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q
(r−1)
W

[log p(z|y,W;ψ(r)]
)

(2)

E-W: q
(r)
W ∝ exp

(
E

q
(r)
Z

[log p(ω|y,Z;ψ(r))]
)

(3)

M: ψ(r+1) = arg max
ψ∈Ψ

E
q

(r)
Z q

(r)
W

[log p(y,Z,W ;ψ)] . (4)



Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Variational Bayesian EM Solution

Alternating Maximization

I Use K-L divergence properties to avoid taking derivatives

I

E-Z: q
(r)
Z ∝ exp

(
E

q
(r−1)
W

[log p(z|y,W;ψ(r)]
)

(2)

E-W: q
(r)
W ∝ exp

(
E

q
(r)
Z

[log p(ω|y,Z;ψ(r))]
)

(3)

M: ψ(r+1) = arg max
ψ∈Ψ

E
q

(r)
Z q

(r)
W

[log p(y,Z,W ;ψ)] . (4)



Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Variational Bayesian EM Solution

E-Z
I Note p(z|y, ω;ψ) is Markovian with energy

H(z|y, ω;ψ) ∝ HZ(z;β) +
∑
i∈V

log g(yi |zi , ωi ;φ), (linear in ω)

(5)

I Therefore (2) becomes

E-Z: q
(r)
Z ∝ p(z|y,E

q
(r−1)
W

[W ];ψ(r)). (6)

I Mean-Field like algorithm provides MRF approximation and

q̃
(r)
Z (z) ∝

∏
i∈V

M∏
m=1

G(yim;µ
(r)
zim,

s
(r)
zim

ω̄
(r−1)
im

)p(zi |z̃
(r)
N (i);β(r)), (7)



Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Variational Bayesian EM Solution

E-Z
I Note p(z|y, ω;ψ) is Markovian with energy

H(z|y, ω;ψ) ∝ HZ(z;β) +
∑
i∈V

log g(yi |zi , ωi ;φ), (linear in ω)

(5)

I Therefore (2) becomes

E-Z: q
(r)
Z ∝ p(z|y,E

q
(r−1)
W

[W ];ψ(r)). (6)

I Mean-Field like algorithm provides MRF approximation and

q̃
(r)
Z (z) ∝

∏
i∈V

M∏
m=1

G(yim;µ
(r)
zim,

s
(r)
zim

ω̄
(r−1)
im

)p(zi |z̃
(r)
N (i);β(r)), (7)



Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Variational Bayesian EM Solution

E-Z
I Note p(z|y, ω;ψ) is Markovian with energy

H(z|y, ω;ψ) ∝ HZ(z;β) +
∑
i∈V

log g(yi |zi , ωi ;φ), (linear in ω)

(5)

I Therefore (2) becomes

E-Z: q
(r)
Z ∝ p(z|y,E

q
(r−1)
W

[W ];ψ(r)). (6)

I Mean-Field like algorithm provides MRF approximation and

q̃
(r)
Z (z) ∝

∏
i∈V

M∏
m=1

G(yim;µ
(r)
zim,

s
(r)
zim

ω̄
(r−1)
im

)p(zi |z̃
(r)
N (i);β(r)), (7)



Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Variational Bayesian EM Solution

E-W

I Similarly p(ω|y, z;ψ) is Markovian with energy

H(ω|y, z;ψ) ∝ HW (ω) +
∑
i∈V

log g(yi |zi , ωi ;φ) (8)

I E
q

(r)
W

[Wim] denoted by ω̄
(r)
im becomes

ω̄
(r)
im =

αim + 1
2

γim + 1
2

∑K
k=1 δ(yim, µ

(r)
km, s

(r)
km) q

(r)
Zi

(k)
(9)

where δ(y , µ, s) = (y − µ)2/s is the squared Mahalanobis
distance.
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Variational Bayesian EM Solution

M

I β solved using mean field approximation

I φ updated using

µ
(r+1)
km =

∑N
i=1 q

(r)
Zi

(k) ω̄
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im yim∑N
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Lesion Segmentation Procedure

Expert Weighting

I Region L defines
candidate lesions

I L weighted with ωL > 1
(ω\L = 1)

I K = 3, ωexp
im = 1 and

γim = 1 setting

I Threshold Most
Informative Weight Map
(chi-square percentile)
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Lesion Segmentation Procedure

Inlier Setting

I K = 4, initialized with K = 3 result (+ thresholded lesions)

I γim = γL∀i ∈ L (γL = 10)

I γim = γL̄∀i 6∈ L. (γL̄ = 1000)

I ωL depends on number of voxels in L
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Results

Simulated Data 0% IIH

Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 68 (+1) 49 (-21) 36 (+2) 12 (+8)
[1] 67 70 34 0
[3] 56 33 13 4
[2] 52 NA NA NA

Moderate lesions (0.18% of the voxels)
AWEM 86 (+7) 80 (-1) 73 (+14) 64 (+27)
[1] 72 81 59 29
[3] 79 69 52 37
[2] 63 NA NA NA

Severe lesions (0.52% of the voxels)
AWEM 92 (+7) 86 (-2) 78 (+6) 68 (+27)
[1] 79 88 72 41
[3] 85 72 56 41
[2] 82 NA NA NA
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Results

Simulated Data 40% IIH

Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 0 (-75) 0 (-65) 0 (-20) 0 (-30)
[1] 75 65 20 30
[3] 58 27 13 6

Moderate lesions (0.18% of the voxels)
AWEM 52 (-24) 51 (-25) 52 (-15) 10 (-38)
[1] 75 76 67 48
[3] 76 64 47 31

Severe lesions (0.52% of the voxels)
AWEM 87 (+1) 84 (+1) 77 (+3) 66 (+8)
[1] 75 83 74 58
[3] 86 74 62 45
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Results

Real Data (Rennes MS)

LL EMS AWEM

Patient1 0.42 62 82 (+20)
Patient2 1.71 54 56 (+2)
Patient3 0.29 47 45 (-2)
Patient4 1.59 65 72 (+7)
Patient5 0.31 47 45 (-2)

Average 55 +/-8 60 +/-16
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Results

Results

(a) (b) (c)

Figure: Real MS data, patient 3. (a): Flair image. (b): identified lesions
with our approach (DSC 45%). (c): ground truth .
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Results

Results

(a) (b) (c)

Figure: Real stroke data. (a): DW image. (b): identified lesions with
our approach (DSC 63%). (c): ground truth.
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Results

Discussion & Future Work

I Extension to full covariance matrices: temporal
multi-sequence data, eg. patient follow-up

I Exploration of Markov Prior

I Other expert weighting schemes, possibly lesion specific

I Extension to handle intensity inhomogeneities

I Sensitivity analysis: initialization, parameter tuning etc.
(Darren)

I Evaluation in a semi-supervised context
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