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1 Short description

The team MISTIS aims at developing statistical methods for dealing with complex systems,
complex models and complex data. Our applications consist mainly of image processing
and spatial data problems with some applications in biology and medicine. Our approach
is based on the statement that complexity can be handled by working up from simple local
assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we consider involve mixture models,
Markov models, and more generally hidden structure models on one hand, and semi and non-
parametric methods on the other hand. We mainly focus on two directions of research:

e Dealing with complex phenomenons. This is twofold, we have to deal with complex
models and with complex data. To account for complex phenomenons, we propose
to use structured models and methods allowing easy interpretations. At the models
level, we propose to develop model selection and approximation techniques for complex
structure models. At the data level, we study parametric models adapted to high-
dimensional data and dimension reduction techniques based on non linear data analysis.

e The theoretical and practical behavior of methods. We focus on approximation justi-
fications, asymptotic behavior and convergence analysis of our algorithms and estima-
tors.

2 Team

Team leader
Florence Forbes [Research scientist,CR1 INRIA]

Research scientists
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Research scientists (partner)
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Ph. D. students
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Matthieu Vignes [AC, ENS Lyon, until January 2007, co-advised by F. Forbes and G.
Celeux, team Select, INRIA Futur]

Post-doctoral fellows
Caroline Bernard-Michel [INRIA, December 2006-December 2007]
Post-doc position [INRIA, 2007, ARC SeLMIC]
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3 Context and overall objectives

The goal of our team is to propose statistical tools in the context of highly structured
stochastic systems. Highly structured stochastic systems refer to a modern strategy for
building statistical models for challenging real-world problems, for computing with them,
and for interpreting the resulting inferences. The power of this approach is to handle com-
plexity by working up from simple local assumptions in a coherent way, and that is the key
to modelling, computation, inference and interpretation. Highly structured stochastic sys-
tems combine local relations to build stochastic models that exhibit great complexity. Such
stochastic models have found applications in areas as diverse as signal and image processing,
genetics and epidemiology. The needs of these areas have in turn stimulated important theo-
retical developments. Statistical methods that were once restricted to specialist statisticians,
such as generalized linear modelling and multivariate discrimination, are now widely used
by individual scientists, engineers, and social scientists, aided by statistical packages.

However, these powerful and flexible techniques are still restricted by necessary simplify-
ing assumptions, such as precise measurement and independence between observations, and
it long ago became clear that in many areas such assumptions can be both influential and
misleading. There are several generic sources of complexity in data that require methods
beyond the commonly-understood tools in mainstream statistical packages.

Often data exhibit complex dependence structures, having to do for example with re-
peated measurements on individual items, or natural grouping of individual observations
due to the method of sampling, spatial or temporal association, family relationship, and so
on.

Other sources of complexity are connected with the measurement process, such as having
multiple measuring instruments or simulations generating high dimensional and heteroge-
neous data or such that data are dropped out or missing.

A typical example is that of an epidemiology study. The aim is to study the occurrence
of a disease in a human population, especially the cause and transmission of the disease.
Relevant data can be very heterogeneous. It usually includes qualitative variables such as
patients answers to tests or forms and quantitative responses such as MRI or other medical
analysis. Great and complex dependencies intrinsincly arise between different analysis or
exams and between different individuals. In addition, data are often incomplete or missing
due to patient history (death, confidentiality, etc.).

For many years, such complications in data-generating processes were often cavalierly
ignored in statistical analysis, leading to unquantifiable biases. Our aim is to contribute to
statistical modelling offering theoretical concepts and computational tools to handle properly
some of the challenges raised by modern data. Many modern statistical modelling techniques
proved capable of building highly complex probabilistic structures, to handle a great variety
of practical problems.

As regards dependencies and locality, a central role is played by the concept of conditional
independence. It provides a precise description of the information conveyed by the value of
one variable about others in a statistical model. Markov properties are statements about
conditional independence assumptions and Markov models are the central subject of our
research. The concept of conditional independence, whereby each variable is related locally



(conditionnally) to only a few other variables, is the key to both the construction and analysis
of such models.

When dealing with missing data, mizture models are a central starting point. They
lead naturally to more general hidden structure models. Hidden structure models are also
useful for taking into account heterogeneity in data. They concern many areas of statistical
methodology (finite mixture analysis, hidden Markov models, random effect models, ...).
Due to their missing data structure, they induce specific difficulties for both estimating the
model parameters and assessing performance. The team focuses on research regarding both
aspects. We design specific algorithms for estimating the parameters of missing structure
models and we propose and study specific criteria for choosing the most relevant missing
structure models in several contexts.

Semi and non-parametric methods are relevant and useful when no appropriate para-
metric model exist for the data under study either because of data complexity, or because
information is missing. The focus is on functions describing curves or surfaces or more gen-
erally manifolds rather than real valued parameters as above. This can be interesting in
image processing for instance where it can be difficult to introduce parametric models that
are general enough (e.g. for contours). Expertise in this field provides us with a more general
view of various problems.

Our two main domains of research are Markov models and Semi and non-parametric
methods. Mixture models are a third topic slightly less central because it is partly included
in our Markov models activity. However, its importance in applications and some specificities
requires a separate presentation.

The topics we propose started individually with the former IS2 team and were running
there through studies being carried out mainly independently. However more than half of the
participants in MISTIS are new and the novelty in this proposal is the focus on the key idea
of structure in models and data. This focus is unifying and various applications illustrate
how we managed to merge our two main domains of expertise. Our aim is to contribute
to a general formalism embracing the techniques mentioned, generalizing the ingredients of
the models, broadening the scope of applications and allowing cross-fertilization between
different areas. We aim at providing a unifying framework for dealing with all the sources
of complexity identified above and of many more besides.

4 Scientific foundations

A general presentation of our main domains of expertise, in this section, is followed by more
specific research topics in Section 5.

4.1 Mixture models

Participants: Juliette Blanchet, Laurent Donini, Jean-Baptiste Durand, Florence Forbes,
Gersende Fort, Stéphane Girard, Vasil Khalidov, Matthieu Vignes.

Keywords: missing data, mixture of distributions, EM algorithm, statistical pattern recog-
nition, clustering, unsupervised and partially supervised learning.



Mixture models and more specifically Gaussian mixture models are among the most sta-
tistically mature methods for clustering and are also used intensively for density estimation.
They correspond to a form of clustering in which we assume that individual datapoints are
generated by first choosing one of a set of multivariate distributions (typically Gaussian) and
then sampling from it. The success of mixture models lies partly in the fact that clustering
can be seen as a labeling problem and therefore corresponds to many problems in practice.

The labeling problem. A labeling problem is specified in terms of a set of sites and a
set, of labels. A site often represents an item, a point or a region in the Euclidean space such
as an image pixel or an image feature such as a corner, a line segment or a surface patch. A
set, of sites may be categorized in terms of their regularity. Sites on a lattice are considered as
spatially regular (eg. the pixels of a 2D image). Sites which do not present spatial regularity
are considered as irregular. This is the usual case when sites represent geographic locations,
features extracted from images at a more abstract level, such as the detected corners and
lines and more generally interest points. It can also be that the sites correspond to items (eg.
genes) that are related to each other through a distance or dissimilarity measure or simply
to a collection of independent items.

A label is an event that may happen to a site. We will consider only discrete label set.
In this case, a label assumes a discrete value in a set of K labels. In edge detection, for
example, the label set is the two component set {edge,non — edge}.

The labeling problem is to assign a label from a label set £ to each of the sites. If there
are n sites, the set z = {21,...,2,} with z; € £ for all i € S, is called a labeling of the sites
in S in terms of the labels in £. When each site is assigned a unique label, a labeling can be
regarded as a function with domain S and image £. In mathematical programming a labeling
is also called a coloring, in the terminology of random fields it is called a configuration. In
vision, it can corresponds to an edge map, an interpretation of image features in terms of
object features, or a pose transformation and so on.

Our approach of the labeling problem is based on mixture models and more generally on
hidden structure models. We consider statistical parametric models, 6 being the parameter
possibly multi-dimensional usually unknown and to be estimated. We consider cases where
the data naturally divide into observed data y = ¥i,...,%, and unobserved or missing
data z = zy,...,2,. The missing data z; represents the memberships to one of a set of K
alternative categories, ie. the labels. The distribution of an observed y; can be written as a
finite mixture of distributions,

K
P ) =30 Pl =k | 0) (i | 2,6) (1
k=1

Besides their usefulness for clustering, mixture models are a very flexible method of
modelling. As any continuous distribution can be approximated arbitrarily well by a finite
mixture of normal densities, mixture models provide a convenient semi-parametric framework
in which to model unknown distributional shapes, whatever the objective.

These models are also interesting in that they may point out an hidden variable respon-
sible for most of the observed variability and so that the observed variables are conditionally
independent. Their estimation is often difficult due to the missing data. The Expectation-
Maximization (EM) algorithm is a general and now standard approach to maximization of
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Figure 1: EM Clustering: (a) data with unknown class assignments (missing data), the
points are single color (b) membership probabilities using EM, the purer the color the higher
the probability to belong to one of the three groups.

the likelihood %3] in missing data problems. The algorithm iteratively maximizes the ex-
pected complete-data log-likelihood over values of the unknown parameters, conditional on
the observed data and the current values of those parameters. In the clustering context, it
provides parameters estimation but also values for missing data by providing membership
probabilities to each group (Figure 1).

Mixture models correspond to independent z;’s. They are more and more used in sta-
tistical pattern recognition. They allow a formal (model-based) approach to (unsupervised)
clustering and learning (Section 5.1.1).

When the z;’s are not independent, the inter-relationship between sites can be maintained
by a so-called neighborhood system usually defined through a graph. In this case, we will
rather consider Hidden Markov Models as presented in the following section. In both cases,
the high-dimensionality of the observations (y;’s) may be a problem in practice and we also
investigated techniques of dimension reduction in a classification context (Sections 5.1.2 and
5.2.1).

4.2 Markov models

Participants: Caroline Bernard-Michel (INRIA post-doc), Juliette Blanchet, Jean-Baptiste
Durand, Florence Forbes, Gersende Fort, Vasil Khalidov, Matthieu Vignes.

Keywords: graphical models, Markov properties, conditional independence, missing data,
hidden Markov field, hidden Markov tree, EM algorithm, stochastic algorithms, selection
and combination of models, statistical pattern recognition, clustering, statistical learning,
image analysis.

Graphical modelling provides a diagrammatic representation of the logical structure of a
joint probability distribution, in the form of a network or graph depicting the local relations

[8] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm (with discussion). J. Roy. Statist. Soc. Ser. B, 39(1):1-38, 1977.
[13] T. Krishnam G. McLachlan. The EM algorithm and extensions. John Wiley, New York, 1997.



among variables. The graph can have directed or undirected links or edges between the nodes,
which represent the individual variables. Associated with the graph are various Markov
properties that specify how the graph encodes conditional independence assumptions.

It is the conditional independence assumptions that give the graphical models their funda-
mental modular structure, enabling computation of globally interesting quantities from local
specifications. In this way graphical models form an essential basis for our methodologies
based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov
Random Fields. The specificity of Markovian models is that the dependencies between the
nodes are limited to the nearest neighbor nodes. The neighborhood definition can vary and be
adapted to the problem of interest. When parts of the variables (nodes) are not observed or
missing, we refer to these models as Hidden Markov Models (HMM). Hidden Markov chains
or hidden Markov fields correspond to cases where the z;’s in (1) are distributed according
to a Markov chain or a Markov field. They are natural extension of mixture models. They
are widely used in signal processing (speech recognition, genome sequence analysis) and in
image processing (remote sensing, MRI, etc.). Such models are very flexible in practice and
can naturally account for the phenomena to be studied.

They are very useful in modelling spatial dependencies but these dependencies and the
possible existence of hidden variables are also responsible for a typically large amount of
computation. It follows that the statistical analysis may not be straightforward. Typical
issues are related to the neighborhood structure to be chosen when not dictated by the
context and the possible high dimensionality of the observations (Section 5.2.1). This also
requires a good understanding of the role of each parameter and methods to tune them
depending on the goal in mind (Section 5.2.2). As regards, estimation algorithms, they
correspond to an energy minimization problem which is NP-hard and usually performed
through approximation. We focus (Section 5.2.4) on a certain type of methods based on
the mean field principle and propose effective algorithms which show good performance in
practice and for which we also study theoretical properties (Section 5.2.5). We also propose
some tools for model selection (Section 5.2.6). Eventually we investigate ways to extend the
standard Hidden Markov Field model to increase its modelling power (Section 5.2.3).

4.3 Semi and non parametric methods

Participants: Caroline Bernard-Michel (INRIA post-doc), Laurent Gardes, Stéphane Gi-
rard.

Keywords: kernel methods, dimension reduction, extreme value analysis, boundary esti-
mation.

We also consider methods which do not assume a parametric model. The approaches are
non-parametric in the sense that they do not require the assumption of a prior model on the
unknown quantities. This property is important since, for image applications for instance,
it is very difficult to introduce sufficiently general parametric models because of the wide
variety of image contents. As an illustration, the grey-levels surface in an image cannot
usually be described through a simple mathematical equation. Projection methods are then
a way to decompose the unknown signal or image on a set of functions (e.g. wavelets).
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Kernel methods which rely on smoothing the data using a set of kernels (usually probability
distributions), are other examples. Relationships exist between these methods and learning
techniques using Support Vector Machine (SVM) as this appears in the context of boundary
estimation (Section 5.3.2) and image segmentation. Such non parametric methods have
become the cornerstone when dealing with functional data ['!!. This is the case for instance
when observations are curves. They allow to model the data without a discretization step.
More generally, these techniques are of great use for dimension reduction purposes. They
permit to reduce the dimension of the functional or multivariate data without assumptions
on the observations distribution (Section 5.3.3). Semi parametric methods refer to methods
that include both parametric and non parametric aspects. This is the case in extreme
value analysis ' which is based on the modelling of distribution tails. It differs from
traditionnal statistics which focus on the central part of distributions, i.e. on the most
probable events (Section 5.3.1). Extreme value theory shows that distributions tails can be
modelled by both a functional part and a real parameter, the extreme value index. As another
example, relationships exist between multiresolution analysis and parametric Markov tree
models (Section 5.3.4).

5 Domains of research

5.1 Mixture models

In the last few years, mixture models became a widely used approach to statistical pattern
recognition. Efficient applications relie on the development of models and techniques allowing
learning of the patterns of interest at a reasonable cost.

5.1.1 Learning and classification techniques

Participants: Juliette Blanchet, Laurent Donini, Jean-Baptiste Durand, Florence Forbes,
Gersende Fort, Stéphane Girard, Vasil Khalidov, Matthieu Vignes.

The objective is to develop classification algorithms which will be tested and used within
specific contexts (e.g object recognition and texture description, see Section 6). We will base
our approach on mixture models (possibly with missing data and spatial constraints) and
the EM algorithm. In particular, we will seek for a practical solution to the problem of speed
associated with EM, which is sometimes too slow for the kind of applications to be addressed
here. We already proposed and studied the so-called CEMM algorithm [1] for this purpose
and will go on investigating along this line.

Unsupervised learning. This field includes a lot of ad-hoc and not unified methods.
Our approach is based on mixture models and more generally on hidden structure models
such as hidden Markov models which can account for additional spatial constraints (see

[11] F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis: Theory and Practice. Springer
Series in Statistics, Springer, 2006.

[10] P. Embrechts, C. Kliippelberg, and T. Mikosh. Modelling Extremal Events, volume 33 of Applications
of Mathematics. Springer-Verlag, 1997.



Section 5.2). When the hidden data is large and the hidden structure complex, for instance
in image analysis there are often as many hidden variables as observed ones, estimation
algorithms for the models parameters are far from being suitably based. Our aim is to
investigate their theoretical foundations and to optimize their use.

Semi supervised or partially supervised learning. In partially supervised learning,
only part of the data is labelled, typically few positive examples. It is often the case in com-
puter vision since unlabelled data are easy to obtain while it can be very costly to label data
specifically. Therefore we will consider an intermediate approach between classification (un-
supervised learning) and discrimination (supervised learning) based on ). This approach is
based on hierarchical mixture models in the spirit of ” Mixture Discriminant Analysis” from
(6] Each class is modelled as a mixture model and each point in the learning set can be
labelled (discrimination problem), unlabelled (classification problem) or partially labelled.
A partial label means that an observation is for instance known not to be in class C but can
be both in class A or B. If the learning set is only made of labelled and unlabelled data, we
refer to the problem as semi-supervised. The associated algorithm is derived from the EM
algorithm.

Overlapping classes. Usual classification techniques assign each object to a single
class. However, in a variety of important applications, overlapping clustering, wherein some
items are allowed to be members of two or more discovered clusters, is more appropriate.
For instance, in biology, genes have more than one function by coding for proteins that
participate in multiple metabolic pathways. Another example is that of movies databases
where many movies belong to more than one genre such as action, science fiction genres, etc.
Methods have been proposed [ that are based on mixtures, providing empirical evidence
that accounting for overlapping clusters within a model produces more accurate clusters
than an alternative naive method based on thresholding the membership probabilities in a
traditional soft clustering. We will also make the connection with the partial volume problem
in medical imaging (MRI). The limited spatial resolution of MR imaging and the complex
shape of the tissues interfaces imply that a large part of the voxels in MR images are so-
called partial volume voxels, ie., voxels that contain not a single tissue but rather a mixture
of two or more tissue types. We will investigate how the EM approach can be extended to
take the partial volume effect into account. Starting from ideas in 28], we will investigate
how it can be extended outside the MRI application (eg. genetic data analysis) and how it
then compares to the approach in [4.

[2] C.Ambroise and G. Govaert. EM algorithm for partially known labels. In Data Analysis, Classification,
and Related Methods, Springer. Proc. 7th Conf. Int. Federation of Classication Societies (IFCS-2000),
2000.

[1] C. Ambroise, T. Denoeux, G. Govaert, and P. Smets. Learning from an imprecise teacher : probabilistic
and evidential approaches. In Proceeding of ASMDA 2001, Compiégne, France, 2001.

[16] T Hastie and R. Tibshirani. Discriminant analysis by gaussian mixtures. J. Royal. Statist. Soc. B.,
58:155-176, 1996.

[4] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. Mooney. Model-based overlapping clustering.
In Proc. 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 532-537, Chicago, United States, August 2005.

[28] K. Van Leemput, D. Vandermeulen, and P. Suetens. Unifying framework for partial volume segmenta-
tion of brain MR Images. IEEE Trans. on Medical Imaging, 22(1):105-119, 2003.
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5.1.2 Taking into account the curse of dimensionality.

Participants: Caroline Bernard-Michel (INRIA post-doc), Juliette Blanchet, Florence Forbes,
Stéphane Girard.

This is joint work with Charles Bouveyron (Acadia University, Canada) and Gilles Celeux
(INRIA, team SELECT).

In high dimensional spaces (including functional spaces) learning methods suffer from the
curse of dimensionality: even for large datasets, large parts of the spaces are left empty. In
the PhD work of Charles Bouveyron (co-advised by Cordelia Schmid from the INRIA team
LEAR) [2], we propose new Gaussian models of high dimensional data for classification
purposes. We assume that the data live in several groups located in subspaces of lower
dimensions. Two different strategies arise:

e the introduction in the model of a dimension reduction constraint for each group,

e the use of parsimonious models obtained by imposing to different groups to share the
same values of some parameters.

This modelling yields new supervised classification methods called HDDA for High Dimen-
sional Discriminant Analysis [3, 4]. Some versions of this method have been tested on the
supervised classification of objects in images (Section 6.1.1). This approach has been adapted
to the unsupervised classification framework, and the related method is named HDDC for
High Dimensional Data Clustering [5], In collaboration with Gilles Celeux and Charles Bou-
veyron we are currently working on the automatic selection of the discrete parameters of
the model. We also, in the context of Juliette Blanchet PhD work (also co-advised with
C. Schmid), combined the method to our Markov-model based approach of learning and
classification (Section 5.2.1) and obtained significant improvement in applications such as
texture recognition [6, 7], where the observations are high-dimensional (Section 6.1.2).

We are then also willing to get rid of the Gaussian assumption. To this end, non linear
models and semi parametric methods are necessary (see Section 5.3.3).

5.2 Markov models

The first three following sections deal explicitly with Markov models for sites or items at
irregular locations. This goes beyond the standard regular lattice case and requires some
adaptation. It implies additional issues such as the choice of the neighborhood structure
which may depend on the application (see Figure 2). Indeed, for irregular lattices, the points
relative displacements do not follow a predictable pattern and their linkage are not always
obvious from their geometry so that a lot of possible spatial structures can be generated. In
Section 5.2.3, we investigate how our expertise in regular Markov models could transpose to
and profit from techniques used in geostatistics. The following sections apply for all type of
structure but the regularity of the sites is not specifically under consideration. They concern
the theoretical (convergence) properties of our algorithms and the question of how to select
the best or more appropriate models.

11



Figure 2: Examples of different structures: (a) regular lattice and (b) a standard four nearest
neighbor system, (c) biological image of cells and proposed structure based on Voronoi
tesselation.

5.2.1 Markov models for the spatial organization of image descriptors.
Participants: Juliette Blanchet, Florence Forbes.

In more and more high-level image analysis, such as feature-based object recognition
or object tracking, images are described by local affine-invariant descriptors and by spatial
relationships between these descriptors. A graph is associated to an image with the nodes
representing feature vectors describing image regions and the edges joining spatially related
regions. For tractability, most approach to recognition assume independence between the
features which is an obvious oversimplification. Incorporating information about the spa-
tial organization of the descriptors leads to better recognition results. Current approaches
consist in augmenting the data with information coming from the spatial relationships, for
instance by using co-occurence statistics, but without modelling explicitly the dependencies
between neighboring descriptors. In such approaches the underlying model is one where
the descriptors are statistically independent variables. Our claim is that recognition results
can be further improved by considering that descriptors are statistically dependent. We
propose to introduce the use of statistical parametric models of the dependence between
descriptors. In this work, we choose Hidden Markov Models (HMM) which are both well
statistically-based and appropriate models for such a task. They provide parametric models
where the parameters have a natural interpretation and can be adjusted to incorporate a
priori knowledge with respect to strenght of interaction for instance. Their use requires non
trivial parameter estimation. We propose to use recent estimation procedures based on the
mean field principle of statistical physics (Section 5.2.4) and to investigate how to make them
accurate and computationnaly efficient. The particularities of the applications we aim at is
the high-dimensionality of the feature vectors (typically 100 dimensional) and the irregular-
ity of the sites at which they are observed. Very few practical optimization techniques are
available for such tasks. Such algorithms are usually very sensitive to initialization and may
require tuning which may be problematic. By combining an MRF estimation procedure and
a dimension reduction technique (see Section 5.1.2) we show that recognition rates can be
improved and that promising results can be obtained using a general statistical formalism.

12



We focus in particular on texture recognition (see Section 6.1.2) but further work includes
other contexts such as object recognition and tracking. This is the basis of the PhD work of
Juliette Blanchet (co-advised by Cordelia Schmid from team LEAR).

5.2.2 Integrated Markov models

Participants: Juliette Blanchet, Laurent Donini, Jean-Baptiste Durand, Florence Forbes,
Vasil Khalidov, Matthieu Vignes.

By integrated Markov model, we mean specific instance and usage of Markov models
that we propose to develop to combine various sources of interactions and information. The
models are flexible in that various pairwise relationship information and features of individual
data can be easily incorporated. Two features distinguish the integrated approach from other
available methods. One is that the integrate approach uses all available sources of information
with possibly different weights for different sources of data. The second feature is that as a
probabilistic model it provides confidence measures such as posterior probabilities that an
object is assigned to a class when used for a classification task.

As regards classification issues, the novelty we propose is to take into account simultane-
ously data from individual objects, ie data that make sense and exist for each objects, and
data from pairs of objects reflecting for instance some distance or some similarity measure
defined on the objects. In practice such data can be missing and EM offer a good framework
to deal with this case (see [%1). A wide range of clustering algorithms have been proposed
to analyze such data. Approaches fall mainly in two categories. Some focus on individual
data and as a consequence assume that they are independent. Others use information on
pairs in the form of networks or graphs but do not directly use individual data associated
to objects in the networks. Sequential procedures clustering first individual data alone and
incorporating additional information only after the clusters are determined are necessarily
suboptimal. Our aim is to take into account both type of information in a single proce-
dure. We propose a hidden Markov random field model in which parametric probability
distributions will account for the distribution of individual data for each object. Data on
pairs will then be included through a graph where the nodes represent the objects and the
edges are weighted according to pair data reflecting distance or similarity measures between
objects. There exist many ways to do that and it is not clear whether they are equivalent
in terms of the amount of information taken into account and in terms of clustering results.
An illustration is given in Section 6.2.1 with an application to genetic data analysis.

One of the difficulties is to choose how the various information can be incorporated in
the model depending on the goal in mind. This requires a good understanding of the role
of each parameter in a Hidden Markov Random Field model. With this in mind, in [8], we
investigate the role of singleton potentials which are parameters usually ignored in standard
Markov model-based segmentation. In [9, 10] we use these potentials to take into account
cooperatively two sources of information so that two segmentation processes could refine
mutually and lead to better segmentation results (see Section 6.1.4 for an application to
MRI analysis). This last work is interesting in that it illustrates the successful use of our

[13] T. Krishnam G. McLachlan. The EM algorithm and extensions. John Wiley, New York, 1997.

13



statistical methodology to solve a difficult imagery issue. Besides, we aim at generalizing the
approach by focusing on the issue of modelling and taking into account high-level a priori
knowledge in the context of a new European project POP (see Section 10.1). In addition to
further investigating the use of integrated models in our collaboration with INSERM/LIG
(see Section 6.1.4), we hope to generalize the approach to the modelling of visual and auditory
perception (see Section 10.1). Investigating such aspects is the objective of the thesis of Vasil
Khalidov, starting in November 2006 in the POP project. Also, network aspects mixed with
multi-dimensional, inter-dependent, heterogeneous time series, appear in the area of print
infrastructure optimization. This is the main topic of the PhD thesis of Laurent Donini,
started in December 2006 at Xerox (see Section 6.3.3).

Note that, as in the previous section, part of this work concerns Markov models on
irregular graphs. Choosing the neighborhood structure can then be an additional issue.

5.2.3 Comparing two models for clustering spatial data

Participant: Florence Forbes.
This is joint work with Denis Allard and Nathalie Peyrard from INRA, Avignon.

Our expertise in Markov models includes the investigation of other related modelling
solutions that offer similar processing advantages and possibly superior modelling capabili-
ties. The so-called pairwise and triplets Markov random fields (1) go in this direction and
can be related to the extensions we consider. With this in mind we focus on the problem
of clustering spatial data ze. of grouping observations measured at different points of the
plane, taking into account the geographical distances between the points. We compare two
models to solve this problem: hidden Markov random fields (HMRF) and a geostatistical
model which uses Gaussian random fields. Geostatistical-type problems are distinguished
most clearly from lattice-type problems by the ability of the spatial index to vary contin-
uously. We plan to study how methods from one class of problems can be borrowed from
methods usually associated with another class. As regards parameter estimation we plan
to investigate an EM-like algorithm. If approximations of this algorithm exist for HMRF's
(see Section 5.2.4), this is not the case for geostatistical models. We propose [11] an ap-
proach mimicing the solution in the independant case. Models performance is compared
on simulated and real data: they show the superiority of the geostatistical model in terms
of classification error but the classifications obtained with the HMRF model are smoother
and sometimes more satisfactory. Further work is required to better understand the possible
extensions of standard HMRF.

5.2.4 EM procedures using mean field-like approximations for Markov model-
based image segmentation and clustering

Participants: Juliette Blanchet, Florence Forbes, Gersende Fort, Caroline Bernard-Michel
(INRIA post-doc).

[5] D. Benboudjema and W. Pieczynski. Unsupervised image segmentation using triplet markov fields.
Computer Vision and Image Understanding, 99(3):476-498, 2005.
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The EM algorithm mentionned in Section 4.1 has an elegant formulation and when it
is applied to appropriate model structures it yields parameter update procedures that are
easy to derive and straightforward to implement. However, outside simple or standard cases,
the EM algorithm yields update procedures that do not have closed form expressions and
it is seldom tractable analytically. In particular, when focusing on image segmentation
and Markov Random Fields (MRF) estimation, difficulties arise due to the dependence
structure in the models and approximations are required. A heuristic solution using mean
field approximation principle has been proposed in [?°1. The mean field approach consists
of calculating quantities related to a complex probability distribution, by using a simple
tractable model such as the family of independent distributions. Using ideas from this
principle, we propose [12] in the context of Markovian image segmentation a class of EM-like
algorithms generalizing [** which show good performance in practice.

The idea underlying these algorithms is to replace the intractable Markov distribution by
a simpler distribution obtained by fixing the neighbors of each pixel to constant values. Then,
an iteration of a mean field-like algorithm consists of two steps: in the first step the values
for the neighbors are updated according to the observations and to the current value of the
parameter. It follows an approximation of the intractable Markov distribution. The second
step consists of carrying out the EM algorithm for the corresponding approximated observed
likelihood to obtain an updated value of the parameter. Mean field-like algorithms can
thus be related to the EM algorithm for independent mixture models, with the significant
difference that the mixture model adaptively changes at each iteration depending on the
current choice of the neighbors values. In [12], we compare three different ways of updating
the neighbors in the first step: the mean field approximation of the conditional mean (mean
field algorithm), an approximation of the conditional mode (mode field algorithm) and a
simulated realization of the conditional Gibbs distribution obtained with the Gibbs sampler
of % (simulated field algorithm). The last choice led to a new stochastic algorithm which
appeared to be the most promising for its good performance on synthetic and real image
experiments. As mentionned in many sections of the present document, we are working on
extending the modelling capabilities of these kind of algorithms and on providing a better
understanding of their properties. See for instance, Section 6.2.2 for an on going investigation
on non image data.

5.2.5 Convergence properties of EM-like algorithms for inference in Hidden
Markov Random Fields

Participants: Florence Forbes, Gersende Fort.

For the standard EM algorithm, parameter estimates yield increasing likelihood over the
observed data and the convergence behavior of this process is well understood. However,
since it is often the case that there are no other feasible choices rather than to resort to
the mean field approximation in practical situations, it appears frequently that the mean

[29] J. Zhang. The Mean Field Theory in EM Procedures for Markov Random Fields. IEEE Transactions
on Signal Processing, 40(10):2570-2583, 1992.

[15] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of
Images. IEEE trans. on Pattern Analysis and Machine Intelligence, 6:721-741, 1984.
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Figure 3: Estimation and effect of the spatial parameter § in standard Hidden Potts model
(HMRF): (a) B estimates trajectory versus the number of iterations for different parameter
starting values, with Mean Field (dot line), Simulated Field (solid line) and MCVEM (dash-
dot line), (b) Classification error rate versus /3 obtained by Mean Field (dot line), Simulated
Field (solid line) and MVCEM (dash-dot line), when the segmentation algorithm is started
from two different initial classifications.

field approximation is being used to practical problems with little consideration of important
issues such as accuracy of the approximation, convergence of the algorithms and so on. As
a matter of fact, in the context of Markovian segmentation, theoretical results as regards
convergence properties are still missing. Convergence properties of related EM variants
(GAM for Generalized Alternating Minimization) have been studied by © and [?3 but these
variants cannot be applied in the MRF segmentation framework and further approximations
are required. We are investigating [13, 14] a new algorithm that we proposed, the so-called
MCVEM algorithm, which is tractable in practice and for which we prove convergence results.
Our algorithm has the advantage on the GAM procedures studied in [¢ that it can be applied
to perform image segmentation tasks and so on the basis of theoretical convergence results.
The basis of our work is the paper [15] which focus on the convergence properties of the
MCEM algorithm. Using similar tools, our key idea is to view the MCVEM algorithm as
a stochastic perturbation of a deterministic algorithm, so called VEM, easier to study .
Experiments on synthetic and real images shows that the algorithm performance is very
closed and sometimes better to that of [12]. Additional good properties due to its stochastic
nature need to be further investigated. This first effective step opens the way to a better
understanding of the behavior of a lot of Markov based algorithm (see Figure 3 for an
illustration of practical implementation issues). In particular, analysing how simulation step
should be incorporated so as to interact advantageously with deterministic approximations
seems promising [13].

5.2.6 Approximations for selecting complex structure models

Participant: Florence Forbes, Gersende Fort.

[6] W. Byrne and A. Gunawardana. Convergence theorems of Generalized Alternating Minimization
Procedures. Journal of Machine Learning Research, 1:1-48, 2004.

[23] R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse and other
variante. In M.I. Jordan, editor, Learning in Graphical Models, pages 355-368. MIT Press, 1998.
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Choosing the probabilistic model that best accounts for the observations is an important
first step for the quality of the subsequent statistical inference and analysis. In most cases
the choice is done subjectively using expert knowledge or ad hoc procedures and there is a
striking lack of systematic data-based approaches. When recasting this choice as a problem
of probabilistic model comparison, most selection criteria involve calculating integrated like-
lihoods for a number of models, i.e. the likelihoods of the observations integrated over the
respective model parameters. For a lot of models of interest, these integrated likelihoods are
high dimensional and intractable integrals so that most available software is generally inef-
ficient for their evaluation. Various approximations have been proposed. In particular the
Bayesian Information Criterion (BIC) approximation of ?°! is based on the Laplace method
for integrals. Many other approaches can be found in the literature on model selection (see
for instance the list of references in ['). BIC has become quite popular due to its simplic-
ity and its good results in cases where other standard model selection procedures were not
satisfactory.

In the context of Markov model-based image segmentation, we propose variational ap-
proximation tools [!8! to deal with this issue in practice. Our aim is to apply these techniques
to built and select models of interest, possibly models with a complex structure. In these
situations, exact calculation is not possible and simulation methods such as Monte Carlo
Markov Chains (MCMC) methods reach their limits. In [16], we focus on the use of BIC
for the underlying issue of choosing a model from a collection of hidden Markov random
fields. In this case, we have no specific results on the quality of BIC as an approximation of
the integrated likelihood and this choice as a selection criterion is arguable. However, the
question of the criterion ability to asymptotically choose the correct model can be addressed
independently of the integrated likelihood approximation issue. As an illustration, the au-
thor in ' proved recently that for the more specialized but related case of hidden Markov
chains, under reasonable conditions, the mazimum penalized marginal likelihood estimator of
the number of hidden states in the chain is consistent. This estimator is defined for a class
of penalization terms that includes the BIC correction term and involves an approximation
of the maximized log-likelihood which is not necessarily good, namely the maximized log-
marginal likelihood. In particular, this criterion is consistent even if there is no guarantee
that it provides a good approximation of the integrated likelihood. This suggests that a
good approximation of the maximized log-likelihood is not a strong requirement to obtain
consistent criteria. A key point in 'Y seems to be the decomposition of the criterion as a sum
of identically distributed terms. The criteria proposed in this paper can also be written as
sum because of the factorization property of the distributions involved. The generalization
is not straightforward but our next step is therefore to investigate if consistency results can
be deduced in a similar way.

At a different level, we also investigated the deviance information criterion (DIC) in-

[26] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.

[19] R. Kass and A. Raftery. Bayes factor. Journal of the American Statisticial Association, 90:733-795,
1995.

[18] M.I. Jordan, editor. An introduction to variational methods for graphical models. MIT Press, 1999.

[14] E. Gassiat. Likelihood ratio inequalities with application to various mixtures. Annales de Uinstitut
Poincaré, 2002.
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troduced by Spiegelhater et al. 27 It is directly inspired by linear and generalized linear

models, but it is not so naturally defined for missing data models. We have reassessed the
criterion for such models, testing the behavior of various extensions in the cases of inde-
pendent mixture and random effect models. This is joint work with G. Celeux from team
SELECT, INRIA futur, Mike Titterington (Univ. of Glasgow, Scotland) and Christian
Robert, (CEREMADE, Paris Dauphine) [17]. As illustrated by the associated discussion in
[17], a lot of questions and issues are still open regarding the use of DIC as a measure of
complexity and a well-grounded criterion.

5.3 Semi and non parametric methods

We have expertise in techniques that can be referred to as semi and non-parametric methods.
They include extrapolation methods to model extremal events (Section 5.3.1) and projection
methods that decompose signals and images on a set of functions such as wavelets and kernel
methods (Sections 5.3.2, 5.3.3 and 5.3.4).

5.3.1 Modelling extremal events

Participants: Laurent Gardes, Stéphane Girard.

This is joint work with Cécile Amblard (TimB in TIMC laboratory, Univ. Grenoble 1),
Myriam Garrido (INRA Clermont-Ferrand), Armelle Guillou (Univ. Strasbourg), and Jean
Diebolt (CNRS, Univ. Marne-la-vallée).

Extreme value theory is a branch of statistics dealing with the extreme deviations from the
bulk of probability distributions. More specifically, it focuses on the limiting distributions
for the minimum or the maximum of a large collection of random observations from the
same arbitrary distribution. Let z; < ... < 1z, denote n ordered observations from a
random variable X representing some quantity of interest. A p,-quantile of X is the value
g¢p, such that the probability that X is greater than g,, is p,, i.e. P(X > ¢p,) = Dn.
When p, < 1/n, such a quantile is said to be extreme since it is usually greater than
the maximum observation z,, (see Figure 4). To estimate such quantiles requires therefore
specific methods [18, 19] to extrapolate information beyond the observed values of X. Those
methods are based on Extreme value theory. This kind of issues appeared in hydrology.
One objective was to assess risk for highly unusual events, such as 100-year floods, starting
from flows measured over 50 years. More generally, the problems that we address are part
of the risk management theory. For instance, in reliability, the distributions of interest are
included in a semi-parametric family whose tails are decreasing exponentially fast [20]. These
so-called Weibull-tail distributions [21, 22, 23, 24] are defined by their survival distribution
function:

P(X > z) = exp{—2%4(2)}, 2 > 2 > 0,

where both 6 > 0 and the function £(z) are unknown. Gaussian, gamma, exponential and
Weibull distributions, among others, are included in this family. The function ¢(z) acts as a
nuisance parameter which yields a bias in the classical extreme-value estimators developped

[27] D. J. Spiegelhalter and al. Bayesian measures of model complexity and fit. Journal of the Royal
Statistical Society, series B, 64:1-34, 2002.
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Figure 4: The curve represents the survival function x — P(X > x). The 1/n-quantile is
estimated by the maximum observation so that ¢/, = z,. As illustrated in the figure, to
estimate p,-quantiles with p, < 1/n, it is necessary to extrapolate beyond the maximum
observation.

so far. Our first goal is the development of new estimators: kernel estimators and bias
correction through exponential regression [25]. Our second goal is the construction of a
goodness-of-fit test for the distribution tail. Usual tests are not adapted to this problem
since they essentially check the adequation to the central part of the distribution. Next,
we aim at adapting extreme-value estimators to take into account covariate information.
Such estimators would include extreme conditional quantiles estimators, which are closely
linked to the frontier estimators presented in Section 5.3.2. Finally, more futur work will
include the study of multivariate extreme values. To this aim, a research on some particular
copulas [26, 27] has been initiated with Cécile Amblard, since they are the key tool for

building multivariate distributions [24.

5.3.2 Boundary estimation

Participants: Laurent Gardes, Stéphane Girard.

This is joint work with Anatoli Iouditski (Univ. Joseph Fourier, Grenoble), Guillaume
Bouchard (Xerox, Meylan), Pierre Jacob and Ludovic Menneteau (Univ. Montpellier 2) and
Alexandre Nazin (IPU, Moscow, Russia).

Boundary estimation, or more generally, level sets estimation is a recurrent problem in
statistics which is linked to outlier detection. In biology, one is interested in estimating
reference curves, that is to say curves which bound 90% (for example) of the population (see

[24] R. B. Nelsen. An introduction to copulas, volume 139 of Lecture Notes in Statistics. Springer-Verlag,
New-York, 1999.
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Figure 13 in Section 6.2.3). Points outside this bound are considered as outliers compared
to the reference population. In image analysis, the boundary estimation problem arises in
image segmentation as well as in supervised learning. Two different and complementary
approaches are developped.

Extreme quantiles approach. Here, the boundary bounding the set of points is viewed
as the larger level set of the points distribution. This is then an extreme quantile curve esti-
mation problem. We propose estimators based on projection as well as on kernel regression
methods applied on the extreme values set [28, 29, 30, 31], for particular set of points. In
this framework, we can obtain the asymptotic distribution of the error between estimators
and the true frontier [32, 33]. Our future work will be to define similar methods based on
wavelets expansions in order to estimate non-smooth boundaries, and on local polynomials
estimators to get rid of boundary effects. Besides, we are also working on the extension of
our results to more general sets of points. This work has been initiated in the PhD work of
Laurent Gardes [34], co-directed by Pierre Jacob and Stéphane Girard and in [35] with the
consideration of star-shaped supports. See Section 6.2.3 for an application to real data.

Linear programming approach. Here, the boundary of a set of points is defined has a
closed curve bounding all the points and with smallest associate surface. It is thus natural
to reformulate the boundary estimation method as a linear programming problem [36, 37,
38]. The resulting estimate is parsimonious, it only relies on a small number of points
(see Figure 5). This method belongs to the Support Vector Machines (SVM) techniques.
Their finite sample performances are very impressive but their asymptotic properties are
not very well known, the difficulty being that there is no explicit formula of the estimator.
However, such properties are of great interest, in particular to reduce the estimator bias.
Two directions of research will be investigated. The first one consists in modifying the
optimization problem itself. The second one is to use Jacknife like methods, combining two
biased estimators so that the two bias cancel out. One of the goals of our work is also to
establish the speed of convergence of such methods in order to try to improve them.

5.3.3 Non parametric view of high dimensional data

Participant: Stéphane Girard.
This is joint work with Serge Iovleff (Univ. Lille 1).

As mentionned in Section 5.1.2, our work on high dimensional data includes non paramet-
ric aspects. They are related to Principal Component Analysis (PCA) which is traditionnaly
used to reduce dimension in data. However, standard linear PCA can be quite inefficient
on image data where even simple image distorsions can lead to highly non linear data (see
Figure 6). When dealing with classification problems, such as in Section 5.1.2, our main
project is then to adapt the non linear PCA method proposed in [39, 40]. This method
(first introduced in Stéphane Girard’s PhD thesis) relies on the approximation of datasets
by manifolds, generalizing the PCA linear subspaces. This approach reveals good perfor-
mances when data are images [41]. A natural extension is then to investigate its use in the
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Figure 5: Boundary estimation using a linear programming approach: blue points (dots) are
data points, the dot curve is the unknown boundary, the continuous curve is the estimated
boundary, the square points are points on the estimated boundary and the triangle points
are the additional points actually used in the estimation (support vectors).

case of heterogeneous graphe-structured data such as those relevant to print infrastructure
(Section 6.3.3).

5.3.4 Multiresolution Analysis and Markov tree models
Participants: Florence Forbes, Jean-Baptiste Durand.

Hidden Markov tree models were originally proposed by Crouse et al. 1998 [7 to detect
changes in binary trees associated to wavelet coefficients for signal processing applications.
Their work was based on a so called upward-downward algorithm, which is equivalent to the
traditional forward-backward algorithm used for hidden Markov chains. They did not adress
however numerical instability issues. Jean-Baptiste Durand and co-authors [42] proposed
a new upward-downward algorithm which has the advantage not to suffer from numerical
instabilities. Their algorithm differs in that it requires an additional initial downward step to
compute state marginal distributions. The work in [42] also proposed a restoration algorithm
to recover the hidden tree in a globally optimal way. It consists in a dynamical programming
algorithm equivalent to the Viterbi algorithm for hidden Markov trees.

An application of this model for plant modelling is given in Section 6.2.4.

6 Application domains

6.1 Image Analysis

As regards applications, several areas of image analysis can be covered using the tools devel-
oped in the team. More specifically, we address in collaboration with team LEAR at INRIA

[7] M.S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based statistical signal processing using
hidden Markov models. IEEE trans. on Signal Processing, pages 886-902, 1998.
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Figure 6: Highly non linear data: 128-dimensional SIF'T descriptors extracted from successive
rotations of a single image and projected in IR® for visualization. The colors correspond to
different scales.

Rhoéne-Alpes, issues about object and class recognition and about the extraction of visual
information from large image data bases (Sections 6.1.1 and 6.1.2).

Other applications in medical imaging are natural. We work more specifically on MRI
data in collaboration with INSERM unit U594 and team Magma of LIG in Grenoble (Section
6.1.4) and with the Statistics Department of University of Washington, Seattle (Section
6.1.5).

We also consider other statistical 2D fields coming from other domains such as remote
sensing, in collaboration with Laboratoire de Planétologie de Grenoble (Section 6.1.3).

6.1.1 Supervised and unsupervised classification of objects in images

Participant: Stéphane Girard.
This is joint work with Charles Bouveyron (Acadia University, Canada) and Cordelia
Schmid, (LEAR, INRIA Rhoéne-Alpes)

Supervised framework. In this framework, small scale-invariant regions are detected on
a learning image set and they are then characterized by the local descriptor SiFT [2U. The
object is recognized in a test image if a sufficient number of matches with the learning set
is found. The recognition step is done using supervised classification methods. Frequently
used methods are Linear Discriminant Analysis (LDA) and, more recently, kernel methods
(SVM) [17: chap- 12] Ty, our approach, the object is represented as a set of object parts. As an
example for a motorbike, we will consider three parts: wheels, seat and handlebars.
Obtained results showed that the HDDA method described in Section 5.1.2 gives better
recognition results than SVM and other generative methods. In particular, the classification

[21] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, 60(2):91-110, 2004.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, NewYork,
2001.
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Figure 7: Object localization: from left to right, Original image, All detected points, Final
localization.

errors are significantly lower for HDDA compared to SVM. In addition, HDDA method is
as fast as standard discriminant analysis (computation time ~ 1 sec. for 1000 descriptors)
and much faster than SVM (=~ 7 sec.).

Unsupervised framework. Our approach learns automatically discriminant object parts
and then identifies local descriptors belonging to the object. It first extracts a set of scale-
invariant descriptors and then learns a set of discriminative object parts based on a set
of positive and negative images. Learning is ”weakly supervised” since objects are not
segmented in the positive images. Recognition matches descriptors of a unknown image to
the discriminative object parts.

Object localization is a challenging problem since it requires a very precise classification
of descriptors. For this, it is necessary to identify the descriptors of an image which have
a high probability to belong to the object. The adaptation of HDDA to the unsupervised
framework, called HDDC, allows to compute the posterior probability for each interest point
that it belongs to the object. Finally, the object can be located in a test image by considering
the points with the highest probabilities. In practice, 5 or 10 percents of all detected interest
points are enough to locate efficiently the object. See an illustration in Figure 7.

We also consider the application of image classification [43]. This step decides if the
object is present in the image, i.e. it classifies the image as positive (containing the object)
or negative (not containing the object). We use our decision rule to assign a posterior
probability to each descriptor and each cluster. We then decide based on these probabilities
if a test image contains the object or not. Previous approaches [l have used a simple empirical
technique to classify a test image. We introduce a probabilistic technique which uses the
posterior probabilities. We obtain for a test image I a score S € [0,1] that I contains the
object. We decide that a test image contains the object if the score S is larger than a given
threshold. This probabilistic decision has the advantage of not introducing an additional
parameter and of using the posterior probability to reject (assign a low weight) to dubious
points [44].

[9] Gyuri Dorké and Cordelia Schmid. Object class recognition using discriminative local features. Sub-
mitted to IEEE Trans. on Pattern Analysis and Machine Intelligence, updated 13 September, 2005.
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Figure 8: Spatial relationships between descriptors: (a) detected interest points (ellipse
centers) and associated scales (ellipse sizes and orientations) using Laplace detector and
SIFT descriptors, (b) construction of a neighborhood system between the detected points:
points within the range of an enlarged ellipse are connected to the ellipse center.

6.1.2 Markov Random Fields for recognizing textures

Participants: Florence Forbes, Juliette Blanchet.
This is joint work with Cordelia Schmid, LEAR, INRIA Rhone-Alpes.

We present a new probabilistic framework for recognizing textures in images. Images
are described by local affine-invariant descriptors and by spatial relationships between these
descriptors. See an illustration in Figure 8. We propose to introduce in texture recognition
the use of statistical parametric models of the dependence between descriptors. We choose
Hidden Markov Models (HMM) and follow the method described in Section 5.2.1. Using
sample images, textures are then learned as HMM’s and a set of estimated parameters is
associated to each texture. At recognition time, another HMM is used to compute, for each
feature vector, the membership probabilities to the different texture classes. Preliminary
experiments show very promising results [45, 7] (see an illustration in Figure 9).

6.1.3 Statistical methods for the visualization and analysis of complex remote
sensing data

Participants: Caroline Bernard-Michel (INRIA Post-doc), Juliette Blanchet, Florence
Forbes, Laurent Gardes, Stéphane Girard.

This is joint work with Sylvain Douté and Etienne Deforas from Laboratoire de Planétologie
de Grenoble, France.

Visible and near infrared imaging spectroscopy is one of the key techniques to detect, to
map and to characterize mineral and volatile (eg. water-ice) species existing at the surface of
the planets. Indeed the chemical composition, granularity, texture, physical state, etc. of the
materials determine the existence and morphology of the absorption bands. The resulting
spectra contain therefore very useful information. Current imaging spectrometers provide
data organized as three dimensional hyperspectral images: two spatial dimensions (Figure
10) and one spectral dimension (Figure 11).
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Figure 9: Texture recognition using Hidden Markov Models: (a) and (b) original multi-
texture images, (c¢) and (d) classification results (ellipses represent interest points and asso-
ciated regions). The different colors correspond to different texture assignments.

A new generation of imaging spectrometers is emerging with an additional angular di-
mension. The surface of the planets will now be observed from different view points on
the satellite trajectory, corresponding to about ten different angles, instead of only one
corresponding usually to the vertical (0 degree angle) view point. Multi-angle imaging spec-
trometers present several advantages: the influence of the atmosphere on the signal can be
better identified and separated from the surface signal on focus, the shape and size of the
surface components and the surfaces granularity can be better characterized.

However, this new generation of spectrometers also results in a significant increase in the
size (several tera-bits expected) and complexity of the generated data. Consequently, HMA
(Hyperspectral Multi Angular) data induce data manipulation and visualization problems
due to its size and its 4 dimensionality.

We propose to investigate the use of statistical techniques to deal with these generic
sources of complexity in data beyond the traditional tools in mainstream statistical packages.
Our goal is twofold:

e we will first focus on developing or adapting dimension reduction methods, classifica-
tion and segmentation methods for informative, useful visualization and representation
of the data previous to its subsequent analysis. We will consider three stages:

Combining Markov model-based segmentation and dimension reduction
techniques. The particularities of the application we aim at is the high-dimensionality
of the feature vectors (typically spectra are 256 dimensional) and the interactions be-
tween them due to their spatial locations. Most approaches perform dimension re-
duction as a pre-processing of the data and apply classification methods afterwards.
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Our aim is to develop models that incorporate both aspects simultaneously. Gaussian
Hidden Markov Random Fields (GHMRF) are designed to take into account spatial
dependencies and are good candidates for such a task. However, when data are very
high-dimensional their use is often restricted to specific models with diagonal covariance
matrices since full covariance models would induce too many parameters to estimate.
Although such restrictions provide satisfying results in many applications, diagonal
models correspond to the assumption that the feature vector components are indepen-
dent, which is very unlikely when feature vectors are spectra or more generally signals
or profiles that show strong (time) correlation. A way to go beyond diagonal models
without considering full covariance models is to incorporate in our procedure dimension
reduction techniques. A first goal is therefore to integrate techniques in the spirit of
the Gaussian models for high dimensional data clustering (Section 5.1.2) in a HMRF
procedure.

Overlapping clustering. A second objective is to extend the clustering model itself.
Usual classification techniques assign each object to a single class. In our context,
classes correspond to various compounds and minerals (eg. ice, carbon dioxide, etc.)
identified by experts using for instance geological a priori knowledge. The usual as-
sumption is therefore that each observed pixel is made of a pure compound which is
often not satisfied due to the resolution of the observed images (one pixel can cor-
respond to large portion of land). Our aim is then to extend our model to perform
overlapping clustering (Section 5.1.1).

Additional non identified classes. Another extension we plan to investigate is the
introduction of extra classes with no real physical meaning or which have not been
identified as such yet. The interest of this extension is twofold. The extra classes
could be used to model outliers ie. observations that may result from measurement
or registration errors or bad observation conditions. This has been investigated in
the independent mixture case and different approaches are possible (eg. contaminated
mixtures, etc., see ?2). Our aim is to extend these attempts to spatial data in a
unified way. Also, allowing extra classes besides the few identified by experts, the hope
is to determine locations that behave differently and therefore potentially discover new
compounds or minerals or at least point out the presence of unexpected ones.

e We will also address the problem of physical model inversion which is important to
understand the complex underlying physics of the HMA signal formation. The models
taking into account the angular dimension result in more complex treatments. We will
investigate the use of semiparametric dimension reduction methods such as SIR, (Sliced
Inverse Regression, () to perform model inversion, in a reasonable computing time,
when the number of input observations increases considerably.

The first data set under consideration (hyperspectral images with vertical pointing) comes
from the Mars-Express Mission operated by the European Space Agency. The second data

[22] G. McLachlan and D. Peel. Finite mizture models. John Wiley, New York, 2000.

[20] K.C. LI Sliced inverse regression for dimension reduction. Journal of the American Statistical Associ-
ation, 86:316-342, 1991.
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Figure 10: Partial Spatial representation of Mars as provided by the Mars-Express spec-
trometer.

[r !

Figure 11: Example of spectra corresponding to pixels of Figure 10.

set (multi-angular hyperspectral images) will be generated by the CRISM instrument of the
Mars Reconnaissance Orbiter (NASA) that has started its scientific activities in June 2006
after orbit insertion. LPG is a co-investigator of the CRISM instrument.

6.1.4 Distributed and cooperative Markovian segmentation of both tissues and
structures in brain MRI

Participant: Florence Forbes.
This is joint work with Benoit Scherrer, Michel Dojat and Christine Garbay from IN-
SERM U594 and team Magma of LIG, Grenoble.

Accurate tissue and structure segmentation of MRI brain scan is critical for several ap-
plications. Markov random fields are commonly used for tissue segmentation to take into
account spatial dependencies between voxels, hence acting as a labelling regularization. How-
ever, such a task requires the estimation of the model parameters (eg. Potts model) which
is not tractable without approximations. The algorithms in [12] (see Section 5.2.4) based
on EM and variational approximations are considered. They show interesting results for
tissue segmentation but are not sufficient for structure segmentation without introducing a
priori anatomical knowledge. In most approaches, structure segmentation is performed after
tissue segmentation. We suggest considering them as combined processes that cooperate.
Brain anatomy is described by fuzzy spatial relations between structures that express gen-
eral relative distances, orientations or symmetries. This knowledge is incorporated into a
2-class Markov model via an external field. This model is used for structure segmentation.
The resulting structure information is then incorporated in turn into a 3 to 5-class Markov
model for tissue segmentation via another specific external field. Tissue and structure seg-
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Figure 12: Distributed and cooperative Markovian segmentation: (a) real 3T scan, (b) tissue
segmentation without anatomical knowledge, (c) and (d) tissue and structure segmentations
using the distributed and cooperative approach.

mentations thus appear as dynamical and cooperative MRF procedures whose performance
increases gradually. This approach is implemented into a multi-agent framework, where au-
tonomous entities, distributed into the image, estimate local Markov fields and cooperate
to ensure consistency [9, 10]. We show, using phantoms and real images (acquired on a 3T
scanner), that a distributed and cooperative Markov modelling using anatomical knowledge
is a powerful approach for MRI brain scan segmentation (See Figure 12).

The current investigation concerns only one type (T1) of MR images with no temporal
information. We are planning to extend our tools to include multidimensional MR sequences
corresponding to other types of MR modalities and longitudinal data. This will be done
in collaboration with team VisAGeS from INRIA Rennes which has some expertise in the
processing of longitudinal multi-sequences of clinical data [*. Such extensions are particularly
relevant in the study of some central nervous system disorders such as Multiple Sclerosis (MS)
and brain attacks (SeLMIC ARC project in Section 10.1).

6.1.5 Model-based Region-of-Interest Selection in dynamic breast MRI

Participant: Florence Forbes.
This is joint work with Chris Fraley and Adrian Raftery from University of Washington,
Seattle, with Dave Goldhaber and Dianne Georgian-Smith, M.D. from Harvard Medical

[3] L. At-ali, S. Prima, P. Hellier, B. Carsin, G. Edan, and C. Barillot. STREM: a robust multidimensional
parametric method to segment MS lesions in MRI. In 8th International Conference on Medical Image
Computing and Computer-Assisted Intervention, MICCAI’2005, J. Duncan, G. Gerig (eds.), Lecture
Notes in Computer Science, pages 409-416, Palm Springs, United States, Octobre 2005.
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School, Massachussets General Hospital.

Magnetic Resonance Imaging (MRI) is emerging as a powerful tool for the diagnosis of
breast abnormalities. Dynamic analysis of the temporal pattern of contrast uptake has been
applied in differential diagnosis of benign and malignant lesions to improve specificity. Signal
intensity time course data are useful for differentiating benign from malignant enhancing
lesions. The overall shape of the time-signal intensity curve is an important criterion, while
a single attribute of the curve, such as the enhancement rate, may not be enough.

Selecting a region of interest (ROI) is an almost universal step in the process of examining
the contrast uptake characteristics of a breast lesion. We propose [46, 47, 48] an ROI selection
method that combines model-based clustering of the pixels with Bayesian morphology [49], a
more recent statistical image segmentation method. We then investigate tools for subsequent
analysis of signal intensity time course data in the selected region.

Results on a data base of 19 patients are promising. The method provides informative
segmentations and good detection rates are obtained. The investigation indicates that our
proposed statistical methods, which enable us to take into account more than a single en-
hancement measure, are quite promising for tumor identification. There is a clear gain in
combining segmentation with kinetics analysis. Associating the location and shape of a lesion
with its pattern of uptake proved to be useful in resolving questionable cases. the trade-
off between smoothness and resolution needs to be assessed by further empirical research
on other images. Our study is limited to the determination of feasibility for the proposed
computational methods. Clinical value would have to be assessed in more extensive and
controlled studies, which in the light of our initial experience may be warranted.

6.2 Biology and Medicine

A second domain of applications concerns biomedical statistics and molecular biology. We
consider the use of missing data models in epidemiology. We also investigate statistical tools
for the analysis of bacterial genomes beyond gene detection. Applications in population
genetics, agronomy and neurosciences are also considered.

6.2.1 Integrated Markov models on irregular grids for clustering gene expres-
sion data

Participants: Florence Forbes, Matthieu Vignes.

Because of the increasing amount of genetic data generated by researchers, there is a great
need to develop methodologies to analyse and to use the information contained in this data.
A major challenge in bioinformatics is to reveal interactions between components of living or-
ganisms and discover the corresponding networks responsible for their biological complexity.
In this framework, clustering of genes into groups sharing common characteristics is a useful
exploratory technique. It is frequently used as the basis for further computational analysis.
As an example, the function of a gene can be predicted according to known functions of
other genes from the same cluster.

A wide range of clustering algorithms have been proposed to analyze gene expression
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data but most of them consider the genes as independent entities or include relevant infor-
mation on gene interactions a posteriori. We propose a probabilistic model that has the
advantage to take into account individual features (e.g. expression) and pairwise data (e.g
interaction information coming from biological networks) simultaneously. As mentionned
in Section 5.2.2, our model is based on hidden Markov random fields in which parametric
probability distributions account for the distribution of individual data for each gene. Data
on pairs are included through a graph where the nodes represent the genes and the edges are
weighted according to pair data, for instance in order to reflect distances or similarity mea-
sures between genes. This model has many interesting features. It leads to various possible
statistical criteria to select automatically the number of clusters. It is also able to incorpo-
rate many types of data. It is flexible in the sense that its generalization to include missing
data, that often occur when dealing with expression data, is straightforward. Its extension
to overlapping clustering methods, to deal with more realistic situations where genes can
belong to many groups at the same time, can also be considered. Preliminary investigations
are reported in [50]. We start illustrating and validating the approach on simulated data as
well as on yeast expression data combined with pathways neighbourhoods [51, 52, 53, 54].

6.2.2 Modelling and inference of population structure from genetic and spatial
data

Participant: Chibiao Chen (INRIA post-doc 2006), Florence Forbes.
This is joint work with Olivier Francois from team TimB in TIMC laboratory.

In applications of population genetics, it is often useful to classify individuals in a sam-
ple into populations which become then the units of interest. However, the definition of
populations is typically subjective, based, for example, on linguistic, cultural, or physical
characters as well as the geographic location of sampled individuals. Recently, Pritchard et
al 1 proposed a Bayesian approach to classify individuals into groups using genotype data.
Such data, also called multilocus genotype data, consists of several genetic markers whose
variations are measured at a series of loci for each sampled individual. Their method is based
on a parametric model (model-based clustering) in which there are K groups (where K may
be unknown), each of which is characterized by a set of allele frequencies at each locus.
Group allele frequencies are unknown and modeled by a Dirichlet distribution at each locus
within each group. A MCMC algorithm is then used to estimate simultaneously assignment
probabilities and allele frequencies for all groups. In such a model, individuals are assumed
to be independent, which does not take into account their possible spatial proximity.

The main goal of this work is to introduce spatial prior models and to assess their role
in accounting for the relationships between individuals. In this perspective, we propose to
investigate particular Markov models on graphs and to evaluate the quality of mean field
approximations for the estimation of their parameters.

Maximum likelihood estimation of such models in a spatial context is typically intractable
but mean field like approximations within an EM algorithm framework, in the spirit of [12]

[25] J.K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155:945-959, 2000.
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will be considered to deal with this problem. This should result in a procedure alternative
to MCMC approaches. With this in mind, we first considered the EM approach in a non
spatial case, as an alternative to the traditional Bayesian approaches. The corresponding
new computer program (see Section 7.3) and promising results are reported in [55].

This first approach is based on traditionnal hidden Markov models for which a standard
conditional independence assumption holds. Dependencies between individuals are described
through spatial correlations between groups meaning that spatially close individuals are likely
to belong to the same group. In a recent on going work joint with INRA Avignon, we tried
to weaken the standard but somewhat irrealistic conditional independence assumption to
describe dependencies at the observations level through a spatial correlation model inspired
from geostatistical models [11].

Another goal of this work would then be to investigate such extension in the context of
population genetics. In particular, mean field like approximations and more generally struc-
tural variational approximation techniques could again be considered to solve the consequent
estimation problem.

6.2.3 Biophysical properties of women skin

Participant: Stéphane Girard.
This is joint work with Ali Gannoun (CNAM), Jérome Saracco (Univ. Bordeaux 4) and
Christiane Guinot (CERIES).

The computation of reference curves (mentionned in Section 5.3.2) can be interpreted
as a regression quantiles estimation problem, the explicative variable being the age of the
subjects, for instance. When the covariate is unidimensional, we have developped a non-
parametric kernel method to estimate these regression quantiles. The background of this
research is the study of biophysical properties of women skin (see Figure 13) in collaboration
with Chanel Research Center (CERIES) [56]. When the covariate is multidimensional, this
approach has been combined with a semi-parametric dimension reduction method [57, 58],
the so-called SIR (Sliced Inverse Regression) method.

6.2.4 Tree-structured processes for plant architecture modelling.

Participants: Jean-Baptiste Durand, Florence Forbes.

Modelling the architecture of complex plants can be formulated as the identification
of invariants within their structure or their characteristics. The plant segmentation into
homogeneous zones, where the plant has similar local characteristics, is one approach to
reveal such invariants. A dedicated statistical model was proposed, in this context, by
Durand et al. [59]. In theory, this model allow the prediction of given characteristics of tree-
structured processes, for example the number of homogeneous zones that satisfy a particular
property (e.g. number of flowering zones), or the depth of the first vertex that satisfies it,
or the size of an homogeneous zone, or the number of occurrences of a particular event.
The computation of those characteristics’ distributions should offer new possibilities for the
model validation, by comparing such theoretical distributions with corresponding empirical
frequencies (histograms). However, such histograms must be build using tree structures
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Figure 13: Reference curves for a women population: the sebum rate measured on the
forhead of each woman is reported against the age. The curves show various estimates of
the 10% reference curves bounding 90% of the population.

with variable topology. Thus, they cannot be compared to probability distributions unless
such structural variability is accounted for. In practice, these probability distributions have
been computed for tree structures with given topology, and only for some of the possible
characteristics.

Our goal is to compute the distribution for the number of homogeneous zones in the
case of tree structures with given topology, and then (obviously with some approximation)
in the case of an unspecified but random topology, with known and simple distribution. We
will based our work on model identification procedures similar to those in [42]. The hidden
Markov tree model (HMT) aims at identifying classes of entities with similar characteristics,
taking into account some dependencies between connected entities. Those dependencies tend
to create homogeneous zones and ruptures. Depending on different hypothesis on the order
for the descendants of each vertex (unordered, partially or totally ordered...), and on the
dependencies between those descendants’ states (conditional independence or not, given the
parent state), various refinements of HMT models can be considered.

Another approach based on simulation will be considered too. Then, the obtained results
will have to be confronted with real datasets, obtained from apple and beech trees.

6.2.5 Multi-modal sensory signal integration

Participants: Florence Forbes, Stéphane Girard, Vasil Khalidov.
This is joint work with Elise Arnaud, Radu Horaud and Ramya Narasimha from team
Perception and with Jon Barker, Heidi Christensen and Martin Cooke from University of

Sheffield.
In the context of the POP European project (Section 10.1) including the above cited
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researchers, we will also collaborate with neurophysiologists from universities of Osnabruck
and Hospital Hamburg-Eppendorf in Germany. This will provide us, in addition to expertise
in computer vision and in the building of higher level scene descriptions, with real-life visual
and auditory data. We will focus on the following topics based on our expertize in Bayesian
and graphical models:

e Integration of monucular and binocular visual cues. From the point of view of visual
analysis, visual cues such as stereoscopic vision may be used for producing an observer-
centered depth map of the 3-D layout. In collaboration with team Perception, our aim
is to contribute to the PhD work of Ramya Narasimha by studying the use of Markov
models in stereoscopic vision and the possibility to include in such models additional
monocular cues such as contours.

e Binaural perception. It can be seen as the auditory analogous of stereoscopic vision.
From the point of view of auditory analysis, binaural cue detection may be used for
sound localization and for building a spatial map of auditory sources. We are working
in collaboration with the Computational Auditory Scene Analysis (CASA) group of
University of Sheffield on the use of Markov Random Field modelling in this area.

e Audio-visual integration. Fusing information from audio and video sources has resulted
in improved performance in applications such as tracking. However, crossmodal inte-
gration is not trivial and requires some cognitive modelling because at a lower level,
there is no obvious way to associate depth and sound sources. Combining expertise
from team Perception and University of Sheffield, we will address the difficult problems
of integrating spatial and temporal audio-visual stimuli using a geometrical and prob-
abilistic framework and we will attack the problem of associating sensorial descriptions
with representation of prior knowledge.

6.3 System engineering

With system engineering we refer to applications related to risk management, reliability,
failure detection and infrastructure optimization.

6.3.1 Modelling nuclear plants

Participants: Laurent Gardes, Stéphane Girard.
This is joint work with Nadia Perot, Nicolas Devictor and Michel Marques (CEA).

One of the main activities of the Laboratoire de Conduite et Fiabilité des Réacteurs
(CEA Cadarache) concerns the probabilistic analysis of some processes using reliability and
statistical methods. In this context, probabilistic modelling of steels tenacity in nuclear
plants tanks has been developed. The databases under consideration include hundreds of
data indexed by temperature (see Figure 14), so that, reliable probabilistic models have been
obtained for the central part of the distribution. However, in this reliability problem, the key
point is to investigate the behaviour of the model in the distribution tail. In particular, we
are mainly interested in studying the lowest tenacities when the temperature varies. We are
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Figure 14: Tenacity as a function of the temperature. The problem is to build and test a
probabilistic model for the lowest tenacities as varying with temperature.

currently investigating the opportunity to propose a postdoctoral position on this problem,
supported by the CEA.

6.3.2 An Aging model

Participant: Henri Bertholon.
Joint work with Gilles Celeux and Nicolas Bousquet from team SELECT, INRIA Futur.

In the reliability context, we are interested in lifetime data analysis. We have especially
examined a simple competing risk model that may be viewed as a possible alternative to the
standard Weibull model. In particular our model enables to take into account both accidental
causes of failure and aging. The estimation of parameters is made by Maximum Likelihood
and Bayesian inference. Moreover in order to discriminate between our model and Weibull
(or exponential) models, a test procedure has been proposed. Finally different applications
have been presented. The first one is related to the analysis of a prospective mortality table
and the second one concerns the study of failure times for a fleet of 50 vehicles. In both
cases, it is proved that our model is more adapted than the Weibull one.

6.3.3 Mining logs and usage data in a print infrastructure

Participants: Laurent Donini, Jean-Baptiste Durand, Stéphane Girard.

This is joint work with Guillaume Bouchard, Victor Ciriza, Jean-Michel Renders and
Jean-Marc Andreoli from Xerox Research Center Europe.

In the context of the CIFRE PhD position of Laurent Donini, our team will explore and
transfer research regarding logs and usage data in a print infrastructure with application to
network optimisation and monitoring. Scientific and technical challenges include:

e Analysis of multi-dimensional, inter-dependent, heterogeneous time series
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e Stream mining or the ability to handle a continuous stream of relatively huge amount
of data and to potentially take decisions on the fly,

e Social network aspects, multiple interconnected devices with numerous users (poten-
tially organised in communities) with some similarities and dissimilarities to be ex-
ploited both for devices and users,

e Visualization and dimension reduction adapted to specific user goals

The focus will then be on exploiting the mining results in order to optimize operational
conditions or infrastructure, as well as to better monitor the whole fleet of printers. The
main applications of this research will cover the following areas:

e Soft failure detection: detection of changes in printer usage patterns to increase cus-
tomer satisfaction.

e Automatic infrastructure optimization: it includes benchmarking most competitive
devices as well as prioritizing operations depending on customer’s needs extracted
from the data mining of the usage of the infrastructure. The use of other kind of data
as manually entered printer cartographies will also be studied.

e Networked power saving: obtain new algorithms capable of optimizing the electric
power usage based on user’s behaviour across a network of printer devices.

7 Softwares

Our core techniques are usually made available under the forms of software libraries and
binary code. The importance and usefulness of these libraries and binary code is twofold.
First, we want to provide software in addition to our scientific developments and findings
in order to avoid implementation errors by third parties. Second, the dissemination of both
scientific results and their associated software packages will increase the impact of our work
and will maximize its dissemination towards other academics and towards industry. All the
softwares presented bellow have been registered at APP (Software Protection Agency).

7.1 The EXTREMES freeware

Participants: Laurent Gardes and Stéphane Girard.
This is joint work with Jean Diebolt (CNRS), Myriam Garrido (INRA, Clermont-Ferrand)
and Jérome Ecarnot.

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offer-
ing extreme quantile estimation procedures and model selection methods [60]. This software
results from a collaboration with EDF R&D. It is also a consequence of the PhD thesis work
of Myriam Garrido. The software is written in C++ with a Matlab graphical interface. It
is available for Windows and, since August 2005, also for Linux. The current version can be
downloaded at the following URL: http://mistis.inrialpes.fr/software/EXTREMES/.
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Recently, this software has been used to propose a new goodness-of-fit test to the dis-
tribution tail [61]. More generally, the statistics community has shown its interest in this
software. It has been the subject of several communications and publications, among them:

e Journées de la SFDS, Lyon, France, 2003 [62];

e Extreme Value Analysis Conference, Aveiro, Portugal, 2004 [63];

e Extreme Value Analysis Conference, Gothenburg, Sweden, 2005 [64];
e La revue de Modulad, n 30, pp 53-60, 2003 [60];

e and various other publications related to its theoretical content.

Besides, several users had asked for the integration of new statistical methods related to
bias reduction, modelling of the dependence between variables, censoring, etc. In addition, it
is necessary to offer a wider field of application to this software. To this end, we are looking
for financial support to develop a JAVA interface to obtain a software independent from the
user platform. Also, we are considering the development of a web site including new sections
such as FAQ, bug report, etc.

The targetted users include statisticians but also engineers. Other softwares on extremal
events exist but most of them are developped for experts. None of them propose the same
variety of features with the same accessibility.

7.2 The SpaCEM? program

Participants: Juliette Blanchet, Florence Forbes.

The SpaCEM? (Spatial Clustering with EM and Markov Models) program replaces the
former, still available, SEMMS (Spatial EM for Markovian Segmentation) program developed
with Nathalie Peyrard from INRA Avignon.

SpaCEM? proposes a variety of algorithms for image segmentation, supervised and unsu-
pervised classification of multidimensional and spatially located data. The main techniques
use the EM algorithm for soft clustering and Markov Random Fields for spatial modelling.
The learning and inference parts are based on recent developments based on mean field
approximations. The main functionalities of the program include:

The former SEMMS functionalities, ie.

e Model based unsupervised image segmentation, including the following models: Hidden
Markov Random Field and mixture model;

e Model selection for the Hidden Markov Random Field model;
e Simulation of commonly used Hidden Markov Random Field models (Potts models).
e Simulation of an independent Gaussian noise for the simulation of noisy images.

And additional possibilities such as,
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e New Markov models including various extensions of the Potts model and triplets
Markov models;

e Additional treatment of very high dimensional data using dimension reduction tech-
niques within a classification framework;

e Models and methods allowing supervised classification with new learning and test steps.

The SEMMS package, written in C, is publicly available at: http://mistis.inrialpes.
fr/software/SEMMS.html. The SpaCEM? written in C++ is available at http://mistis.
inrialpes.fr/software/SpaCEM3.html.

Publications and communications related to the theoretical basis and the various methods
made available in the package include:

e Pattern Recognition 2003 [12];
e IEEE Pami, 2003 [16];

British Machine Vision Conference, Oxford, UK, 2005 [45];

Applied Stochastic Models and Data Analysis Conference, Brest, France, 2005 [65].

Compstat Conference, Roma, Italy, 2006 [7].

A new version of the software will be publicly available soon with an appropriate user
interface. In addition, new models and methods will be included related to new developments
in Juliette Blanchet’ PhD thesis.

7.3 The FASTRUCT software

Participants: Chibiao Chen (INRIA Post-doc 2006), Florence Forbes.
This is joint work with Olivier Francois (TimB, TIMC).

The FASTRUCT program is dedicated to the modelling and inference of population
structure from genetic data. Bayesian model-based clustering programs have gained in-
creased popularity in studies of population structure since the publication of the software
STRUCTURE %], These programs are generally acknowledged as performing well, but
their running-time may be prohibitive. FASTRUCT is a non-Bayesian implementation of
the classical model with no-admixture uncorrelated allele frequencies. This new program
relies on the Expectation-Maximization principle, and produces assignment rivaling other
model-based clustering programs. In addition, it can be several-fold faster than Bayesian
implementations. The software consists of a command-line engine, which is suitable for
batch-analysis of data, and a MS Windows graphical interface, which is convenient for ex-
ploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at
http://mistis.inrialpes.fr/realisations.html.

The functionalities are further described in the related publication:

[25] J.K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155:945-959, 2000.
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e Molecular Ecology Notes 2006 [55].

7.4 The TESS software

Participants: Chibiao Chen (INRIA Post-doc 2006), Florence Forbes.
This is joint work with Olivier Francois (TimB, TIMC).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial
population genetics. Is it particularly useful for seeking genetic barriers or genetic discon-
tinuities in continuous populations. The method is based on a hierarchical mixture model
where the prior distribution on cluster labels is defined as a Hidden Markov Random Field
(12l Given individual geographical locations, the program seeks population structure from
multilocus genotypes without assuming predefined populations. TESS takes input data files
in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE).
It returns graphical displays of cluster membership probabilities and geographical cluster
assignments from its Graphical User Interface.

The functionalities and the comparison with three other Bayesian Clustering programs
are specified in the following publication:

e Molecular Ecology Notes 2007, under revision [66].

7.5 The HDDA and HDDC toolboxes

Participant: Stéphane Girard
This is joint work with Charles Bouveyron (Acadia University, Canada)

HDDA Toolbox. The High-Dimensional Discriminant Analysis (HDDA) toolbox con-
tains efficient supervised classifiers for high-dimensional data. These classifiers are based
on Gaussian models adapted to high-dimensional data. The HDDA toolbox is available for
Matlab and will be soon included into the software MIXMOD (see below). Version 1.1 of
the HDDA Toolbox is now available.

HDDC Toolbox. The High-Dimensional Data Classification (HDDC) toolbox contains
efficient unsupervised classifiers for high-dimensional data. These classifiers are also based
on Gaussian models adapted to high-dimensional data. The HDDC toolbox is available for
Matlab.

Both toolboxes are available at http://ace.acadiau.ca/math/bouveyron/softwares.
html.

7.6 Contribution to MIXMOD
Participant: Stéphane Girard

The MIXMOD (MIXture MODelling, http://www-math.univ-fcomte.fr/mixmod/index.
php) software fits mixture models to a given data set with a density estimation, a clustering

[12] O. Francois, S. Ancelet, and G. Guillot. Bayesian clustering using Hidden Markov Random Fields in
spatial genetics. Genetics, pages 805-816, 2006.
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or a discriminant analysis purpose. It has been developed jointly by INRIA (SELECT team),
Laboratory of Mathematics of Besangon, Laboratory of Mathematics of Lille and Laboratory
Heudiasyc (Compiegne). The work of Charles Bouveyron and Stéphane Girard described
in Section 5.1.2 is going to be implemented in MIXMOD and will offer new functionalities
regarding classification of high dimensional data.

8 Provisional programme of work and expected results

Our main mid-term goal (2 to 4 years) is to develop a general statistical formalism and a set
of tools to analyse complex spatial data. We will focus mainly on two source of complexity
by dealing with structured data or spatially organized data but in a non predictable regular
way, and also with high dimensional data and various mixture of the two. We will provide
tools to deal with irregularly located datapoints associated to high-dimensional features. We
will give at least four illustrations of our techniques with one application regarding computer
vision, object recognition and classification, one application in genomics, one application in
population genetics and one application on remote sensing data.

Object recognition: particularity lies in the complexity /variability of the object classes,
the high-dimension of the descriptors and the choice of their organizational model. This will
be based on the Movistar project (see Section 10.1) and our collaboration with team Lear.

Genomics: particularity lies in the integration of the various type of available information
and the question of how to weight these various sources. The data may also be high-
dimensional but the treatement will be similar as above. Additional issues will appear due
to the problem of interpreting the results. Specific problems also arise due to the difficulty in
setting biological information /issues into statistically well formulated problems. The context
is that of the IBN and ChromoNet projects (see Section 10.1) and our collaboration with
team Helix.

Population genetics: particularity lies in the discrete nature of the data (eg. allele fre-
quencies, Section 6.2.2) and the comparison/combination with Bayesian modelling. The
choice of an organizational model also arises. The context is our collaboration with team
TimB from TIMC laboratory.

Remote sensing: a first data visualization stage/goal will be reached using the dimension
reduction and segmentation techniques developped above. But space-time data requires spe-
cific treatement and additional techniques regarding curves analyses will be used to solve a
second stage physical model inversion issue. The context is our collaboration with Labora-
toire de Planétologie de Grenoble.

We will also focus on the issue of modelling and taking into account high-level a priori
knowledge. Our approach will be based on integrated Markov models. We will go on in-
vestigating the use of such models for MRI analysis (see Section 6.1.4 and our collaboration
with the INSERM unit U594) and investigate their extensions to the modelling of percep-
tion (visual and auditory) in the context of a new European project POP coordinated by
Radu Horaud from team PERCEPTION (see Section 10.1). Other Network and data fusion
aspects will be examined through our collaboration with Xerox on Log analysis and printer
infrastructures (Section 6.3.3).
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In parallel, we will provide some of our techniques with theoretical results mainly about
convergence and speed.

Also new softwares will be available either in the form of new improved version of already
available ones or in the form of additional codes making new techniques available. New
methods and new interface will be added in Extremes. The new program SpaCEM? replacing
the former SEMMS package will be further improved with additional features. Development
around the FASTRUCT and TESS softwares are planned depending on the impact in the
population genetics community.

9 Positioning

9.1 Related INRIA teams

The activities of MISTIS regarding statistical methodology overlap at least four of the seven
INRIA challenges through key-words such as complex systems, information, applications to
medicine and biology.

MISTIS is classified in the INRIA thema Cognitive Systems (A): Statistical modelling
and machine learning. The only other team focused on statistical methodology in this group
is the team of G. Celeux, SELECT: Model selection in statistical learning. We have similar
objectives but we differentiate from this team in that model selection is included in part
of the issues we want to address but we do not aim at providing a general methodology to
deal with this problem. We may actually be interested in using new methods proposed in
SELECT. Besides, Markov and graphical models, the associated approximation techniques
and the semi and non-parametric aspects we intend to develop are not included in SELECT
objectives.

In the same group, team TAO focus on Machine Learning and Optimization. More
contacts with this team involved in the learning community would be interesting for MISTIS.

In group Cognitive Systems (B): Perception, indezxing and communication for images and
video, we share interests with ARIANA and VISTA as regards the use of Markov models in
image analysis. However, although we currently deal with images in a number of applications,
our aim is not to restrict to such data but to focus more on the idea of structure underlying
various systems.

In this group, our main interaction is with teams LEAR and PERCEPTION. Our sta-
tistical expertise is greatly enhanced through combination with their expertise in computer
vision. We work closely with team LEAR through two co-advised PhD students and a com-
mon national project ACI masses de données [45, 67, 68, 69, 70] (see Movistar in Section
10.1).

We interact with PERCEPTION through pointwise collaborations [71] and a European
project POP (see Section 10.1) which also includes the work of PhD students, V. Khalidov
(Mistis) and Ramya Narasimha (Perception).

Other interactions would be interesting with team PRIMA, in group Cognitive Systems
(C), as regards mixture models and hidden Markov Chains for instance.

In group Biological Systems (A), we interact with team HELIX through our participation
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to Cooperative Research Initative projects (ARC IBN and ChromoNet, see Section 10.1) and
through Matthieu Vignes’ PhD thesis. We have also contact with team VISAGES regarding
statistical analysis in medical imaging (MRI), in particular in ARC SeLMIC (Section 10.1).
Besides, Jean-Baptiste Durand is also a member of team VIRTUAL PLANTS which has
expertise in stochastic modelling and in particular in Markov models, with a specific focus
on plant development.

Two other teams with statistics background are ASPI and SISTHEM in the Numerical
Systems (C) group. The first one deals like us with hidden Markov Models with special
emphasis on hidden Markov chains (1-dimensional) while we focus more on 2-dimensional
models. Also we use rather different techniques. Their approach is based on filtering and
particle systems with focus on simulations and Monte Carlo methods while we are more
interested in deterministic approximations. The second team focus on Structural Health
Monitoring with statistical inference tools including identification, change detection, rejec-
tion methods rather different than ours.

In the same group, team MOISE is using statistical methods but not directly in our
domain of expertise.

In group Numerical Systems (A), we have common interests with e-MOTION regarding
Bayesian networks. This team focus on Bayesian programming applied to robotics while we
have a more formal approach of Bayesian techniques. As a matter of fact, we mentionned
the idea of organizing common working groups with this team.

Eventually, in group Numerical Systems (B), we share common probabilistic interests
with team MESCAL. We may develop interactions with this team as regards structured
models and simulation techniques. Both our teams are member of a local workshop (Pro-
gramme Pluri Formations) including other academic members around common probabilistic
tools.

9.2 National positioning

In the local context, we are closely related to the other statistics teams in Grenoble, namely
teams SMS and former LABSAD, through collaborations but also co-organized seminars and
workshops. In addition MISTIS is part of the new (January 2007) LJK laboratory (about
44 permanent researchers in the statistics department) that gathers locally various applied
mathematics groups including the two previously mentionned and many others.

Possible interactions with these teams include functional inference, multi resolution anal-
ysis, dimension reduction techniques, Markovian and graphical models and reliability.

MISTIS’ originality is mainly in our specific expertise in Markovian graphical models for
spatial data, mixture modelling combined with interaction modelling and high-dimensional
data analysis.

Outside the local context, other groups in France focus on research themes related to ours.
These groups include an INRA team in the Biometry unit in Avignon (about 6 permanent
researchers). It is specialized in spatial statistics and uses approches including Markovian
models, Gibbs fields, stochastic simulation techniques, Monte Carlo Markov chains. Some
of its research interests are closely related to ours, in particular as regards spatial data clas-
sification. We know some of its members very well and have common work and publication
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with two of its permanent members (see Section 5.2.3).

In Compiegne, the ASTRID team (14 permanent researchers) in the HEUDIASYC unit
focus on pattern recognition and data analysis, image and signal processing using statisti-
cal approaches for discrimination and classification. Its expertise is somewhat in between
ours and that of team LEAR as regards learning techniques for computer vision. We all
participated in the same ACI project (see Section 10.1).

The TSI (Signal and Image Processing) department at ENST in Paris and more specifi-
cally team TSAC including about 15 permanent researchers, has similar research topics such
as those regarding hidden Markov chains and hidden Markov fields. Gersende Fort is now
working in this department since June 2005.

We also have interactions with the SSB group gathering about 30 permanent researchers
from INRA, Génopole Evry, INA-PG, universities of Rouen and Toulouse. Its focus is on
statistics applied to genomic data and we have common interests in particular around the use
of graphical models for such data. This group was also involved in ARC IBN and ChromoNet
(see Section 10.1).

Among university teams, it worthes mentionning the probability and statistics team from
university Montpellier 2 (18 permanent researchers). Common interests include mainly func-
tional estimation. Stéphane Girard is a former member of this group and is still collaborating
(recent co-publications) with two of its members.

In addition, large statistics groups in France are located in Toulouse and Paris. Of
interest for us is the MAFIA group (12 permanent researchers) from university Toulouse
3 which focus on non parametric statistics, stochastic algorithms and dependencies on a
theoretical point of view. We do not have current collaboration with this group but it would
certainly be interesting for MISTIS to initiate some. In Paris, the LSTA team (20 permanent
researchers) from university Paris 6, include researchers working on non parametric statistics
and bayesian statistics also on a more formal point of view. We have collaboration and co-
publications with one of its former member.

9.3 International positioning

In Europe, the statistics department (about 15 researchers) at Glasgow university in Scot-
land focus on topics similar to ours. Image and spatial data analysis is a significant part
of their research, in particular through projects regarding image reconstruction, Markov
models estimation, Missing data and variational approximations. Some of this departement
members would be very relevant partners for MISTIS. We shared some work and a co-signed
publication [17] with Professor Mike Titterington, head of the department.

Let us also mention the Center for Statistics and Applications (CEAUL) at Lisbon uni-
versity in Portugal (about 30 permanent researchers). Common topics of interest include
spatial statistics and geostatistics, classification and data mining, extremal event modelling.

In the United States, we are especially in touch with the statistics department of the
university of Washington in Seattle (about 30 permanent researchers). Various common
publications and visits to this department account for our fructful relationship with some of
its members. There exist a number of significant statistics department in the States with
which we have common research interest and whose research topics intersect with ours. Let
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us cite as an example Purdue and Berkeley (about 40 permanent researchers) universities.

In Australia, the Statistics program of the Mathematical Sciences Institut (MSI) at Aus-
tralia National University (ANU) in Camberra gathers about 10 researchers. Its research
interests overlap with ours as regard mixture models, spatial statistics, boundary estimation,
discriminant analysis and dimension reduction.

10 Scientific collaborations

10.1 Contracts and grants

MISTIS got a Ministry grant (Action Concertée Incitative Masses de données) for a three-
year project (2003-2006) involving other partners (team Lear from INRIA, SMS from Uni-
versity Joseph Fourier and Heudiasyc from UTC, Compiégne). The project called Movistar
aims at investigating visual and statistical models for image recognition and description and
learning techniques for the management of large image databases. The PhD work of Juliette
Blanchet and Charles Bouveyron are related to this project.

MISTIS has also been involved (2005-2006) in the IBN (Integrated Biological Networks)
project coordinated by Marie-France Sagot from INRIA team HELIX. This project is part of
the Cooperative Research Initiative (ARC) supported by INRIA. The other partners include
two other INRIA teams (HELIX and SYMBIOSE, Pasteur Institute and INRA, Jouy-en-
Josas. The PhD work of Matthieu Vignes is related to this project.

Since January 2007, Mistis is involved in two other ARC projects. The SeLMIC project
is coordinated by Florence Forbes and aims at developping new statistical methods for
the segmentation of multidimensional MR sequences corresponding to different types of
MRI modalities and longitudinal data. The applications include the detection of brain
abnormalities and more specifically brain attacks and Multiple Sclerosis lesions. The partners
involved are team VisAGeS from INRIA Rennes, the INSERM Unit U594 and team Magma
from LIG.

The ChromoNet project is coordinated by Marie-France Sagot from team Helix. It aims
at the computational inference and analysis of inter-chromosomal interaction networks. The
additional partners are the SSB (Statistiques des Séquences Biologiques) group at INRA and
the Nuclear Organisation team at MRC, Imperial College London.

MISTIS is then involved in a European STREP proposal, named POP (Perception On
Purpose, http://perception.inrialpes.fr/POP) coordinated by Radu Horaud from IN-
RIA team PERCEPTION. The other partners are the universities of Osnabruck, Hospital
Hamburg-Eppendorf, Coimbra and Sheffield. The three-year project starts in January 2006.
Its objective is to put forward the modelling of perception (visual and auditory) as a complex
attentional mechanism that embodies a decision taking process. The task of the latter is to
find a trade-off between the reliability of the sensorial stimuli (bottom-up attention) and the
plausibility of prior knowledge (top-down attention). The MISTIS part is to contribute to
the development of theoretical and algorithmic models based on probabilistic and statistical
modelling of both the input and the processes data. Bayesian theory and hidden Markov
models in particular will be combined with efficient optimization techniques in order to con-
front physical inputs and prior knowledge. A PhD student, Vasil Khalidov has been hired
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in November 2006 to work on this project.

10.2 Collaborations

Besides the Movistar partners, our research regarding dimension reduction in image analysis,
is also joint work [72] with Serge Iovleff from university of Lille I.

We collaborate with Denis Allard and Nathalie Peyrard from INRA, Avignon, on statis-
tical methods and models to cluster geostatistical data (see Section 5.2.3).

We have joint work with Olivier Francois from team TimB in TIMC laboratory regarding
spatial models for population genetics (see Section 6.2.2). The post-doc work of Chibiao Chen
was part of this collaboration. In this same team, we have joint work with Cécile Amblard
on copulas [73, 74].

We are also involved in the PhD thesis of Benoit Scherrer co-advised by Catherine Garbay
and Michel Dojat from team Magma, LIG and INSERM Ub594. Benoit’s work regards MRI
segmentation and analysis (see Section 6.1.4).

We are collaborating with Sylvain Douté and Etienne Deforas from Laboratoire de
Planétologie de Grenoble on the analysis of remote sensing data. The post-doc work of
Caroline Bernard-Michel is related to this collaboration.

We have joint work with Prof. Alexandre Nazin from Institute of Control Science in
Moscow, Russia. Prof. A. Nazin has been visiting us regularly for periods of 2-3 months.
The most recent common works [75, 76] deals with frontier estimation by linear programming
(see section 5.3.2).

We have joint work on frontier estimation with Ludovic Menneteau and Prof. Pierre
Jacob from the probability and statistics team of university Montpellier 2, with Prof. Ali
Gannoun from CNAM and with Prof. Jérome Saracco from university Bordeaux 4.

We also work on extreme value analysis with Prof. Armelle Guillou, from university
of Strasbourg, formerly at LSTA, university Paris 6, Myriam Garrido (INRA Clermont-
Ferrand) and with Jean Diebolt from CNRS at university Marne-la-vallée.

We also have strong collaboration [49, 46, 47] with the Statistics department of univer-
sity of Washington in Seattle. Florence Forbes visited the department on a regular basis
(five visits) for periods of 3-4 months and was involved in the Model-based clustering and
Applications workshop organized by Prof. Adrian Raftery.

10.3 Industrial contracts

The team does not currently have contracts with industrial partners. However, we give in
this section some evidence of our efforts to create and develop such collaborations.

Our last contract was under the advising of C. Lavergne and was initiated in the for-
mer IS2 team, with the LCFR (Laboratoire de Conduite et Fiabilité des Réacteurs) of
CEA/Cadarache/DER. It ended in 2005 and funded during three years the PhD thesis of
J. Jacques on sensitivity analysis. Our main contact at CEA/Cadarache is N. Devictor
and we are hopping to pursue this collaboration on different topics through a co-advised
post-doctoral project on reliability and uncertainties statistical analysis (see Section 6.3.1).
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Another possibility we plan to investigate, with A. de Crecy from CEA/Grenoble, is the use
of EM-like algorithms in the modeling of physical processes with unobserved states.

Our more recent efforts include a first meeting with Trixell in the Thales group (J.M.
Vignolle) on statistical image analysis and more specific collaborations regarding methods
and data in relation to the PhD work of Yann Le Meur (CIFRE LIS-Trixell).

Also, we signed in December 2006 a CIFRE contract with Xerox, Meylan, regarding the
PhD work of Laurent Donini about statistical techniques for mining logs and usage data in
a print infrastructure (Section 6.3.3). The thesis will be co-advised by Stéphane Girard and
Jean-Baptiste Durand on the Mistis side and Jean-Michel Renders from Xerox. Our contacts
at Xerox include Guillaume Bouchard, a former IS2 PhD student, who is currently working
with us on boundary estimation (see Section 5.3.2).
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