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Pair-copula construction

► While there is a multitude of bivariate copula, the 
class of multivariate copulae is still quite restricted.

► Hence, if the dependency structures of different 
pairs of variables in a multivariate problem are very 
different, not even the copula approach will allow 
for the construction of an appropriate model.

► In this talk I will describe an extension to the state-
of-the-art theory of copulas, modelling multivariate 
data using a so-called pair-copula construction.
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Copula
► The Sklar’s theorem states that every multivariate 

distribution F with marginals F1(x1),…,Fn(xn) can be 
written as                                                                              

for some appropriate n-dimensional copula C.

► Using the chain rule, for an absolutely continuous 
joint distribution F with strictly increasing, continuous 
marginal distribution functions F1,…Fn it holds that

for some n-variate copula density            .
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Pair-copula constructions (I)
► For two random variables X1 and X2 we have 

► Further, for three random variables X1, X2 and X3 we have 

► It follows that for every j we have
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Pair-copula construction (II)

We denote a such decomposition a pair-copula construction (PCC)
Joe (1996) was the first to give a probabilistic construction of multivariate 
distribution functions based on pair-copulas, while Aas et. al. (2009) were          
the  first to set the PCC in an inferential context.
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PCC in three dimensions
► A pair-copula construction of a three-dimensional 

density is given by:

Special case: Trivariate normal distribution

If the marginal distributions are standard normal, and c12, c23
and c13|2 are bivariate Gaussian copula densities, the resulting 
distribution is trivariate standard normal.
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PCC in five dimensions

► A possible pair-copula construction for a five-dimensional 
density is:

► There are as many as 480 different such constructions in 
the five-dimensional case, 23,040 in the 6-dimensional 
case and 2,580,480 in the 7-dimensional case......…..
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Vines
► Hence, for high-dimensional distributions, there are a 

significant number of possible pair-copula constructions.

► To help organising them, Bedford and Cooke (2001) 
introduced graphical models denoted regular vines (R-
vines).
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Example in five dimensions
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Matrix representation
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Special case: C-vine

Each tree has a unique 
node that is connected 
to n-j edges.

f12345 = f1 · f2 · f3 · f4 · f5
· c12 · c13 · c14 · c15
· c23;1 · c24;1 · c25;1
· c34;12 · c35;12
· c45;123

Useful for ordering 
of importance
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Special case: D-vine 
No node in any tree is 
connected to more than 
two edges.

f1234 = f1 · f2 · f3 · f4 · f5
· c12 · c23 · c34 · c45
· c13;2 · c24;3 · c35;4
· c14;23 · c25;34
· c15;234

Useful for temporal 
ordering.
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General density expressions
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Conditional distribution functions

► The conditional distributions needed as copula 
arguments at level j are obtained as partial derivatives 
of the copulae at level j-1 

► This is due to the following result of Joe (1996) stating 
that under regularity conditions we have:

The terms tree and level are used as synonyms in this talk
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The h-function

► It turns out that we only need the special case of 
F(x|v) when v is univariate and x and v are 
uniformly distributed on [0,1], i.e.

where  is the set of copula parameters.

► From now on F(x|v) is denoted the h-function:
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Building blocs
► The resulting multivariate distribution will be valid even if the 

bivariate copulae involved in the pair-copula construction are of 
different type.

► One may for instance combine the following types of pair-
copulae
▪ Gaussian   (no tail dependence)
▪ Clayton      (lower tail dependence)
▪ Gumbel      (upper tail dependence)
▪ Student      (upper and lower tail dependence)
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Parameter estimation
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Three elements
► Full inference for a pair-copula decomposition 

should consider the following three tasks: 

1. The selection of a specific factorisation.

2. The choice of pair-copula types.

3. The estimation of the parameters of the                
chosen pair-copulae.
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Which factorisation?

► The current idea is to capture the strongest pairwise 
dependencies in the first levels.

► Hence, for each tree we first calculate an empirical 
dependence measure (e.g. Kendall’s tau) for all 
variable pairs, and then we select the tree on all 
nodes that maximizes the sum of absolute empirical 
dependencies using the spanning tree algorithm of 
Prim.
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How does this look like for Tree 1?
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Choice of copula-types
► The following procedure may be used to select copula types:

This procedure is also denoted 
sequential or stepwise semi-
parametric estimation.
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Example
cSM cMT cTB

cST|M cMB|T cSB|MT

Level I

Level IIILevel II
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Likelihood evaluation 
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The SSP-estimator

► Full semi-parametric maximum likelihood estimation 
(SP) has shown to be consistent and asymptotically 
normal (Genest, 1995, Tsukahara, 2005).

► However, it is computationally too heavy in high dim.

► Hence, people tend to use the stepwise semi-
parametric (SSP-) approach (Aas et. al., 2009) 
instead. 

► In the SSP approach, the parameters of the vine are 
sequentially estimated starting from the top tree.

► The performance of SSP and SP is quite similar, but 
SSP is computationally much faster than SP.
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Properties of the SSP-estimator
► Hobæk Haff (2011a) have shown that

▪ The SSP-estimator is less efficient than the SP-
estimator in general.

▪ This loss of efficiency may however be rather low.
▪ The SSP-estimator is semiparametrically efficient for 

the Gaussian copula.  

► Hobæk Haff (2011b) have shown that
▪ The finite sample bias and MSE of SSP are higher 

than those of SP (the difference increases with 
increasing dependency).

▪ With a small sample size or misspecification of the 
model,  the difference between SP and SSP however 
becomes smaller.
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Simplifying assumption

► Generally, the parameters of the conditional density    
depends on the value of x2.

► Inference requires however the simplifying assumption 
that all pair copulae depend on the conditioning variables 
through the two conditional distribution functions that 
constitute their arguments only, and not directly.

► As shown in Hobæk Haff et. al. (2010), this seems not to 
be a severe restriction.
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Application:

Market risk model for the 
largest Norwegian bank, DNB
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Data set

► 19 financial variables that constitute the market 
portfolio of DNB.

► Daily log returns from March 2003 to March 2008 
(1107 obs.) are used.
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Modelling procedure 

► Fit appropriate ARMA-GARCH models for log-
return time series.

► Fit an R-vine as well as a multivariate Student-t 
copula (for comparison) to standardized residuals

► Pair-copulas are selected from a range of 11 
bivariate families using AIC: 
▪ Independence copula, Gaussian, t, Clayton, rotated 

Clayton (90°), Gumbel, rotated Gumbel (90°), Frank, 
Joe, Clayton-Gumbel (BB1), Joe-Clayton (BB7).
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First tree of R-vine

EUR3M

USD3M

NIBOR3M

Pengem.

Gov. bonds.

NIBOR5Y

HTM

Hedgefond

Int. stocks

No. stocks

FINX

Real estate

GBPEUR
YEN

USD

Int. bonds

USD5Y

EUR5Y



www.nr.no

Results
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Truncation (I)
► The number of parameters in an R-vine grows 

quadratically with the dimension.

► Hence, it would be useful to be able to reduce the 
model complexity. 

► In Brechmann et. al (2012) we have studied the 
problem of determining whether an R-vine may be 
truncated.

► By a truncated R-vine at level K, we mean an R-vine 
with all pair-copulae with conditioning set larger than 
or equal to K set to independence copulae.
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► We fit one tree at a time and use the likelihood ratio 
test of Vuong (1989) to determine whether an 
additional tree provides a significant gain in the 
model fit.

Truncation (II)
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Truncation (III)
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Recent advances 
connected to PCC



www.nr.no

Applications
► Finance

► Insurance

► Genetics

► Marketing

► Health

► Hydrology

► Infrastructure modeling

► Image analysis 
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PCC types
► Non-simplified PCC (Acar et. al., 2012).

► PCC with time-varying parameters (Almeida et. al., 2012, So & 
Yeung, 2013).

► Regime-switching PCC (Chollete et. al., 2008, Stӧber & Czado, 
2013).

► Non-parametric PCC (Haff & Segers, 2013, Kauermann & 
Schellhase, 2013). 

► Spatial PCC (Grӓler & Pebesma, 2011).

► PCC with discrete margins (Panagiotelis et. al., 2012).

► PCC for longitudinal data (Smith et. al., 2010).
► PCC with Lévy copulas (Grothe & Nicklas, 2013).



www.nr.no

Summary
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Summary

► Pair-copula decomposed models represent a very 
flexible and intuitive way of constructing higher-
dimensional copulae.

► Simulation and inference are straight-forward (but 
time-consuming in higher dimensions). 

► Sequential and MLE parameter estimation of C-, D-
and R-vines are available in R packages CDVine
and VineCopula.


