A} \exp\left(-\left(\sum_{t \in T} c_{t,a} e^{-\frac{x_t - \mu_t}{F_t}}\right)^{\alpha}\right).$$

Gumbel state-space model

•Naveau and Poncet (2007) proposed the following Gumbel state-space model :

$$Y_t = F_t \log U_t + \varepsilon_t$$
$$U_t = G_t U_{t-1} + S_t$$

where ε_t corresponds to an iid Gumbel noise and where S_t represents an iid positive α -stable noise.

This implies

$$Y_t = F_t \log \left(\sum_{i=0}^{\infty} c_{t,i} S_{t-i} \right) + \varepsilon_t$$

where $c_{t,i}=0$ for $i\geq t$, $c_{t,i}=1$ for i=0 and $c_{t,i}=\prod_{j=0}^{i-1}G_{t-j}$ otherwise.

 $\bullet Y_t$ are Gumbel distributed and the state-space model is linear!

State-space models

Our objective : Propose linear state-space models that preserve the nature of maxima distributions.

Classical linear state-space models :

$$Y_t = F_t X_t + \varepsilon_t$$
$$X_t = G_t X_{t-1} + n_t$$

where we suppose independence between and within noises ε_t and η_t .

A key linear relationship

$$\mathsf{Gumbel}(\mu_1 + \mu_2, \sigma/\alpha) = \mu_2 + \sigma \log S + \mathsf{Gumbel}(\mu_1, \sigma)$$

where $\operatorname{Gumbel}(\mu_1, \sigma)$ denotes a Gumbel r.v. which is independent of S that is a positive α -stable ($\alpha \in (0, 1]$) with Laplace transform

$$\mathbb{E}(\exp(-uS)) = \exp(-u^{\alpha})$$
, for all $u > 0$.

nitial question: State-space models with maxima?

Linear autoregressive model for Gumbel maxima
Simulation results and application to CH4 data
Generalization of the model
Current work on state-space models

Outline

- 1 Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- 3 Simulation results and application to CH4 data
- Generalization of the model
- 5 Current work on state-space models

Gumbel linear model

Result (1)

Let $\{X_t, t \in \mathbb{Z}\}$ be a stochastic process defined by the recurrence relation

$$X_t = \alpha X_{t-1} + \alpha \sigma \log S_t \tag{1}$$

where $\sigma \in \mathbb{R}^+_*$.

Equation (1) has a unique strictly stationary solution,

$$X_t = \sigma \sum_{j=0}^{\infty} \alpha^{j+1} \log S_{t-j}$$
 (2)

and X_t follows a Gumbel $(0, \sigma)$ distribution, $\forall t \in \mathbb{Z}$.

FIG. 3: Simulated time series X_t from proposed model, with $t=1,\ldots,200.$ We set $\sigma=2.$

FIG. 4: Scatter plots of successive values, i.e. X_t versus X_{t+1} from the three simulated time series of the previous figure

Covariance
$$\mathbb{C}ov(X_t, X_{t-h}) = \mathbb{V}ar(X_0)\alpha^{|h|}$$

Estimators of the three unknown parameters

Natural estimators of μ and σ based on the method of moments are

$$\widehat{\mu} = \overline{X} - \frac{\delta\sqrt{6}s}{\pi}$$

$$\widehat{\sigma} = \frac{\sqrt{6}s}{\pi}$$

where $\overline{X} = \frac{1}{T} \sum_{t=1}^T X_t$, $s^2 = \frac{1}{T} \sum_{t=1}^T (X_t - \overline{X})^2$ and where δ is the Euler's constant.

An estimator for α could be the following

$$\widehat{\alpha} = \frac{\frac{1}{T} \sum_{t=1}^{T-1} (X_t - \overline{X})(X_{t+1} - \overline{X})}{s^2}.$$

Asymptotic behavior of the three estimators

Result (2)

The estimators of the three parameters μ , σ and α are consistent (a.s.).

Result (3)

$$\sqrt{T} \begin{pmatrix} \widehat{\mu} - \mu \\ \widehat{\sigma} - \sigma \\ \widehat{\alpha} - \alpha \end{pmatrix}$$

is asymptotically normal with null expectation and covariance matrix defined as follows

$$\begin{pmatrix} \frac{\pi^2 \sigma^2}{6} \frac{1+\alpha}{1-\alpha} - \frac{12\delta \sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} + \frac{11\delta^2 \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} & \frac{6\sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} - \frac{11\delta \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} & -\alpha\sigma\delta \\ \frac{6\sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} - \frac{11\delta \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} & \frac{11\sigma^2(1+\alpha^2)}{10(1-\alpha^2)} & \alpha\sigma \\ -\alpha\sigma\delta & \alpha\sigma & 1-\alpha^2 \end{pmatrix}$$

Sketch of the proof (1/2)

$$\begin{split} Z_t &= \sum_{j=0}^\infty \sigma \alpha^{j+1} \varepsilon_{t-j} = X_t - \delta \sigma \text{ with } \alpha \in (0,1) \\ \varepsilon_t &= \log S_t - \frac{\delta}{\alpha} (1-\alpha) \stackrel{iid}{\sim} (0,\sigma_\varepsilon^2) \text{ with } \sigma_\varepsilon^2 = (\pi^2/6) \times (1/\alpha^2 - 1). \end{split}$$

Lemma

Let
$$\mathbf{W_t} = (Z_t, Z_t^2 - \mathbb{E}Z_t^2, Z_t Z_{t+1} - \mathbb{E}Z_t Z_{t+1})'$$
.

The random vector $T^{-1/2} \sum_{t=1}^{T} \mathbf{W_t}$ converges to a normal distribution with mean vector equal to $\mathbf{0}$ and covariance matrix $\Sigma_{\mathbf{Z}}$.

Sketch of the proof (2/2)

We define the truncated sequence as follows

$$\begin{aligned} \mathbf{W_{m,t}} &= (Z_{m,t}\,,\,Z_{m,t}^2 - \mathbb{E}Z_{m,t}^2\,,\,Z_{m,t}Z_{m,t+1} - \mathbb{E}Z_{m,t}Z_{m,t+1})^{'} \text{ where } \\ Z_{m,t} &= \sum_{j=0}^{m} \sigma \alpha^{j+1} \varepsilon_{t-j}. \end{aligned}$$

 \bullet $\,$ We prove first the asymptotic normality of $T^{-1/2}\sum_{t=1}^{T}\mathbf{W_{m,t}}$

$$T^{-1/2} \sum_{t=1}^{T} \mathbf{W_{m,t}} \stackrel{d}{\to} \Lambda_m \text{ with } \Lambda_m \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{Z_m}}).$$

• Then we let m tend to infinity. Since $\Lambda_m \stackrel{d}{\to} \Lambda$ as m tends to infinity with $\Lambda \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{Z}})$ and

$$\lim_{m \to \infty} \limsup_{T \to \infty} \mathbb{P}\left(\sqrt{T} \left| \frac{1}{T} \sum_{t=1}^{T} \mathbf{W_{m,t}} - \frac{1}{T} \sum_{t=1}^{T} \mathbf{W_{t}} \right| > \varepsilon\right) = 0.$$

We conclude

$$T^{-1/2} \sum_{\mathbf{z}=1}^{T} \mathbf{W_t} \stackrel{d}{\to} \Lambda \text{ with } \Lambda \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma_z}).$$

Joint distribution of the vector
$$\mathbf{X_h} = (X_t, \dots, X_{t-h})^t$$
, $h > 0$

Result (4)

The characteristic function of $\mathbf{X_h} = (X_t, \dots, X_{t-h})^t$, h > 0, noted $\mathbb{E}\left(e^{i < u, \mathbf{X_h} > 0}\right)$ is

$$\Gamma\left(1 - i\sigma\sum_{j=0}^{h} u_j \alpha^{h-j}\right) \prod_{j=0}^{h-1} \frac{\Gamma\left(1 - i\sigma\sum_{k=0}^{j} u_k \alpha^{j-k}\right)}{\Gamma\left(1 - i\sigma\sum_{k=0}^{j} u_k \alpha^{j-k+1}\right)}.$$

Asymptotic dependence parameters

Result (5)

ullet The upper tail dependence parameter χ defined as follows

$$\chi = \lim_{x \to \infty} \frac{\mathbb{P}(X_{t-1} > x \text{ and } X_t > x)}{\mathbb{P}(X_{t-1} > x)}$$

is equal to zero (asymptotic independence).

• The dependence parameter $\overline{\chi}$ defined as follows

$$\overline{\chi} = \lim_{x \to \infty} \frac{2 \log \mathbb{P}(X_{t-1} > x)}{\log \mathbb{P}(X_{t-1} > x, X_t > x)} - 1$$

provides a measure which increases with the dependence strength and which is equal to $\alpha/(2-\alpha) \in (0,1)$.

Sketch of the proof

•
$$\mathbb{P}(X_{t-1} > x, X_t > x)$$

$$= \mathbb{P}(X_{t-1} > x, \alpha X_{t-1} + \alpha \sigma \log S_t > x)$$

$$= \int_x^{\infty} \mathbb{P}\left(\log S_t > \frac{1}{\alpha \sigma} (x - \alpha y) \mid X_{t-1} = y\right) dH(y)$$

$$= \int_x^{\infty} \mathbb{P}\left(S_t > \exp\left(\frac{1}{\alpha \sigma} (x - \alpha y)\right)\right) dH(y)$$

$$= \exp\left(-\frac{x}{\alpha \sigma}\right) \int_0^{\infty} \exp\left(-u \exp\left(-\frac{x}{\alpha \sigma}\right)\right) \mathbb{1}_{0 \le u \le e^{\frac{x}{\alpha \sigma}(1-\alpha)}} \mathbb{P}(S_t > u) du.$$

•
$$\mathbb{P}(X_{t-1} > x) \stackrel{x \to \infty}{\sim} \exp\left(-\frac{x}{\sigma}\right)$$
.

•
$$\chi = \lim_{x \to \infty} \int_0^1 \exp\left(-\omega \exp\left(-\frac{x}{\sigma}\right)\right) \mathbb{P}\left(S_t > \omega e^{\frac{x}{\alpha\sigma}(1-\alpha)}\right) d\omega.$$

Outline

- 1 Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- 3 Simulation results and application to CH4 data
- Generalization of the model
- 5 Current work on state-space models

Simulations

- 1000 samples
- Sample sizes $n = 50, 100, \dots, 1000$
- $\bullet \ \alpha \in \{0.2, 0.5, 0.8\}$
- $\mu = 0$ and $\sigma = 2$
- For each parameter we compute the mean of the estimations and also the first and the third quartiles

Finite sample behavior of the estimators of μ and σ

FIG. 5: Mean (black line), first and third quartiles (green lines) for different sample sizes in the abscissa $n \in \{50, 100, \dots, 1000\}$.

Daily maxima of CH4

FIG. 6: Series of daily maxima of CH4 in Gif-sur-Yvette.

Fig. 7: Gumbel QQplot (on the left) and scatter plot of successive values, i.e. (X_t, X_{t+1}) (on the right) corresponding to the daily maxima of CH4.

One-step prediction (1/2)

We compute an estimation of $X_t|X_{t-1}=x_{t-1}$, $t=1,\ldots,T-1$

according to the proposed Gumbel model

$$X_t = \alpha X_{t-1} + \alpha \sigma \log S_t$$

according to the classical Gaussian model

$$X_t = \alpha X_{t-1} + \varepsilon_t$$

We compare these white histograms with the shaded areas which are the histograms of our daily maxima of CH4.

Daily maxima of CH4

 $F_{\rm IG.}$ 8: Histograms of CH4 daily maxima previsions according to Gumbel model (on the left) and Gaussian model (on the right). The shaded histograms represent CH4 daily maxima.

One-step prediction (2/2)

- We compute the estimators of the three parameters on a first period, here from 2002 to the middle of 2006.
- For the second part of 2006, we compute 1000 $\hat{X}_{t+1} = \hat{\alpha} x_t + \hat{\alpha} \hat{\sigma} \log S_{t+1}$ with x_t the observed value at time t and S_{t+1} a positive $\hat{\alpha}$ -stable random variable.
- We deduce the empirical quartiles of the distribution of $\widehat{X}_{t+1}|X_t=x_t$.

Daily maxima of CH4

 ${
m Fig.}$ 9: Validation of the one-step previsions of methane daily maxima on the second part of the year 2006.

nitial question: State-space models with maxima? Linear autoregressive model for Gumbel maxima Simulation results and application to CH4 data Generalization of the models Current work on state-space models

Outline

- 1 Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- Simulation results and application to CH4 data
- Generalization of the model
- Current work on state-space models

Extension to Gumbel ARMA models

Gumbel AR model

Let $S_{t,\alpha}$ be iid positive α -stable variables and let

$$X_t = \alpha X_{t-1} + \alpha \sigma \log S_{t,\alpha}.$$

 X_t is Gumbel $(0, \sigma)$ distributed for any t > 0.

Gumbel ARMA model

Let S_{t,α_1} and S_{t,α_2} be independent sequences of iid positive α_i -stable variables with i=1,2 and let

$$X_t = \alpha_1 \alpha_2 X_{t-1} + \alpha_1 \alpha_2 \sigma \log S_{t,\alpha_1} + \alpha_2 \sigma \log S_{t-1,\alpha_2}.$$

 X_t is Gumbel $(0, \sigma)$ distributed for any t > 0.

Generalization to the GEV distribution

Let E be a r.v. from a $\mathsf{GEV}(\mu, \sigma, \gamma)$.

- If $\gamma < 0$ then $-\log(\mu \sigma/\gamma E) \sim \text{Gumbel}(\log(-\gamma/\sigma), -\gamma)$.
- If $\gamma > 0$ then $\log(E \mu + \sigma/\gamma) \sim \text{Gumbel}(\log(\sigma/\gamma), \gamma)$.

Result (6)

The following equation

$$X_{t} = \mu - \frac{\sigma}{\gamma} + \left(X_{t-1} - \mu + \frac{\sigma}{\gamma}\right)^{\alpha} \times S_{t}^{\alpha\gamma} \times \left(\frac{\sigma}{\gamma}\right)^{1-\alpha}$$

where $(\mu, \sigma, \gamma) \in \mathbb{R} \times \mathbb{R}^+_* \times \mathbb{R}_*$ has a unique strictly stationary solution given by

$$X_t = \mu - \frac{\sigma}{\gamma} + \frac{\sigma}{\gamma} \prod_{j=0}^{\infty} (S_{t-j})^{\gamma \alpha^{j+1}}$$

and X_t follows a $GEV(\mu, \sigma, \gamma)$ distribution, $\forall t \in \mathbb{Z}$.

nitial question: State-space models with maxima? Linear autoregressive model for Gumbel maxima Simulation results and application to CH4 data Generalization of the model Current work on state-space models

Outline

- 1 Initial question : State-space models with maxima?
- 2 Linear autoregressive model for Gumbel maxima
- Simulation results and application to CH4 data
- Generalization of the model
- 5 Current work on state-space models

Current work

Gumbel state-space model

$$\begin{array}{ll} Y_t &= \mu_t + H_t(X_t + \sigma \log S_{t,\alpha_2}) & \text{(observational equation)} \\ X_t &= \alpha_1 X_{t-1} + \alpha_1 \sigma \log S_{t,\alpha_1} & \text{(state equation)} \end{array}$$

with S_{t,α_1} and S_{t,α_2} two independent positive α_1 and α_2 -stable noises.

Therefore, for all t, X_t follows a Gumbel $(0, \sigma)$ distribution and Y_t follows a Gumbel $(\mu_t, H_t \frac{\sigma}{\sigma_2})$ distribution.

- Additive model, X_t and Y_t are both Gumbel
- G_t has to be equal to $\alpha_1 \in (0,1)$ and Y_t has a specific form.

Current work

This model can be rewritten as

$$egin{array}{ll} Y_t &=
u_t + H_t Z_t + \eta_{t, lpha_2} & ext{(observational equation)} \ Z_t &= lpha_1 Z_{t-1} + arepsilon_{t, lpha_1} & ext{(state equation)} \end{array}$$

with

$$\begin{split} Z_t &= X_t - (\delta\sigma) \\ \nu_t &= \mu_t + H_t \left(\mu + \frac{\delta\sigma}{\alpha_2} \right) \\ \varepsilon_{t,\alpha_1} &= \alpha_1 \sigma \log S_{t,\alpha_1} - \delta\sigma (1 - \alpha_1) \stackrel{iid}{\sim} ExpS_{\alpha_1} \left(0, \frac{\sigma^2 \pi^2}{6} (1 - \alpha_1^2) \right) \\ \eta_{t,\alpha_2} &= H_t \sigma \log S_{t,\alpha_2} - H_t \frac{\delta\sigma}{\alpha_2} (1 - \alpha_2) \stackrel{iid}{\sim} ExpS_{\alpha_2} \left(0, \frac{H_t^2 \sigma^2 \pi^2}{6\alpha_2^2} (1 - \alpha_2^2) \right) \end{split}$$

• Distribution of $Z_t|Y_1,\ldots,Y_t$?

Thank you for your attention!

- Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular variation; Cambridge University Press, Cambridge.
- Brockwell, P.J., Davis, R.A., 1987. Time series: theory and methods; Springer Series in Statistics, Springer-Verlag, New York.
- Davis, R.A., Resnick, S.I., 1989. Basic properties and prediction of Max-Arma Processes. Adv. Appl. Prob., 21, 781-803.
- Doucet, A., de Freitas, N., Gordon, N., 2001. Sequential Monte Carlo methods in practice;
 Springer-Verlag, New York.
- Fougères, A.L., Nolan, J.P., Rootzén, H, 2009. Mixture models for extremes, Scand. J. Statist., 36, 42-59.
- Joe, H., 1993. Parametric families of multivariate distributions with given margins. J. Multivariate Anal., 46, 262-282.
- Morales, F.,C., 2005. Estimation of Max-Stable Processes Using Monte Carlo Methods with Applications to Financial Risk Assessment. Ph.D. Dissertation.
- Naveau, P., Poncet, P., 2007. State-space models for maxima precipitation. Journal de la Société française de statistique, 148, 107-120.
- Samorodnitsky, G., Taqqu, M.S., 1994. Stable non-Gaussian random processes, Chapman & Hall. New York.
- Toulemonde, G., Guillou, A., Naveau, P., Vrac, M., Chevallier, F., 2009. Autoregressive models for maxima and their applications to CH4 and N2O, *Environmetrics*, in press.
- Zolotarev, V.M., 1986. One-Dimensional Stable Distributions. American Mathematical Society Translations of Mathematical Monographs, Vol. 65. American Mathematical Society, Providence, RI. Translation of the original 1983 (in Russian).