
Evolutionary Optimization Algorithms (EOAs):
Comparison, Selection and Application

Presenter: Kai QIN

MISTIS Team
INRIA Grenoble - Rhône-Alpes

October 19th 2010

-2-

EOA: A First Glance
Computer science

Artificial intelligence Computational intelligence Evolutionary computation EOA

Research forums
Journals

Evolutionary Computation (2009 SCI impact factor: 3.103)
IEEE Transactions on Evolutionary Computation (2009 SCI impact factor: 4.589)
At the 2nd among 130 "Computer Science, Artificial Intelligence" journals, the 3rd among 91
"Computer Science, Theory & Methods" journals, and the 4th among all 426 Computer Science
journals. According to the 5 year impact factor (7.621), IEEE TEVC was ranked the 2nd, 2nd
and 4th, respectively, in the above categories.
Genetic Programming and Evolvable Machines (2009 SCI impact factor: 1.091)

Conferences
The Genetic and Evolutionary Computation Conference (GECCO)
IEEE Congress on Evolutionary Computation (CEC)
The Evo* conference (the main European events on evolutionary computation)

Most cited literature
Goldberg, David E. (1989) Genetic Algorithms in Search Optimization and Machine Learning

Google scholar citation: 35919 (till 2010.10.18)

-3-

EOA: Applications
Computer vision

Image enhancement
Image reconstruction
Image registration
Image segmentation
Image classification
Texture synthesis
Calibration
Tracking

Pattern Recognition
Evolutionary clustering
Evolutionary classification

Evolutionary parameter estimation
Evolving neural networks
Learning classifier systems

Statistical modeling
Evolutionary parameter estimation

Bioinformatics
Alignment and comparison of DNA,
RNA, and protein sequences
Gene mapping on chromosomes
Gene finding and promoter
identification from DNA sequences
Gene selection from microarray gene
expression data
Gene regulatory network
identification
Construction of phylogenetic trees
for studying evolutionary relationship
DNA/RNA structure prediction
Protein structure prediction and
classification
Molecular design and molecular
docking

…

-4-

Outline

Basic ideas
Generic paradigm and core components
Historical perspective
Categorization

Part I: Introduction of EOAs

Particle swarm optimization (PSO)
My previous work: comprehensive learning PSO (CLPSO)
Differential evolution (DE)
My previous work: self-adaptive DE (SaDE)

Part II: Two advanced EOAs: CLPSO and SaDE

Statistical comparison and interactive selection of EOAs
Development of novel EOAs
Applications

Part III: Research plan discussion

Canonical EOAs
State-of-the-art EOAs
Benchmarking testbeds
Challenges in practice

-5-

Part I: General Introduction of EOAs

Basic ideas

Generic paradigm and core components

Historical perspective

Categorization

Canonical EOAs

State-of-the-art EOAs

Benchmarking testbeds

Challenges in practice

Evolutionary Optimization Algorithms (EOAs)

-6-

Optimization
Optimization seeks to improve performance towards some optimal point(s).

Destination (theoretical view point)
Improvement (practical viewpoint)

Optimization problem aims at minimizing (or maximizing) a real-valued objective function by
choosing the values of decision variables from within an allowed set.

A large number of scientific and engineering problems can be formulated as optimization problems,
and solved by some computational methods called optimization algorithms.

Categorization of optimization algorithms
As per problem properties

Decision variables: discrete vs. continuous vs. mixed; constrained vs. unconstrained

Objective function: single-objective vs. multi-objective

Fitness landscape: unimodal vs. multimodal; noise-free vs. noisy; static vs. dynamic

As per algorithm characteristics
Deterministic vs. stochastic

() () ()() ()
() () K,..., khJ,..., j g

fxxfff

kj

MD
DM

1 ,0 ;1 ,0]; ,[s.t.
: , ,..., w.r.t.,..., minimize)(or Maximize

maxmin

11

===≤∈
ℜ→Ω==

xxxxx
xxxx

-7-

EOA: Basic Ideas
Evolutionary optimization algorithms (EOAs) are computational methods inspired by
natural evolution process characterized by Darwin’s survival of the fittest principle.

The key idea of EOAs is to identify and capture computationally useful aspects of
natural evolution processes instead of faithfully (or even plausibly) modeling of
biological processes.

EOAs are meta-heuristic, stochastic search techniques, effective for solving complex
optimization problems with multi-modal, static/dynamic multi-dimensional search
space in the black-box manner, i.e., the landscape model of the search space is not
required in advance.

EOAs iteratively evolve populations of candidate solutions using parallel guided
random search to achieve the desired end.

Major characteristics of an EOA
Populations of candidate solutions
Fitness-guided random population changing during the course of search

Variation with inheritance
Replacement

-8-

EOA: Generic Paradigm

Population P1 of candidate solutions
with known quality

Initialization

Problem
O

bjective Function Evaluation

Solution representation

Reproduction

Selection

Begin

End

Terminate?

Population P2 of candidate solutions
with known quality

no

yes
Problem related modules

Algorithm related modules

Note:

Problem

-9-

EOA: Core Components

Initialization
Known vs. unknown search range
Prior knowledge
Sampling method

Reproduction
Parent selection: sexual vs. asexual
Reproduction operators: recombination vs. mutation

Selection
Evolving population over generations (time)
Darwinian survival of the fittest principle
Selection pressure

Problem aspects:

Algorithm aspects:

Solution representation
Data structures that computer uses to represent solutions
Genotype vs. phenotype
Batch vs. sequential
Individual vs. collective

Objective function evaluation
Known vs. unknown function
Time-expensive evaluation

-10-

EOA: Historical Perspective
1930s~1950s: early algorithmic views

Viewing an evolutionary system as an optimization process

Viewing an evolutionary system as a complex adaptive controller

1960s: three canonical EOAs developed independently

Genetic Algorithm (GA) - Holland, USA, 1962, 1967

Evolutionary Strategy (ES) - Rechenberg and Schwefel, Gemany, 1965

Evolutionary Programming (EP) - Fogel, USA, 1966

1970s~1980s: exploitation and exploration

1990s: unified field as evolutionary computation

1990s~2000s: boosting

Swarm intelligence

Differential evolution

Estimation of distribution

Harmonic search

…

-11-

EOA: Categorization
As per problem properties

Discrete vs. continuous vs. mixed vs. structural
Constrained vs. unconstrained
Single-objective vs. multi-objective
Noiseless vs. noisy
Static vs. dynamic

As per algorithmic operators
Genetic algorithms
Genetic programming
Evolutionary strategies/programming
Swarm intelligence
Estimation of distribution algorithms
Differential evolution
Artificial immune system
Harmonic search
Culture algorithm
Memetic algorithm

…

-12-

Basic concepts
Chromosome
Gene, locus and allele
Genotype and phenotype

A simple GA
Encoding
Initialization
Reproduction

Parents selection
Crossover (recombination)
Mutation

Selection of survivals

Implicit parallelism explained by schema theory (a specified string of length l contains 2l schema)
011: 011, *11, 0*1, 01*, **1, *1*, 0**, ***

Advanced GA
Real-parameter GA
Arithmetic crossover and mutation
Probabilistic model building GA
Niching based GA

Canonical EOAs: Genetic Algorithm

-13-

Evolutionary strategy vs. evolutionary programming

A simple ES
Initialization
Reproduction

Parents selection
Mutation

Selection of survivals

Mutation strategies
(u, v) and (u+v)
Gaussian mutation

Relation to GA
No need to encoding
No crossover

Advanced ES
Crossover added
Fast evolutionary programming
Covariance matrix adaptation ES (CMA-ES)

Canonical EOAs: Evolutionary Strategy

-14-

State-of-the-art EOAs
Advanced GA

Real-parameter GA
Probabilistic model building GA

Advanced ES
Fast evolutionary programming
Covariance matrix adaption ES

Genetic programming

Swarm intelligence
Particle swarm optimization
Ant colony optimization
Bee colony optimization
Cuckoo search
Bat algorithm

Differential evolution

Estimation of distribution
algorithms

Population-based incremental
learning
Estimation of multivariate
normal algorithm
Bayesian optimization algorithm

Artificial immune system

Harmonic search

Memetic algorithm

Culture algorithm

…

-15-

EOA: Benchmarking Testbeds
Benchmark test problems

Numerical functions
Discrete vs. continuous vs. mixed vs. structural
Constrained vs. unconstrained (CEC’06, CEC’10)
Single-objective (CEC’05, GECCO’09, GECCO’10) vs. multi-objective (CEC’07, CEC’09)
Noiseless vs. noisy (GECCO’09, GECCO’10)
Static vs. dynamic (CEC’09)

(Simulated) real problems
Problem scale (CEC’08, CEC’10)

Performance measurement
Convergence map
Average objective function values
Success rate with the average number of objective function evaluations
Expected running time
Bootstrapping based dispersion measure
Empirical cumulative distribution
Time complexity

Comparison methods
Numerical values
Hypothesis testing

-16-

EOA: Challenges in Practice
Problem formulation

Solution representation
Objective function

Algorithm comparison
Which performance measures to choose?
Whether algorithms are statistically significantly different?
How to make comparison conclusions?

Algorithm selection
Problem-dependent
Requirement-dependent
User-dependent
Statistical data mining is needed!

Parameter and operator selection
Many parameters: are they equally sensitive?
Many operators: are they significantly influential?

Computational cost
Expensive objective function evaluation
Sequential algorithmic structure

Applications

Statistics

Parallel
Computing

-17-

Part II: Two Advanced EOAs
Particle swarm optimization (PSO)

My previous work: comprehensive learning PSO (CLPSO)
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary
Computation, 10(3): 281- 295, 2006. (Google scholar: 298)

Differential evolution (DE)

My previous work: self-adaptive DE (SaDE)
A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical
optimization,” Proc. of the 2005 IEEE Congress on Evolutionary Computation (CEC’05),
Edinburgh, UK, September 2005. (Google scholar: 158)

A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution with strategy adaptation for
global numerical optimization,” IEEE Transactions on Evolutionary Computation, 13(2): 398- 417,
2009. (Google scholar: 72)

Evolutionary Optimization Algorithms (EOAs)

-18-

Particle swarm optimization (PSO)

Introduced by Eberhart and Kennedy in 1995.
Emulate social behavior of bird flocking or fish schooling to solve optimization
problems.
Each potential solution is represented as a particle.
Each particle is associated with the objective function value and the velocity.

-19-

Notations in PSO

represents the position of the ith particle.

represents the position changing rate (velocity) of
the ith particle.

represents the best previous
position (the position associated with the best objective function
value) of the ith particle.

represents the best previous
position of the whole swarm.

represents the best previous
position achieved by those particles within the neighborhood of the
ith particle.

1 2(, ,...,)D
i i i ix x x=x

1 2(, ,...,)D
i i i ipbest pbest pbest=pbest

1 2(, ,...,)Dgbest gbest gbest=gbest

1 2(, ,...,)D
i i i iv v v=v

1 2(, ,...,)D
i i i ilbest lbest lbest=lbest

-20-

Basic PSO formula
Two basic versions of PSO

Global version: each particle learns from its own previous best
position (pbest) and the best position found by the whole swarm
(gbest).

Local version: each particle learns from its pbest and the best
position found by particles within its certain neighborhood (lbest).

The random numbers (and) should be generated for
per dimension of each particle in every iteration.

1 21 () 2 ()d d d d d d d d
i i i i i i i

d d d
i i i

v v c rand pbest x c rand gbest x

x x v

← + × × − + × × −

← + i – particle index, d – dimension index

d
irand1 d

irand2

1 21 () 2 ()d d d d d d d d
i i i i i i i i

d d d
i i i

v v c rand pbest x c rand lbest x

x x v

← + × × − + × × −

← +

c1, c2 – accelerating constants

-21-

PSO variants
Controlling velocities

Inertia weightω
Constriction coefficient
Time varying acceleration coefficients
Linearly decreasing the upper bound of velocity

Introducing neighborhood topologies
Extensive experimental studies
Dynamic neighborhood
Combine the global version and the local version, named as unified PSO (UPSO)
Fully informed PSO (FIPS)

Hybrid PSO
PSO + selection operator
PSO + crossover operator
PSO + mutation operator
PSO + co-operative approach

Others
Binary optimization
Constrained optimization
Multi-objective optimization
Dynamic optimization

-22-

Comprehensive learning PSO (CLPSO)
Motivation

Premature convergence due to the social learning aspect.
Every particle’s pbest may involve some beneficial components
deserved to be learn by other particles.

Comprehensive learning strategy in CLPSO:

denotes a set of particle indices with respect to
each dimension of the particle i. represents a comprehensive
exemplar with each dimension taking on the value from the
corresponding dimension of the pbest of particle . These indices
take the value i itself with the probability Pci, referred to as the
learning probability, which takes different values with respect to
different particles.

() () ()[]Dffff iiii ,...,2 ,1=

if
pbest

()dfi

d
i

d
i

d
i vxx +←

()()d
i

d
df

d
i

d
i

d
i xpbestrandcvwv

i
−××+×←

-23-

CLPSO
if

pbestFlow chart: the procedure of obtaining for the ith particle in the
swarm with respect to certain generation

-24-

CLPSO
A particle learns from its comprehensive exemplar until stopping to
improve for a certain number of generations, called the refreshing
gap m. After that, the comprehensive exemplar is re-chosen.

CLPSO vs. conventional PSO
Instead of using particle’s pbest and gbest as the exemplars, all
particles’ pbests can be used to guide a particle’s flying direction.

Instead of learning from the same exemplar for all dimensions, different
dimensions of a particle may learn from different exemplars. In other
words, at one iteration, different dimensions of a particle may learn
from different particle’s pbests at the corresponding dimension.

Instead of learning from two exemplars (pbest and gbest) in every
generation, each dimension of a particle in CLPSO learns from just one
comprehensive exemplar.

Search behavior: diversity is much increased!

-25-

Experiments
Parameter sensitivity analysis:

Learning probability Pci

Refreshing gap m

Searching boundary problem
No re-initialization, not fixed at boundary point, but NOT evaluate!

-26-

Experiments
Performance comparison

9 methods in comparison

16 numerical test functions of 10D and 30D in 4 groups with different
complexity
30 independent runs for each algorithm
Computational budgets: 30,000 FEs for 10D; 200, 000 FEs for 30D
Performance measures

Table: means and stds of objective functions values over 30 runs for each individual
algorithm

Convergence map: median objective function value within 30 runs vs. FEs

-27-

Experiments

-28-

Experiments
General conclusions

CLPSO shows slower convergence speed on unimodal and simple
multimodal problems.

CLPSO achieves much better optimization performance on multimodal
problems, especially on the most complex composition functions.

CLPSO is more effective in solving problems with less linkage due to
the dimension-wise updating rule.

-29-

Differential evolution (DE)

DE, proposed by Price and Storn in 1995, was motivated by an
attempt to using Genetic Annealing to solve the Chebychev
polynomial fitting problem.

Genetic annealing is a population-based, combinatorial optimization
algorithm.

Price modified genetic annealing by using floating-point encoding
instead of bit-string one, arithmetic operations instead of logical ones,
population-driven differential mutation instead of bit-inversion
mutation and removed the annealing criterion. Storn suggested
creating separate parent and children populations.

DE is closely related to many other multi-point derivative free search
methods.

-30-

DE at a glance
Characteristics

Population-based stochastic direct search
Self-referential mutation
Simple but powerful
Reliable, robust and efficient
Easy parallelization
Floating-point encoding

Basic components
Initialization
Trial vector generation

Mutation
Recombination

Replacement
Feats

DE demonstrated promising performance in 1st and 2nd ICEO

-31-

Initialization
A population Px,0 of Np D-dimensional parameter vectors xi,0=[x1,i,0,…,xD,i,0],
i=1,…,Np is randomly generated within the prescribed lower and upper bound bL=
[b1,L,…,bD,L] and bU=[b1,U,…,bD,U]

Insight into classic DE (DE/rand/1/bin)

Trial vector generation

Example: the initial value (at generation g=0) of the jth parameter of the ith vector is
generated by: xj,i,0 = randj[0,1] ·(bj,U-bj,L) + bj,L, j=1,…,D, i=1,…,Np

At the At the ggthth generation, a trial population generation, a trial population PPuu,,gg consisting of consisting of NpNp DD--dimensional trial dimensional trial
vectors vectors vvi,gi,g=[=[vv1,1,i,gi,g,,……vvDD,,i,gi,g] is generated via mutation and recombination operations] is generated via mutation and recombination operations
applied to the current population applied to the current population PPxx,,gg

Differential mutation: with respect to each vector xi,g in the current population,
called target vector, a mutant vector vi,g is generated by adding a scaled, randomly
sampled, vector difference to a basis vector randomly selected from the current
population

-32-

Insight into classic DE (DE/rand/1/bin)

Replacement

Example: at the gth generation, the ith mutant vector vi,g with respect to ith target
vector xi,g in the current population is generated by vi,g = xr0,g + F·(xr1,g-xr2,g),
i≠r0≠r1≠r2, mutation scale factor F∈(0,1+)

Discrete recombination: with respect to each target vector xi,g in the current
population, a trial vector ui,g is generated by crossing the target vector xi,g with the
corresponding mutant vector vi,g under a pre-specified crossover rate Cr∈[0,1]

Example: at the gth generation, the ith trial vector ui,g with respect to ith target
vector xi,g in the current population is generated by:

vj,i,g if randj[0,1]≤Cr or j=jrand

xj,i,g otherwiseuj,i,g=

If the trial vector ui,g has the better objective function value than that of its
corresponding target vector xi,g, it replaces the target vector in the (g+1)th

generation; otherwise the target vector remains in the (g+1)th generation

-33-

Illustration of classic DE

x2

x1

Illustration of classic DE

-34-

xi,g

xr1,g

xr2,g

xr0,g

x2

x1

Target vector

Base vector Two randomly
selected vectors

Illustration of classic DE

Illustration of classic DE

-35-

xi,g

xr1,g

xr2,g

xr0,g

x2

x1

Four operating vectors in 2D continuous space

Illustration of classic DE

-36-

xi,g

xr1,g

xr2,g

xr0,g

F·(xr1,g-xr2,g)

vi,g

x2

x1

Mutation

Illustration of classic DE

-37-

xi,g

xr1,g

xr2,g

xr0,g

F·(xr1,g-xr2,g)

vi,g ui,g

x2

x1

Crossover

Illustration of classic DE

-38-

Replacement

xi,g

xr1,g

xr2,g

xr0,g

xi,g+1

x2

x1

Illustration of classic DE

-39-

Differentiation

Most important characteristics of DE: self-referential mutation!

Step size is adapted intrinsically along evolution process: large
step size at beginning, small step size when converging.

Randomness of search direction and base vector retards
convergence.

Intelligent use of differences between individuals resulted in a
simple linear operator, so-called differentiation, makes
differential evolution unique.

-40-

DE variants
Modification of different components of DE can result in many DEModification of different components of DE can result in many DE
variantsvariants:

Initialization
Uniform distribution, Gaussian distribution

Trial vector generation
Base vector selection

Random selection without replacement: r0=ceil(randi[0,1]·Np)

Permutation selection: r0=permute[i]

Random offset selection: r0=(i+rg)%Np (e.g. rg=2)

Biased selection: global best, local best and better

Opposition-based initialization (Hamid R. Tizhoosh)

() () DjjPbbjOP LjUj ,...,1 ,0,,,0, =−+= xx

-41-

Differential mutation
One difference vector: F·(xr1- xr2)
Two difference vector: F·(xr1- xr2)+F·(xr3- xr4)
Mutation scale factor F

Crucial role: balance exploration and exploitation
Dimension dependence: jitter (rotation variant) and dither

(rotation invariant)
Randomization: different distributions of F

DE/rand/1:
DE/best/1:
DE/current-to-best/1:
DE/rand/2:
DE/best/2:

()GrGrGrGi F ,,,, 321
XXXV −⋅+=

()GrGrGbestGi F ,,,, 21
XXXV −⋅+=

() ()GrGrGiGbestGiGi FF ,,,,,, 21
XXXXXV −⋅+−⋅+=

()GrGrGrGrGrGi F ,,,,,, 54321
XXXXXV −+−⋅+=

()GrGrGrGrGbestGi F ,,,,,, 4321
XXXXXV −+−⋅+=

DE variants

-42-

Recombination
Discrete recombination (crossover) (rotation variant)

One point and multi-point
Exponential
Binominal (uniform)

Arithmetic recombination
Line recombination (rotation invariant)
Intermediate recombination (rotation variant)
Extended intermediate recombination (rotation variant)

x1

x2 xb

xa

line

discrete

discrete

intermediate

x 1x 2

DE variants

-43-

Replacement

Degenerate cases in the trial vector generation

For example, in classic DE, r1=r2, r0=r1, r0=r2, i=r0, i=r1, i=r2

Better to generate mutually exclusive indices for target vector, base vector
and vectors constituting the difference vector

One-to-one replacement

Neighborhood replacement

Crossover rate CR∈[0,1]
Decomposable (small CR) and indecomposable functions (large CR)

DE variants

-44-

Motivation for self-adaptation in DE
The performance of DE on different problems mainly depends on:

Population size
Strategy and the associated parameter setting to generate trial vectors
Replacement scheme

It is hard to choose a unique combination to successfully solve any problem at
hand

Population size usually depends on the problem scale and complexity
During evolution, different strategies coupled with specific parameter settings
may favor different search stages
Replacement schemes influence the population diversity
Trial and error scheme may take excessive computational time & resources

Automatically adapt the configuration in DE so as to generate prAutomatically adapt the configuration in DE so as to generate promising omising
trial vectors during evolutiontrial vectors during evolution

-45-

Related works
Practical guideline: for example, Np∈[5D,10D]; Initial choice of F=0.5 and CR=0.1/0.9;
Increase NP and/or F if premature convergence happens. Conflicting conclusions with respect Conflicting conclusions with respect
to different test functions.to different test functions.

Fuzzy adaptive DE: use fuzzy logical controllers whose inputs incorporate the relative
function values and individuals of successive generations to adapt the mutation and crossover
parameters.

Self-adaptive Pareto DE: encode crossover rate in each individual, which is simultaneously
evolved with other parameters. Mutation scale factor is generated for each variable according
to Gaussian distribution N(0,1).

Zaharie: theoretically study the DE behavior so as to adapt the control parameters of DE
according to the evolution of population diversity.

Self-adaptive DE (1): encode mutation scale factor in each individual, which is simultaneously
evolved with other parameters. Crossover rate is generated for each variable according to
Gaussian distribution N(0.5,0.15).

DE with self-adaptive population: population size, mutation scale factor and crossover rate
are all encoded into each individual.

Self-adaptive DE (2): encode mutation scale factor and crossover rate in each individual,
which are reinitialized according to two new probability variables.

-46-

Steps:

Initialize selection probability pi=1/num_st, i=1,…,num_st for every strategy

According to the current probabilities, we employ stochastic universal
selection to assign one strategy to each target vector in the current population

For each strategy, we define nsi,g and nfi,g, i=1,…num_st to store the number of
trial vectors successfully entering the next generation or discarded by applying
this strategy, respectively, at the generation g.

Self-adaptive DE (SaDE)

Strategy adaptation: select one strategy from a pool of candidate strategies
with the probability proportional to its previous successful experience to
generate promising trial vectors within a certain learning period

DE with strategy and parameter self-adaptation

-47-

Success and failure memories are created to store those numbers within a
specified number of previous generations, called “learning period (LP)” .

When the memories overflow, the first record of the earliest generation will be
removed and the latest record will enter the memory.

Self-adaptive DE (SaDE)

The selection probability pi is updated by:

nsnum_st, G-1…ns1, G-1

…

nsnum_st, G-LP…ns1,G-LP

nsnum_st, G…ns1, G

…

nsnum_st, G-LP+1…ns1, G-LP+1

nsnum_st, G+1…ns1, G+1

…

nsnum_st, G-LP+2…ns1, G-LP+2

…

Generation G Generation G+1 Generation G+2

1
,

, 1 1
, ,

G
k gg G LP

k G G G
k g k gg G LP g G LP

ns
S

ns nf
ε

−

= −
− −

= − = −

= +
+

∑
∑ ∑

,
,

,1

k G
k G K

k Gk

S
p

S
=

=
∑

(k=1,2,..,num_st; G>LP)

-48-

4 strategies involved in the candidate pool:

Self-adaptive DE (SaDE)

DE/rand/1/bin:

DE/rand/2/bin:

DE/current-to-best/2/bin:

DE/current-to-rand/1:

()GrGrGrGi F
,321 ,,, XXXV −⋅+=

() ()GrGrGrGrGiGbestGiGi FF ,,,,,,,, 4321
XXXXXXXV −+−⋅+−⋅+=

()GrGrGrGrGrGi F
,54,321 ,,,, XXXXXV −+−⋅+=

() () ()GrGrGiGrGiGi Frand ,,,,,, 321
1 ,0 XXXXXV −⋅+−⋅+=

-49-

Self-adaptive DE (SaDE)
Parameter adaptation

Mutation scale factor (F): for each target vector in the current population, we
randomly generate F value according to a normal distribution N(0.5,0.3). Therefore,
99% F values fall within the range of [–0.4,1.4].

Crossover rate (CRj): when applying strategy j to a target vector, the corresponding
CRj value is generated according to an assumed distribution. We hereby assume
that each CRj, j=1,…,num_st is normally distributed with its mean and standard
deviation initialized to 0.5 and 0.1, respectively. Those CRj values that had
generated trial vectors successfully entering the next generation over previous
generations are stored in a memory of size LP. The mean of CRj normal distribution
is updated at every generation after initial LP generations by using the median
value in the memory.

-50-

Experiments
Parameter sensitivity analysis

Learning period (LP)
5 different LP values

(20, 30, 40, 50, and 60)

Analysis of self-adaptation property
Self-adaptation of crossover probability

Rosenbrock function Rastrigin function

Composite function 1

Not Sensitive

-51-

Experiments
Self-adaptation of trial vector generation strategy

Griewank Rotated Griewank

-52-

Experiments
Performance comparison

10 methods in comparison

26 numerical test functions: f1~f14 (10D and 30D), f15~f26 (specified)

30 independent runs for each algorithm

Computational budgets: f1~f14 (10D: 100,000 FEs; 30D: 300, 000 FEs);
f15~f26 (500,000FEs)

Performance measures
Table: means & stds of objective functions values as well as the successful
rate for f1~f14 ; means of FEs for f15~f26 over 30 runs

Convergence map: median objective function value within 30 runs vs. FEs

Empirical distribution of normalized success performance

• DE /rand/1/bin, F=0.9, CR=0.1
• DE /rand/1/bin, F=0.9, CR=0.9
• DE/rand/1/bin, F=0.5, CR=0.3
• DE/rand-to-best/1/bin F=0.5, CR=0.3
• DE/rand-to-best/2/ bin with F=0.5, CR=0.3

• Adaptive DE
• SDE
• jDE
• FADE
• SaDE

-53-

Experiments
General conclusions

In comparison with conventional DE, SaDE achieves smaller mean
function values and higher success rates for all problems, while the
convergence speed is faster for most problems.

In comparison with other adaptive DE variants, SaDE compares
favorably with others.

Overall comparison: SaDE outperforms other algorithms in terms of
empirical distribution of normalized success performance.

-54-

Part III: Research Plan Discussion

Statistical comparison and interactive selection of EOAs

Development of novel EOAs

Applications
Computer vision and pattern recognition

Statistical modeling

Bioinformatics

...

Evolutionary Optimization Algorithms (EOAs)

-55-

Statistical Comparison of EOAs
Motivations

Many algorithms
Many operators
Many parameters

Objectives: statistical comparison, grouping and ranking of EOAs
Challenges

Problem dependent
Choose suitable performance measures
Choose statistically sound comparison methods

Pre-requisites
Survey of existing benchmarking test problems
Survey of existing performance measures
Survey of existing comparison method

Research directions
Survey of existing benchmarking testbeds and comparison methods
Investigation of inferential statistical tests

Symmetric hypothesis test
Random process
Factorial analysis of variance

Statistical comparison, grouping and ranking state-of-the-art PSO and DE

-56-

Interactive Selection of EOAs
Motivations

Problem dependent
Requirement dependent
User dependent

Objectives: user-friendly interactive selection software

Challenges
Less known problem properties in practice

Pre-requisite
Statistical comparison, grouping and ranking of EOAs

Research plans
Iterative selection pipeline
Test on real applications
Online selection website

-57-

Development of Novel EOAs

Novel ensemble EOAs framework

GMM, extreme value theory and copula theory with EOAs

High-dimensional EOAs

Common PC based parallel EOAs

-58-

Applications
Computer vision and pattern recognition

Statistical modeling
Any helps on model parameter estimation?

Bioinformatics
Gene regulatory network model inference?
Gene selection?
Any others?

Other potential applications

Thanks

