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Noise

Intensity Inhomogeneity
Partial Volume Effects
Other Artefacts

Poor Contrast between
Tissues

Poor Representation of
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Inliers Versus Outliers

Lesions usually modelled as outliers.
» Widely Varying & Inhomogeneous Appearance
» Small in Size
Our approach
» Adopt a Model so that Lesion Voxels become Inliers
» Introduce Weight Field
» Bayesian Estimation of Weights
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Data term

» M-Dimensional Gaussians, Diagonal Covariance
>

M
Sz.
g(yilzi»wii @) = [ G0imi p1zim, =)
m=1 m

» Related to Logarithmic Pooling

M
X H Q(yim?ﬂz,m,sz;m)wi'" :

m=1
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Missing Data term

» Potts Model, external field &, interaction parameter 7

HZ(Z;ﬁ) = Z élz, + Z zlvzj

iev JEN(i)

>

» B=1{&n} with € = {*(¢1...€ik), i € V} being a set of
real-valued K-dimensional vectors and 7 a real positive value.
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Parameter Prior term

» Weights independent of 1), across Sequences

» Define Conjugate Prior p(w H H p(wim)
m=1jeV

» p(wim) is a Gamma distribution with hyperparameters o,
(shape) and 7, (inverse scale)

M
— Z Z((a,-m — 1) log wim — Yim Wim)-

m=1lieV

» Modes fixed to expert weights {w;F m=1...M,i € V} by

m >’
setting ajm = Yim W f:,p +1
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Alternating Maximization

» E-step solved over restricted class of probability distributions,
D, s.t. q(z,w) = qz(z) qw(w) where gz € Dz and qw € Dw
>

E-Z-step: q)) = arg Mmax Flaly V) aziv)

E-W-step: q() arg _max (qw qz)w ).

qw€Dw
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Alternating Maximization

» Use K-L divergence properties to avoid taking derivatives

E-Z: q(Zr) X exp <qu'v 1;[|ogp(z\y.W;('(r)]> (2)

v.z0O)) @)

arg max Eq?q(,)[log p(y,Z, W;¢)] . (4)

e w

E-W: qEAr/) X exp <Eq<l,)[|ogp(,u
M: (1)
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Alternating Maximization

» Use K-L divergence properties to avoid taking derivatives
>

E-Z: qf) o ep(Egvllogp(zly. Wiv])  (2)
EW: qf) o« e (Eplogpely, Zv?)])  (3)
. (r+1) _ .

M: 4 = argmax E o qollogply, Z, Wi )] . (4)
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E-Z

» Note p(z]y,w; 1) is Markovian with energy
H(zly, w; ¥) < Hz(z: B) + Y log g(yilzi, wii ¢), (linear in w)

ieVv
(5)
» Therefore (2) becomes

E-Z: g7 o plaly, E o n[W]00). (6)

» Mean-Field like algorithm provides MRF approximation and

$
O(HHgylvazma_rf)) ( ,|Z ﬁ(r)) (7)

i€V m=1 Wim
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E-W

» Similarly p(wly, z; ) is Markovian with energy

H(wly, z:¢) & Hw(w) + > logg(yilzi,wii¢)  (8)
iev
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E-W

» Similarly p(wly, z; ) is Markovian with energy

H(wly,z;v¥) o« Hy(w) + Z log g(yi|zi, wi; ¢) (8)
ieVv

Eq(,)[W,-,,,] denoted by G)I(,;) becomes

1
G = I on NG )
Yim + 5 Z 5(ylma )U’kma Skm ) qz ( )

where §(y, i1,5) = (y — p)?/s is the squared Mahalanobis
distance.
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M

» (3 solved using mean field approximation

¢ updated using

[(r+1) o Z =1 qZ ( ) Im )/lm
km o r —(r
ZIN 1 q(Z)(k) ‘U/(m)
r - r+1
(r+1) ZlNil q(Z,)(k) /(m) ()//m o /IE(,;L ))

Skm o r
SN aP (k)
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M

» (3 solved using mean field approximation

» ¢ updated using

N _
(r+1) >is 1qz (k ik y
Hgm = ’

Z, 1qz (k)
oy _ TR m?()--)(y,-m i )

b Z: qu()
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L Lesion Segmentation Procedure

Inlier Setting

» K =4, initialized with K = 3 result (+ thresholded lesions)
> Yim =vcVi € L (72 = 10)

> Yim =zVi & L. (77 = 1000)

» w, depends on number of voxels in £
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- Results

Simulated Data 0% IIH

Method | 3% 5% % ] %
Mild lesions (0.02% of the voxels)

AWEM | 68 (+1) | 49 (-21) | 36 (+2) | 12 (+8)

1] 67 70 34 0

3] 56 33 13 4

2] 52 NA NA NA

Moderate lesions (0.18% of the voxels)

AWEM | 86 (+7) | 80 (-1) | 73 (+14) | 64 (+27)

1] 72 81 59 29

3] 79 69 52 37

2] 63 NA NA NA
Severe lesions (0.52% of the voxels)

AWEM | 92 (+7) | 86 (-2) | 78 (+6) | 68 (+27)

1] 79 88 72 a1

3] 85 72 56 41

2] 82 NA NA NA
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- Results

Simulated Data 40% IIH

Method | 3% 5% | 7% | 9%
Mild lesions (0.02% of the voxels)
AWEM | 0 (-75) | 0(65) | 0(20) | 0 (-30)
1] 75 65 20 30
3] 58 27 13 6
Moderate lesions (0.18% of the voxels)
AWEM | 52 (-24) | 51 (-25) | 52 (-15) | 10 (-38)
1] 75 76 67 48
[3] 76 64 47 31
Severe lesions (0.52% of the voxels)
AWEM | 87 (+1) | 84 (+1) | 77 (4+3) | 66 (+8)
[1] 75 83 74 58
3] 86 74 62 45
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L Results

Real Data (Rennes MS)

LL EMS AWEM
Patientl | 0.42 62 82 (+20)
Patient2 | 1.71 54 56 (+2)
Patient3 | 0.29 47 45 (-2)
Patient4 | 1.59 | 65 | 72 (+7)
Patient5 | 0.31 47 45 (-2)
Average 55 +/-8 | 60 +/-16
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L Results
(2) (b) (c)

Figure: Real MS data, patient 3. (a): Flair image. (b): identified lesions
with our approach (DSC 45%). (c): ground truth .

Results
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Brain Lesion Segmentation: A Bayesian Weighted EM Approach
LResuIts

Results

(a) (b) (c)

Figure: Real stroke data. (a): DW image. (b): identified lesions with
our approach (DSC 63%). (c): ground truth.
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- Results

Discussion & Future Work

vV v v Vv

Extension to full covariance matrices: temporal
multi-sequence data, eg. patient follow-up

Exploration of Markov Prior
Other expert weighting schemes, possibly lesion specific
Extension to handle intensity inhomogeneities

Sensitivity analysis: initialization, parameter tuning etc.
(Darren)

Evaluation in a semi-supervised context
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