Brain Lesion Segmentation: A Bayesian Weighted EM Approach

Senan Doyle, Florence Forbes, Michel Dojat

November 19, 2009

Table of contents

Introduction & Background

A Weighted Multi-Sequence Markov Model

Variational Bayesian EM Solution

Lesion Segmentation Procedure

Results

Goal

Delineation & Quantification of Lesions

- Establish Patient Prognosis
- Chart Development over Time

Goal

Delineation & Quantification of Lesions

- Establish Patient Prognosis
- Chart Development over Time
- Automatically!

Goal

Delineation & Quantification of Lesions

- Establish Patient Prognosis
- Chart Development over Time
- Automatically!

MRI Imaging

▶ 3D Volume of Voxels

 Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- ► 3D Volume of *Voxels*
- Different MRI Sequences (T1, T2-w, FLAIR, Diffusion Weight ...)
- Cephalo Spinal Fluid (CSF), White Matter (WM), Grey Matter(GM)

- Noise
- Intensity Inhomogeneity

- Noise
- Intensity Inhomogeneity
- Partial Volume Effects

- Noise
- Intensity Inhomogeneity
- Partial Volume Effects
- Other Artefacts

- Noise
- Intensity Inhomogeneity
- Partial Volume Effects
- Other Artefacts
- Poor Contrast between Tissues

- Noise
- Intensity Inhomogeneity
- Partial Volume Effects
- Other Artefacts
- Poor Contrast between Tissues
- Poor Representation of Lesion

- Noise
- Intensity Inhomogeneity
- Partial Volume Effects
- Other Artefacts
- Poor Contrast between Tissues
- Poor Representation of Lesion

Inliers Versus Outliers

Lesions usually modelled as outliers.

Widely Varying & Inhomogeneous Appearance

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

Our approach

Adopt a Model so that Lesion Voxels become Inliers

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

- Adopt a Model so that Lesion Voxels become Inliers
- Introduce Weight Field

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

- Adopt a Model so that Lesion Voxels become Inliers
- Introduce Weight Field
- Bayesian Estimation of Weights

Inliers Versus Outliers

Lesions usually modelled as outliers.

- Widely Varying & Inhomogeneous Appearance
- Small in Size

- Adopt a Model so that Lesion Voxels become Inliers
- Introduce Weight Field
- Bayesian Estimation of Weights

Brain Lesion Segmentation: A Bayesian Weighted EM Approach A Weighted Multi-Sequence Markov Model

Multi-Sequence

T1

PD

T2

Brain Lesion Segmentation: A Bayesian Weighted EM Approach A Weighted Multi-Sequence Markov Model

Multi-Sequence

Figure: Feature Space, Lesion in Red

Brain Lesion Segmentation: A Bayesian Weighted EM Approach A Weighted Multi-Sequence Markov Model

Multi-Sequence

Figure: Feature Space, Lesion in Red

Additional Information

Spatial Dependency

 Prior Probabilistic Tissue Atlas

- Spatial Dependency
- Prior Probabilistic Tissue Atlas

- Spatial Dependency
- Prior Probabilistic Tissue Atlas

- Spatial Dependency
- Prior Probabilistic Tissue Atlas

- Spatial Dependency
- Prior Probabilistic Tissue Atlas

Definitions

- Regular 3D Grid, $i = 1, \ldots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$

Definitions

- Regular 3D Grid, $i = 1, \ldots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ▶ Labelling $\mathbf{z} = {\mathbf{z}_1, \dots, \mathbf{z}_N}, \mathbf{z}_i \in {1 \dots K}, \mathbf{z} \in \mathcal{Z}.$

Definitions

- Regular 3D Grid, $i = 1, \ldots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ▶ Labelling $\mathbf{z} = {\mathbf{z}_1, \dots, \mathbf{z}_N}$, $\mathbf{z}_i \in {1 \dots K}$, $\mathbf{z} \in \mathcal{Z}$.
- ▶ Nonnegative Weights $\omega = \{\omega_i, i \in V\}, \omega \in W, \omega_i = \{\omega_{i1}, \dots, \omega_{iM}\}.$
Definitions

- Regular 3D Grid, $i = 1, \ldots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ► Labelling $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$, $\mathbf{z}_i \in \{1 \dots K\}$, $\mathbf{z} \in \mathcal{Z}$.
- ► Nonnegative Weights $\omega = \{\omega_i, i \in V\}, \omega \in \mathcal{W}, \omega_i = \{\omega_{i1}, \dots, \omega_{iM}\}.$

▶ Joint distribution $p(\mathbf{y}, \mathbf{z}, \omega; \psi)$, $\psi = \{\beta, \phi\}$ with

Definitions

- Regular 3D Grid, $i = 1, \ldots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ► Labelling $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$, $\mathbf{z}_i \in \{1 \dots K\}$, $\mathbf{z} \in \mathcal{Z}$.
- ▶ Nonnegative Weights $\omega = \{\omega_i, i \in V\}, \omega \in \mathcal{W}, \omega_i = \{\omega_{i1}, \dots, \omega_{iM}\}.$
- ▶ Joint distribution $p(\mathbf{y}, \mathbf{z}, \omega; \psi)$, $\psi = \{\beta, \phi\}$ with

Definitions

- Regular 3D Grid, $i = 1, \dots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ► Labelling $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$, $\mathbf{z}_i \in \{1 \dots K\}$, $\mathbf{z} \in \mathcal{Z}$.
- ▶ Nonnegative Weights $\omega = \{\omega_i, i \in V\}, \omega \in \mathcal{W}, \omega_i = \{\omega_{i1}, \dots, \omega_{iM}\}.$
- ▶ Joint distribution $p(\mathbf{y}, \mathbf{z}, \omega; \psi)$, $\psi = \{\beta, \phi\}$ with

Definitions

- Regular 3D Grid, $i = 1, \dots, N, i \in V$
- Observations $\mathbf{y}_i = \{y_{i1}, \dots, y_{iM}\}$
- ► Labelling $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$, $\mathbf{z}_i \in \{1 \dots K\}$, $\mathbf{z} \in \mathcal{Z}$.
- ▶ Nonnegative Weights $\omega = \{\omega_i, i \in V\}, \omega \in \mathcal{W}, \omega_i = \{\omega_{i1}, \dots, \omega_{iM}\}.$
- ▶ Joint distribution $p(\mathbf{y}, \mathbf{z}, \omega; \psi)$, $\psi = \{\beta, \phi\}$ with

Data term

M-Dimensional Gaussians, Diagonal Covariance

$$g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi) = \prod_{m=1}^M \mathcal{G}(y_{im};\mu_{\mathbf{z}_im},\frac{\mathbf{s}_{\mathbf{z}_im}}{\omega_{im}})$$

Data term

M-Dimensional Gaussians, Diagonal Covariance

$$g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi) = \prod_{m=1}^M \mathcal{G}(y_{im};\mu_{\mathbf{z}_im},\frac{\mathbf{s}_{\mathbf{z}_im}}{\omega_{im}})$$

Related to Logarithmic Pooling

$$\left(\propto \prod_{m=1}^{M} \mathcal{G}(y_{im}; \mu_{z_im}, s_{z_im})^{\omega_{im}} \right)$$

Data term

M-Dimensional Gaussians, Diagonal Covariance

$$g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi) = \prod_{m=1}^M \mathcal{G}(y_{im};\mu_{\mathbf{z}_im},\frac{\mathbf{s}_{\mathbf{z}_im}}{\omega_{im}})$$

Related to Logarithmic Pooling

$$\left(\propto \prod_{m=1}^{M} \mathcal{G}(y_{im}; \mu_{\mathbf{z}_i m}, \mathbf{s}_{\mathbf{z}_i m})^{\omega_{im}} \right)$$

Missing Data term

▶ Potts Model, external field ξ , interaction parameter η

$$H_{\mathsf{Z}}(\mathsf{z};\beta) = \sum_{i \in V} (\xi_{i\mathsf{z}_i} + \sum_{j \in \mathcal{N}(i)} \eta \langle \mathsf{z}_i, \mathsf{z}_j \rangle)$$

Missing Data term

$$m{\mathcal{H}}_{m{Z}}(m{z};m{eta}) = \sum_{i\inm{V}} (\xi_{im{z}_i} + \sum_{j\in\mathcal{N}(i)}\eta~\langlem{z}_i,m{z}_j
angle)$$

β = {ξ, η} with ξ = {^t(ξ_{i1}...ξ_{iK}), i ∈ V} being a set of real-valued K-dimensional vectors and η a real positive value.

Missing Data term

▶ Potts Model, external field ξ , interaction parameter η

$$\mathcal{H}_{\mathsf{Z}}(\mathsf{z};eta) = \sum_{i\in V} (\xi_{i\mathsf{z}_i} + \sum_{j\in\mathcal{N}(i)} \eta \langle \mathsf{z}_i,\mathsf{z}_j
angle)$$

β = {ξ, η} with ξ = {^t(ξ_{i1}...ξ_{iK}), i ∈ V} being a set of real-valued K-dimensional vectors and η a real positive value.

Parameter Prior term

 \blacktriangleright Weights independent of ψ , across Sequences

• Define Conjugate Prior
$$p(\omega) = \prod_{m=1}^{M} \prod_{i \in V} p(\omega_{im})$$

Parameter Prior term

- \blacktriangleright Weights independent of ψ , across Sequences
- Define Conjugate Prior $p(\omega) = \prod_{m=1}^{M} \prod_{i \in V} p(\omega_{im})$

 p(ω_{im}) is a Gamma distribution with hyperparameters α_{im} (shape) and γ_{im} (inverse scale)

$$H_W(\omega) = \sum_{m=1}^M \sum_{i \in V} ((lpha_{im} - 1) \log \omega_{im} - \gamma_{im} \omega_{im}).$$

Parameter Prior term

- Weights independent of ψ , across Sequences
- Define Conjugate Prior $p(\omega) = \prod_{m=1}^{M} \prod_{i \in V} p(\omega_{im})$
- p(ω_{im}) is a Gamma distribution with hyperparameters α_{im} (shape) and γ_{im} (inverse scale)

$$H_W(\omega) = \sum_{m=1}^M \sum_{i \in V} ((lpha_{im} - 1) \log \omega_{im} - \gamma_{im} \omega_{im}).$$

▶ Modes fixed to expert weights { ω_{im}^{exp} , m = 1...M, $i \in V$ } by setting $\alpha_{im} = \gamma_{im} \omega_{im}^{exp} + 1$

Parameter Prior term

• Weights independent of ψ , across Sequences

• Define Conjugate Prior
$$p(\omega) = \prod_{m=1}^{M} \prod_{i \in V} p(\omega_{im})$$

 p(ω_{im}) is a Gamma distribution with hyperparameters α_{im} (shape) and γ_{im} (inverse scale)

$$H_W(\omega) = \sum_{m=1}^M \sum_{i \in V} ((lpha_{im} - 1) \log \omega_{im} - \gamma_{im} \omega_{im}).$$

▶ Modes fixed to expert weights { $\omega_{im}^{exp}, m = 1...M, i \in V$ } by setting $\alpha_{im} = \gamma_{im} \omega_{im}^{exp} + 1$

Alternating Maximization

Weights viewed as Missing Variables

• Let \mathcal{D} be the set of all probability distributions on $\mathcal{Z} \times \mathcal{W}$.

Alternating Maximization

- Weights viewed as Missing Variables
- Let \mathcal{D} be the set of all probability distributions on $\mathcal{Z} \times \mathcal{W}$.
- ▶ Alternating maximization of a function F s.t. for any $q \in D$,

$$F(q,\psi) = E_q[\log p(\mathbf{y}, \mathbf{Z}, W ; \psi)] - E_q[\log q(\mathbf{Z}, W)]$$

Alternating Maximization

►

- Weights viewed as Missing Variables
- Let \mathcal{D} be the set of all probability distributions on $\mathcal{Z} \times \mathcal{W}$.
- Alternating maximization of a function F s.t. for any $q \in \mathcal{D}$,

$$F(q,\psi) = E_q[\log p(\mathbf{y}, \mathbf{Z}, W; \psi)] - E_q[\log q(\mathbf{Z}, W)]$$

E-step:
$$q^{(r)} = \arg \max_{q \in D} F(q, \psi^{(r)})$$
 (1)
M-step: $\psi^{(r+1)} = \arg \max_{\psi \in \underline{\Psi}} F(q^{(r)}, \psi)$

Alternating Maximization

- Weights viewed as Missing Variables
- Let \mathcal{D} be the set of all probability distributions on $\mathcal{Z} \times \mathcal{W}$.
- Alternating maximization of a function F s.t. for any $q \in \mathcal{D}$,

$$F(q,\psi) = E_q[\log p(\mathbf{y}, \mathbf{Z}, W; \psi)] - E_q[\log q(\mathbf{Z}, W)]$$

E-step:
$$q^{(r)} = \arg \max_{q \in D} F(q, \psi^{(r)})$$
 (1)
M-step: $\psi^{(r+1)} = \arg \max_{\psi \in \underline{\Psi}} F(q^{(r)}, \psi)$

Alternating Maximization

- Weights viewed as Missing Variables
- Let \mathcal{D} be the set of all probability distributions on $\mathcal{Z} \times \mathcal{W}$.
- Alternating maximization of a function F s.t. for any $q \in \mathcal{D}$,

$$F(q,\psi) = E_q[\log p(\mathbf{y}, \mathbf{Z}, W; \psi)] - E_q[\log q(\mathbf{Z}, W)]$$

E-step:
$$q^{(r)} = \arg \max_{q \in \mathcal{D}} F(q, \psi^{(r)})$$
 (1)
M-step: $\psi^{(r+1)} = \arg \max_{\psi \in \underline{\Psi}} F(q^{(r)}, \psi)$

Alternating Maximization

• E-step solved over restricted class of probability distributions, $\tilde{\mathcal{D}}$, s.t. $q(\mathbf{z}, \omega) = q_Z(\mathbf{z}) q_W(\omega)$ where $q_Z \in \mathcal{D}_Z$ and $q_W \in \mathcal{D}_W$

E-Z-step:
$$q_Z^{(r)} = \arg \max_{q_Z \in D_Z} F(q_W^{(r-1)} q_Z; \psi^{(r)})$$

E-W-step: $q_W^{(r)} = \arg \max_{q_W \in D_W} F(q_W q_Z^{(r)}; \psi^{(r)})$.

Alternating Maximization

• E-step solved over restricted class of probability distributions, $\tilde{\mathcal{D}}$, s.t. $q(\mathbf{z}, \omega) = q_Z(\mathbf{z}) q_W(\omega)$ where $q_Z \in \mathcal{D}_Z$ and $q_W \in \mathcal{D}_W$

E-Z-step:
$$q_Z^{(r)} = \arg \max_{q_Z \in \mathcal{D}_Z} F(q_W^{(r-1)} \ q_Z; \psi^{(r)})$$

E-W-step: $q_W^{(r)} = \arg \max_{q_W \in \mathcal{D}_W} F(q_W \ q_Z^{(r)}; \psi^{(r)})$.

Alternating Maximization

Use K-L divergence properties to avoid taking derivatives

$$\mathbf{E}-\mathbf{Z}: \ q_{Z}^{(r)} \propto \exp\left(E_{q_{W}^{(r-1)}}[\log p(\mathbf{z}|\mathbf{y},\mathbf{W};\psi^{(r)}]\right)$$
(2)
$$\mathbf{E}-\mathbf{W}: \ q_{W}^{(r)} \propto \exp\left(E_{q_{Z}^{(r)}}[\log p(\omega|\mathbf{y},\mathbf{Z};\psi^{(r)})]\right)$$
(3)
$$\mathbf{M}: \ \psi^{(r+1)} = \arg\max_{\psi\in\underline{\Psi}} E_{q_{Z}^{(r)}q_{W}^{(r)}}[\log p(\mathbf{y},\mathbf{Z},W;\psi)] .$$
(4)

Alternating Maximization

Use K-L divergence properties to avoid taking derivatives

E-Z:
$$q_Z^{(r)} \propto \exp\left(E_{q_W^{(r-1)}}[\log p(\mathbf{z}|\mathbf{y},\mathbf{W};\psi^{(r)}]\right)$$
 (2)

E-W:
$$q_W^{(r)} \propto \exp\left(E_{q_Z^{(r)}}[\log p(\omega|\mathbf{y}, \mathbf{Z}; \psi^{(r)})]\right)$$
 (3)

$$\mathbf{M:} \quad \psi^{(r+1)} = \arg \max_{\psi \in \underline{\Psi}} E_{q_Z^{(r)} q_W^{(r)}}[\log p(\mathbf{y}, \mathbf{Z}, W; \psi)] . \quad (4)$$

E-Z

• Note $p(\mathbf{z}|\mathbf{y},\omega;\psi)$ is Markovian with energy $H(\mathbf{z}|\mathbf{y},\omega;\psi) \propto H_{\mathbf{Z}}(\mathbf{z};\beta) + \sum_{i \in V} \log g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi), \text{(linear in }\omega)$ (5)

Therefore (2) becomes

E-Z:
$$q_Z^{(r)} \propto p(\mathbf{z}|\mathbf{y}, E_{q_W^{(r-1)}}[W]; \psi^{(r)}).$$
 (6)

E-Z

► Note $p(\mathbf{z}|\mathbf{y},\omega;\psi)$ is Markovian with energy $H(\mathbf{z}|\mathbf{y},\omega;\psi) \propto H_{\mathbf{Z}}(\mathbf{z};\beta) + \sum_{i \in V} \log g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi), \text{(linear in }\omega)$ (5)

Therefore (2) becomes

E-Z:
$$q_Z^{(r)} \propto \rho(\mathbf{z}|\mathbf{y}, E_{q_W^{(r-1)}}[W]; \psi^{(r)}).$$
 (6)

Mean-Field like algorithm provides MRF approximation and

$$\tilde{q}_{Z}^{(r)}(\mathbf{z}) \propto \prod_{i \in V} \prod_{m=1}^{M} \mathcal{G}(y_{im}; \mu_{\mathbf{z}_{i}m}^{(r)}, \frac{s_{\mathbf{z}_{i}m}^{(r)}}{\bar{\omega}_{im}^{(r-1)}}) p(\mathbf{z}_{i} | \tilde{\mathbf{z}}_{\mathcal{N}(i)}^{(r)}; \beta^{(r)}), \quad (7)$$

E-Z

► Note $p(\mathbf{z}|\mathbf{y},\omega;\psi)$ is Markovian with energy $H(\mathbf{z}|\mathbf{y},\omega;\psi) \propto H_{\mathbf{Z}}(\mathbf{z};\beta) + \sum_{i \in V} \log g(\mathbf{y}_i|\mathbf{z}_i,\omega_i;\phi), \text{(linear in }\omega)$ (5)

Therefore (2) becomes

E-Z:
$$q_Z^{(r)} \propto p(\mathbf{z}|\mathbf{y}, E_{q_W^{(r-1)}}[W]; \psi^{(r)}).$$
 (6)

Mean-Field like algorithm provides MRF approximation and

$$\tilde{q}_{Z}^{(r)}(\mathbf{z}) \propto \prod_{i \in V} \prod_{m=1}^{M} \mathcal{G}(y_{im}; \mu_{\mathbf{z}_{i}m}^{(r)}, \frac{\mathbf{s}_{\mathbf{z}_{i}m}^{(r)}}{\bar{\omega}_{im}^{(r-1)}}) p(\mathbf{z}_{i}|\tilde{\mathbf{z}}_{\mathcal{N}(i)}^{(r)}; \beta^{(r)}), \quad (7)$$

E-W

Similarly $p(\omega | \mathbf{y}, \mathbf{z}; \psi)$ is Markovian with energy

$$H(\omega|\mathbf{y}, \mathbf{z}; \psi) \propto H_W(\omega) + \sum_{i \in V} \log g(\mathbf{y}_i | \mathbf{z}_i, \omega_i; \phi)$$
(8)

•
$$E_{q_W^{(r)}}[W_{im}]$$
 denoted by $\overline{\omega}_{im}^{(r)}$ becomes

$$\bar{\omega}_{im}^{(r)} = \frac{\alpha_{im} + \frac{1}{2}}{\gamma_{im} + \frac{1}{2} \sum_{k=1}^{K} \delta(y_{im}, \mu_{km}^{(r)}, s_{km}^{(r)}) q_{Z_i}^{(r)}(k)}$$
(9)

where $\delta(y, \mu, s) = (y - \mu)^2 / s$ is the squared Mahalanobis distance.

E-W

Similarly $p(\omega | \mathbf{y}, \mathbf{z}; \psi)$ is Markovian with energy

$$H(\omega|\mathbf{y}, \mathbf{z}; \psi) \propto H_W(\omega) + \sum_{i \in V} \log g(\mathbf{y}_i|\mathbf{z}_i, \omega_i; \phi)$$
 (8)

•
$$E_{q_W^{(r)}}[W_{im}]$$
 denoted by $\bar{\omega}_{im}^{(r)}$ becomes

$$\bar{\omega}_{im}^{(r)} = \frac{\alpha_{im} + \frac{1}{2}}{\gamma_{im} + \frac{1}{2} \sum_{k=1}^{K} \delta(y_{im}, \mu_{km}^{(r)}, s_{km}^{(r)}) q_{Z_i}^{(r)}(k)}$$
(9)

where $\delta(y, \mu, s) = (y - \mu)^2 / s$ is the squared Mahalanobis distance.

\blacktriangleright β solved using mean field approximation

 $\blacktriangleright \phi$ updated using

$$\mu_{km}^{(r+1)} = \frac{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)} \,y_{im}}{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)}},$$

$$s_{km}^{(r+1)} = \frac{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)} \,(y_{im} - \mu_{km}^{(r+1)})^2}{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k)},$$

Μ

- \blacktriangleright β solved using mean field approximation
- ϕ updated using

$$\mu_{km}^{(r+1)} = \frac{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)} \,y_{im}}{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)}}, \\ s_{km}^{(r+1)} = \frac{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k) \,\bar{\omega}_{im}^{(r)} \,(y_{im} - \mu_{km}^{(r+1)})^2}{\sum_{i=1}^{N} q_{Z_i}^{(r)}(k)} \,,$$

- Region *L* defines
 candidate lesions
- \mathcal{L} weighted with $\omega_{\mathcal{L}} > 1$ $(\omega_{\setminus \mathcal{L}} = 1)$

- Region *L* defines
 candidate lesions
- \mathcal{L} weighted with $\omega_{\mathcal{L}} > 1$ $(\omega_{\setminus \mathcal{L}} = 1)$
- K = 3, $\omega_{im}^{exp} = 1$ and $\gamma_{im} = 1$ setting

- Region *L* defines
 candidate lesions
- $\begin{array}{l} \blacktriangleright \ \mathcal{L} \ \text{weighted} \ \text{with} \ \omega_{\mathcal{L}} > 1 \\ (\omega_{\setminus \mathcal{L}} = 1) \end{array} \end{array}$
- K = 3, $\omega_{im}^{exp} = 1$ and $\gamma_{im} = 1$ setting
- Threshold Most Informative Weight Map (chi-square percentile)

- Region *L* defines candidate lesions
- \mathcal{L} weighted with $\omega_{\mathcal{L}} > 1$ $(\omega_{\setminus \mathcal{L}} = 1)$
- K = 3, $\omega_{im}^{exp} = 1$ and $\gamma_{im} = 1$ setting
- Threshold Most Informative Weight Map (chi-square percentile)

- Region *L* defines candidate lesions
- \mathcal{L} weighted with $\omega_{\mathcal{L}} > 1$ $(\omega_{\setminus \mathcal{L}} = 1)$
- K = 3, $\omega_{im}^{exp} = 1$ and $\gamma_{im} = 1$ setting
- Threshold Most Informative Weight Map (chi-square percentile)

Inlier Setting

K = 4, initialized with K = 3 result (+ thresholded lesions) $\gamma_{im} = \gamma_{\mathcal{L}} \forall i \in \mathcal{L} \ (\gamma_{\mathcal{L}} = 10)$
Brain Lesion Segmentation: A Bayesian Weighted EM Approach Lesion Segmentation Procedure

Inlier Setting

Inlier Setting

• K = 4, initialized with K = 3 result (+ thresholded lesions)

$$\blacktriangleright \ \gamma_{im} = \gamma_{\mathcal{L}} \forall i \in \mathcal{L} \ (\gamma_{\mathcal{L}} = 10)$$

$$\blacktriangleright \ \gamma_{im} = \gamma_{\bar{\mathcal{L}}} \forall i \notin \mathcal{L}. \ (\gamma_{\bar{\mathcal{L}}} = 1000)$$

• $\omega_{\mathcal{L}}$ depends on number of voxels in \mathcal{L}

Inlier Setting

• K = 4, initialized with K = 3 result (+ thresholded lesions)

$$\blacktriangleright \ \gamma_{im} = \gamma_{\mathcal{L}} \forall i \in \mathcal{L} \ (\gamma_{\mathcal{L}} = 10)$$

$$\blacktriangleright \ \gamma_{im} = \gamma_{\bar{\mathcal{L}}} \forall i \notin \mathcal{L}. \ (\gamma_{\bar{\mathcal{L}}} = 1000)$$

• $\omega_{\mathcal{L}}$ depends on number of voxels in \mathcal{L}

Brain Lesion Segmentation: A Bayesian Weighted EM Approach Lesion Segmentation Procedure

Inlier Setting

Brain Lesion Segmentation: A Bayesian Weighted EM Approach Lesion Segmentation Procedure

Inlier Setting

Simulated Data 0% IIH

Method	3%	5%	7%	9%			
Mild lesions (0.02% of the voxels)							
AWEM	68 (+1)	49 (-21)	36 (+2)	12 (+8)			
[1]	67	70	34	0			
[3]	56	33	13	4			
[2]	52	NA	NA	NA			
Moderate lesions (0.18% of the voxels)							
AWEM	86 (+7)	80 (-1)	73 (+14)	64 (+27)			
[1]	72	81	59	29			
[3]	79	69	52	37			
[2]	63	NA	NA	NA			
Severe lesions (0.52% of the voxels)							
AWEM	92 (+7)	86 (-2)	78 (+6)	68 (+27)			
[1]	79	88	72	41			
[3]	85	72	56	41			
[2]	82	NA	NA	NA			

Simulated Data 40% IIH

Method	3%	5%	7%	9%			
Mild lesions (0.02% of the voxels)							
AWEM	0 (-75)	0 (-65)	0 (-20)	0 (-30)			
[1]	75	65	20	30			
[3]	58	27	13	6			
Moderate lesions (0.18% of the voxels)							
AWEM	52 (-24)	51 (-25)	52 (-15)	10 (-38)			
[1]	75	76	67	48			
[3]	76	64	47	31			
Severe lesions (0.52% of the voxels)							
AWEM	87 (+1)	84 (+1)	77 (+3)	66 (+8)			
[1]	75	83	74	58			
[3]	86	74	62	45			

Brain Lesion Segmentation: A Bayesian Weighted EM Approach $\[blue]$ Results

Real Data (Rennes MS)

	LL	EMS	AWEM
Patient1	0.42	62	82 (+20)
Patient2	1.71	54	56 (+2)
Patient3	0.29	47	45 (-2)
Patient4	1.59	65	72 (+7)
Patient5	0.31	47	45 (-2)
Average		55 +/-8	60 +/-16

Figure: Real MS data, patient 3. (a): Flair image. (b): identified lesions with our approach (DSC 45%). (c): ground truth .

Results

Figure: Real stroke data. (a): DW image. (b): identified lesions with our approach (DSC 63%). (c): ground truth.

Discussion & Future Work

- Extension to full covariance matrices: temporal multi-sequence data, eg. patient follow-up
- Exploration of Markov Prior
- Other expert weighting schemes, possibly lesion specific
- Extension to handle intensity inhomogeneities
- Sensitivity analysis: initialization, parameter tuning etc. (Darren)
- Evaluation in a semi-supervised context

D. Garcia-Lorenzo, L. Lecoeur, D.L. Arnold, D. L. Collins, and C. Barillot.

Multiple Sclerosis lesion segmentation using an automatic multimodal graph cuts.

In MICCAI, pages 584-591, 2009.

F. Rousseau, F. Blanc, J. de Seze, L. Rumbac, and J.P. Armspach.

An a contrario approach for outliers segmentation: application to multiple sclerosis in MRI.

In IEEE ISBI, pages 9-12, 2008.

K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens.

Automated segmentation of multiple sclerosis lesions by model outlier detection.

IEEE trans. Med. Ima., 20(8):677-688, 2001.