Machine Learning to Predict Protein—Protein Interactions

Sergei Grudinin, 24 Apr 2012

Protein Structure

images are courtesy of Uppsala Universitet, Sweden, http://www.uu.se

Protein Structure

- Protein folding (prediction of protein tertiary structure)
 - works very well if there are homologous structures available
 - many web-servers available
 - CASP competitions
- Protein docking (prediction of protein quaternary structure)
 - currently much less mature
 - CAPRI competitions

images are courtesy of Uppsala Universitet, Sweden, http://www.uu.se

Types of Interactions

Bond vibration

Angle vibration

Torsion potentials

van der Waals interactions

Electrostatics

Typical Shape of a Force Field

$$U = \sum_{\text{bonds}} \frac{1}{2} k_{ij}^{b} \left(r_{ij} - r_{ij}^{0} \right)^{2}$$

$$+ \sum_{\text{angles}} \frac{1}{2} k_{ijk}^{\theta} \left(\theta_{ijk} - \theta_{ijk}^{0} \right)^{2}$$

$$+ \sum_{\text{torsions}} \left(\sum_{n} k_{\theta} \left[1 + \cos(n\phi - \phi^{0}) \right] \right)^{2}$$

$$+ \sum_{\text{impropers}} k_{\xi} \left(\xi_{ijkl} - \xi_{ijkl}^{0} \right)^{2}$$

$$+ \sum_{i,j} \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}}$$

$$+ \sum_{i,j} 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)^{2}$$

Sampling: Bottom-Up approach

Remember: all quantities we care about are averages in phase space:

- · Integral over momenta may be evaluated analytically
- · The difficult problem is the computation of the average of $F(r^N)$

Typically we use MD or MC

Sampling: Bottom-Up approach

 \bullet $\;$ Binding free energy $W(r^6)\;$ can be then evaluated as:

$$\exp^{-\beta W(r^6)} \sim \int \mathrm{d}x^{N-6} \exp^{-\beta U(r^N)} / Z$$

ullet Then, the minimum value of $W(r^6)$ will correspond to the native complex

Problems

- Number of degrees of freedom (DOF) in a protein $N \sim 10,000$.
- We have to include solvation with DOF ~ 100,000.
- Long-range interactions, each atom feels each other atom.
- Extremely computationally expensive. Might take years on a supercomputer.

- Standard forcefields are very limited. They do not work for systems with polarization (ion channels) and in reactive centers.
- Forcefields errors accumulate in big systems.
- Forcefields exist only for a limited number of molecules.
- Small molecules must be parametrized separately.

Possible Solution: Rigid-Body Docking

Rigid-Body Docking

Find the minimum of potential function as fast as possible

$$E=\int \phi(\underline{r})
ho(\underline{r})\mathrm{d}V$$

For 2 proteins

$$\phi(\underline{r}) = \phi_A(\underline{r}) + \phi_B(\underline{r})$$
$$\rho(\underline{r}) = \rho_A(\underline{r}) + \rho_B(\underline{r})$$

Therefore,

$$E = \int (\phi_A(\underline{r})\rho_B(\underline{r}) + \phi_B(\underline{r})\rho_A(\underline{r}))dV$$

- In the rigid body approximation we have 6 DOFs
- For middle—size proteins we need about 30 points in each direction
- Complexity will be $\sim 10^9$ of such integrals
- Modern algorithms simultaneously treat several such terms

from Dave Ritchie's presentations, INRIA Nancy, http://loria.fr/~ritchied

FFT in Cartesian System

$$f_{A_{l,m,n}} = \begin{cases} 1 : & \text{surface of molecule} \\ \rho : & \text{core of molecule} \\ 0 : & \text{open space} \end{cases}$$

$$f_{B_{l,m,n}} = \begin{cases} 1 & : & \text{inside molecule} \\ 0 & : & \text{open space} \end{cases}$$

$$f_{C_{\alpha,\beta,\gamma}} = \sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} f_{A_{l,m,n}} \times f_{B_{l+\alpha,m+\beta,n+\gamma}}$$

 α , β , γ - shift vectors of A relative to B

N - number of points in each direction

$$F_A = DFT(f_A)$$

$$F_B = DFT(f_B)$$

$$F_C = (F_A^*)(F_B)$$

$$f_C = IFT(F_C)$$

- for each orientation of B we need $O(N^6)$ computations of correlation using the direct method
- or $O(N^3 \log N^3)$ using FFT

from Henry A. Gabb, Richard M. Jackson and Michael J. E. Sternberg, J. Mol. Biol. (1997) 272, 106-120

Our Approach

HermiteSpace

Hermite -FourierSpace

Problems

- Potential function is too simple and in many cases unrealistic.
- 6 DOFs are obviously not sufficient.
- We often start predictions with protein structures in their bound conformations. However, upon binding they adopt different, "unbound" states.

Knowledge-Based Protein Docking: Top-Down Approach

Protein Docking

How to find **Binding Free Energy** of a protein complex?

- have to make several assumptions

Assumptions I: Interface

Binding energy
 depends only on the
 interface between the
 proteins within a
 certain cutoff distance

Assumptions II: Atom Types

 Protein molecule is represented by a set of M discrete interaction sites that are located at the sites of the atomic nuclei

- Protein Folding individual types for all atoms
- Protein Docking a set of types, about
 20

Assumptions III:

$$F(n(r)) \equiv F(n_{11}(r), ..., n_{kl}(r), ..., n_{MM}(r)) = \sum_{k=1}^{M} \sum_{l=k}^{M} \int_{0}^{r_{max}} n_{kl}(r) U_{kl}(r) dr$$

- **Binding energy** F depends only on the distributions $n_{kl}(r)$ of distances between the interaction sites (the number of site pairs at a certain distance)
- **Binding energy** F is a linear functional

Given a set of $n_{kl}(r)$ and constants $U_{kl}(r)$ we can find the binding free energy F(n(r))!

METHOD

Knowledge-base

Native: 850 nonhomologues complexes from PDB

 Non-native: generated by rolling one over another

Non-native: generated using NMA

How do we compute $U_{kl}(r)$?

Expand $U_{kl}(r)$ and $n_{kl}(r)$ in an orthogonal basis

• Compute distance distributions $n_{kl}(r)$ for native and nonnative structures

 Find energy expansion coefficients W by solving convex quadratic problem with about 10⁵ - 10⁶ linear constraints

minimize:
$$\frac{\mathbf{w} \cdot \mathbf{w}}{2} + \sum_{i=0}^{m} C_{ij} \xi_{ij}$$
subject to:
$$y_{ij} \left[\mathbf{w} \cdot \mathbf{x}_{ij} + b \right] - 1 + \xi_{ij} \ge 0$$
$$\xi_{ij} \ge 0$$

Algorithm

Potentials $U_{kl}(r)$

aliphatic carbons - Ca carbons amide nitrogens - oxygens

N+ - O-

CAPRI Blind Predictions

Prediction of the complex of HA with the designed protein HB36

Baker's group

Validation

Rosetta Unbound Benchmark

- Training set of 850 complexes is predicted with 100% accuracy
- Top I predictions on Standard Benchmarks (1000 complexes of different qualities, contact side chains rebuilt)
 - Rosetta Unbound 83%
 - Rosetta Bound 89%

PDB	Quality	Rank	PDB	Quality	Rank
1A0O	3	1	1MAH	2	1
1ACB	2	1	1MDA	2	2
1AHW	3	1	1MEL	2	1
1ATN	1	1	1MLC	3	1
1AVW	2	1	1NCA	1	1
1AVZ	-	>10	1NMB	1	1
1BQL	3	1	1PPE	1	1
1BRC	2	1	1QFU	1	1
1BRS	3	1	1SPB	1	1
1BTH	3	1	1STF	1	1
1BVK	3	1	1TAB	2	1
1CGI	3	3	1TGS	3	1
1CHO	1	1	1UDI	2	1
1CSE	2	1	1UGH	2	1
1DFJ	2	1	1WEJ	3	2
1DQJ	3	1	1WQ1	2	1
1EFU	-	>10	2BTF	1	1
1EO8	3	1	2JEL	2	1
1FBI	3	1	2KAI	3	7
1FIN	-	>10	2PCC	3	1
1FQ1	3	4	2PTC	2	1
1FSS	2	1	2SIC	1	1
1GLA	2	1	2SNI	2	1
1GOT	3	1	2TEC	1	1
1IAI	2	1	2VIR	2	1
1IGC	3	1	3HHR	3	1
1JHL	3	4	4HTC	2	1
Top1	ITScore	59.3%	RosettaDock 66.7%	Us 83	3.3%

CAPRI Assessment, 2010–2012 http://web.mit.edu/sheny/capri.html

	ilup.//web.iiiiu.edu/siieiiy/capii.iiuiii														
Rank	Group	T46	T47 (Water- mediated interactions)	T48	T48 (Trimer)	T49	T49 (Trimer)	T50	T51.1	T51.2	T51.3	T52 (Not assesse d)	T53	T54	Summary: #Targets / *** + ** + *
	Bonvin	*	**		*		*	**	*				**		7 / 3 ** + 4 *
2	Shen		*	**	**	**	**	*				i i	**	*	6/3**+3*
3	Bates		**	*		*		*		*			*		6 / 1 ** + 5 *
4	Vajda		**		**		*	**					***		5 / 1 *** + 3 ** + 1 *
5	Eisenstein		**		**	*	*	**					*		5/3**+2*
6	Fernandez-Recio		*		*		*	**					**		5 / 2 ** + 3 *
6	Zacharias		***		*		*	*					*		5 / 1 *** + 4 *
8	Vakser		**	*	*	*	*	*						*	5 / 1 ** + 4 *
9	ClusPro				**		*	**					**		4 / 3 ** + 1 *
9	Zou		***	**	*	*	*	*							4 / 1 *** + 1 ** + 2 *
11	Nakamura		***						*				*	*	4 / 1 *** + 3 *
12	Weng		*			*	*	*					**		4 / 1 ** + 3 *
13	Grudinin	_	**	_	_	_	_	**					*		3/2** + 1 *
14	HADDOCK	*	**				*								3 / 1 ** + 2 *
14	PIE/DOCK				*		*	**							3 / 1 ** + 2 *
14	Wolfson		*	*	**	*	*								3 / 1 ** + 2 *
17	Zhou		*	*	*		*								3/3*
18	Seok		**										**		2 / 2 **
19	Elber				*			**				<u> </u>		<u> </u>	2 / 1 ** + 1 *
19	Fernandez-Fuentes							**					*		2 / 1 ** + 1 *
19	Gray		**										*	<u> </u>	2 / 1 ** + 1 *
22	SwarmDock											<u> </u>	*	*	2/2*
23	Camacho							**							1 / 1 **
23	Cui			*	**									<u> </u>	1 / 1 **
23	LZerD												**		1 / 1 **
23	Ritchie		**												1 / 1 **
23	Ten Eyck											<u> </u>	**	<u> </u>	1 / 1 **
23	Wang		**											<u> </u>	1 / 1 **
29	Luethy							*							1/1*
29	Pal							*							1/1*
29	Poupon												*		1/1*
29	SurFit												*		1/1*
29	Zhang												*		1/1*
34	About 24 Others														0/0*

Problems

Protein flexibility must be taken into account

Collective motions with Normal Modes

• Sidechain flexibility must be taken into account

Rotamers optimization

Predicting Positions of Water Around a Protein

Assumptions:

$$F(n(r)) \equiv F(n^{1}(r), ..., n^{M}(r)) = \sum_{k=1}^{M} \int_{0}^{r_{max}} n^{k}(r)U^{k}(r) dr,$$

- Solvation free energy F depends only on the n^k distributions of distances between the interaction sites (the number of site pairs at a certain distance)
- Solvation free energy
 F is a linear functional

Given a set of $n^k(r)$ and constants $U^k(r)$ we can find the solvation free energy F(n(r)) !

RESULTS

Potentials $U^k(r)$

Minimization with a KB-Potential

Set without native structures	Top1 (q = 1,2,3)	Top10 (q = 1,2)	Top1Q1*	Top10Q1*		
Before minimization	422 (52.88%)	502 (62.90%)	351 (77.31%)	417 (91.85%)		
After minimization	652 (81.70%)	679 (85.09%)	611 (95.17%)	639 (99.53%)		

Set without native and near-native structures	Top1 (q = 1,2,3)	Top10 (q = 1,2)	Top1Q1*	Top10Q1*	
Before minimization	248 (31.07%)	311 (38.97%)	171 (76.00%)	204 (90.67%)	
After minimization	563 (70.55%)	593 (74.31%)	504 (95.64%)	525 (99.62%)	

Flexibility

- Combination with internal-angle mechanics
- CG orientation-dependent potential
- QP optimization

Angular-dependent KB-potential

- Halogen-bonds
- Hydrogen-bonds
- Aromatic interactions
- Accepted for the INRIA International Internship Program

Protein-Ligand Interactions

- Pairwise-additive KB function
- ~ 50 atom types
- QP optimization
- Bachelor project of a MIPT student
- Currently tested

Open Problems

- We have A with N₁ conformations and B with N₂ conformations
- All states of A and all states of B are accessible
- Then, partition function is given by

$$Z = \sum_{k} \exp^{-\mathbf{x_k} \circ \mathbf{w}}$$

And Helmholtz free energy is

$$F = -\log Z = -\log \sum_{k} \exp^{-\mathbf{x_k} \circ \mathbf{w}}$$

So, optimization problem is:

$$\log \sum_{k} \exp^{-\mathbf{x_k} \circ \mathbf{w}} > \log \sum_{k} \exp^{-\mathbf{x'_k} \circ \mathbf{w}}$$

