Some improvements of the SIR method for the estimation of Mars physical properties from hyperspectral images

Stéphane Girard

Mistis team, INRIA Grenoble Rhône-Alpes. http://mistis.inrialpes.fr/~girard

Joint work with CQFD team, INRIA Bordeaux Sud-Ouest and Laboratoire de Planétologie de Grenoble.

1 Sliced Inverse Regression (SIR)

3 SIR for data streams

1 Sliced Inverse Regression (SIR)

2 Regularization of SIR

- 3 SIR for data streams
- Application to real data

Let $Y\in\mathbb{R}$ and $X\in\mathbb{R}^p.$ The goal is to estimate $G:\mathbb{R}^p\to\mathbb{R}$ such that

 $Y = G(X) + \xi$ where ξ is independent of X.

- Unrealistic when p is large (curse of dimensionality).
- **Dimension reduction** : Replace X by its projection on a subspace of lower dimension without loss of information on the distribution of Y given X.
- **Central subspace** : smallest subspace *S* such that, conditionally on the projection of *X* on *S*, *Y* and *X* are independent.

• Assume (for the sake of simplicity) that $\dim(S) = 1$ *i.e.* $S = \operatorname{span}(b)$, with $b \in \mathbb{R}^p \implies$ Single index model :

 $Y = g(b^t X) + \xi$

where ξ is independent of X.

- The estimation of the *p*-variate function *G* is replaced by the estimation of the univariate function *g* and of the direction *b*.
- **Goal of SIR** [Li, 1991] : Estimate a basis of the central subspace. (*i.e. b in this particular case.*)

SIR

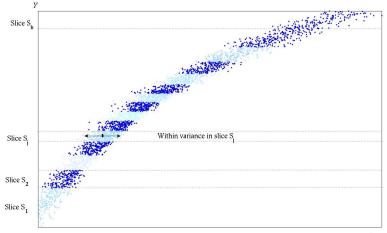
Idea :

- Find the direction b such that $b^t X$ best explains Y.
- Conversely, when Y is fixed, $b^t X$ should not vary.
- Find the direction b minimizing the variations of $b^t X$ given Y.

In practice :

- The support of Y is divided into h slices S_j .
- Minimization of the within-slice variance of $b^t X$ under the constraint $var(b^t X) = 1$.
- Equivalent to maximizing the between-slice variance under the same constraint.

Illustration



 $b^t X$

Given a sample $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$, the direction b is estimated by

$$\hat{b} = \operatorname*{argmax}_{b} b^{t} \hat{\Gamma} b$$
 such that $b^{t} \hat{\Sigma} b = 1.$ (1)

where $\hat{\Sigma}$ is the empirical covariance matrix and $\hat{\Gamma}$ is the between-slice covariance matrix defined by

$$\hat{\Gamma} = \sum_{j=1}^{h} \frac{n_j}{n} (\bar{X}_j - \bar{X}) (\bar{X}_j - \bar{X})^t, \quad \bar{X}_j = \frac{1}{n_j} \sum_{Y_i \in S_j} X_i,$$

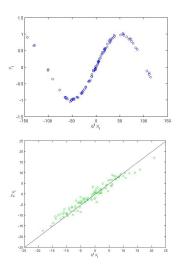
where n_j is the number of observations in the slice S_j . The optimization problem (1) has a closed-form solution : \hat{b} is the eigenvector of $\hat{\Sigma}^{-1}\hat{\Gamma}$ associated to the largest eigenvalue.

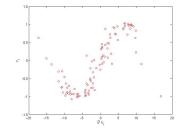
Illustration

Simulated data.

- Sample $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ of size n = 100 with $X_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, $i = 1, \dots, n$.
- $X_i \sim \mathcal{N}_p(0, \Sigma)$ where $\Sigma = Q \Delta Q^t$ with
 - $\Delta = \operatorname{diag}(p^{\theta}, \dots, 2^{\theta}, 1^{\theta})$,
 - $\boldsymbol{\theta}$ controls the decreasing rate of the eigenvalue screeplot,
 - Q is an orientation matrix drawn from the uniform distribution on the set of orthogonal matrices.
- $Y_i = g(b^t X_i) + \xi$ where
 - g is the link function $g(t) = \sin(\pi t/2)$,
 - b is the true direction $b = 5^{-1/2}Q(1, 1, 1, 1, 1, 0, \dots, 0)^t$,
 - $\xi \sim \mathcal{N}_1(0, 9.10^{-4})$

Results with $\theta = 2$, dimension p = 10

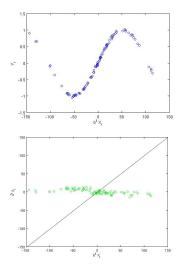


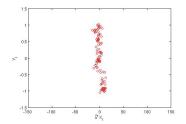


Blue : Y_i versus the projections $b^t X_i$ on the true direction b_i

Red : Y_i versus the projections $\hat{b}^t X_i$ on the estimated direction \hat{b} , Green : $\hat{b}^t X_i$ versus $b^t X_i$.

Results with $\theta = 2$, dimension p = 50





Blue : Y_i versus the projections $b^t X_i$ on the true direction b,

Red : Y_i versus the projections $\hat{b}^t X_i$ on the estimated direction \hat{b} ,

Green : $\hat{b}^t X_i$ versus $b^t X_i$.

Explanation

Problem : $\hat{\Sigma}$ may be singular or at least ill-conditioned in several situations.

- Since $\mathrm{rank}(\hat{\Sigma}) \leq \min(n-1,p),$ if $n \leq p$ then $\hat{\Sigma}$ is singular.
- Even if n and p are of the same order, $\hat{\Sigma}$ is ill-conditioned, and its inversion yields numerical problems in the estimation of the central subspace.
- The same phenomenon occurs if the coordinates of X are strongly correlated.

In the previous example, the condition number of Σ was $p^{\theta}.$

1 Sliced Inverse Regression (SIR)

2 Regularization of SIR

3 SIR for data streams

Model introduced in [Cook, 2007].

$$X = \mu + c(Y)Vb + \varepsilon, \tag{2}$$

where

- μ and b are vectors of \mathbb{R}^p ,
- $\varepsilon \sim \mathcal{N}_p(0,V)$, independent of Y,
- $c: \mathbb{R} \to \mathbb{R}$ the coordinate function.

Consequence : The expectation of $X - \mu$ given Y is collinear to the direction Vb.

Maximum likelihood estimation (1/3)

• c(.) is expanded as a linear combination of h basis functions $s_j(.)$,

$$c(.) = \sum_{j=1}^{h} c_j s_j(.) = s^t(.)c,$$

where $c = (c_1, \ldots, c_h)^t$ is unknown and $s(.) = (s_1(.), \ldots, s_h(.))^t$.

• Model (2) can be rewritten as

$$X = \mu + s^t(Y)cVb + \varepsilon, \ \varepsilon \sim \mathcal{N}_p(0, V)$$

Maximum likelihood estimation (2/3)

Notations

 $\bullet \ W$: The $h \times h$ empirical covariance matrix of s(Y) defined by

$$W = \frac{1}{n} \sum_{i=1}^{n} (s(Y_i) - \bar{s})(s(Y_i) - \bar{s})^t \text{ with } \bar{s} = \frac{1}{n} \sum_{i=1}^{n} s(Y_i).$$

 $\bullet~M$: the $h \times p$ matrix defined by

$$M = \frac{1}{n} \sum_{i=1}^{n} (s(Y_i) - \bar{s}) (X_i - \bar{X})^t,$$

Maximum likelihood estimation (3/3)

- If W and Σ̂ are regular, then the maximum likelihood estimator of b is b̂ the eigenvector associated to the largest eigenvalue of Σ̂⁻¹M^tW⁻¹M.
 ⇒ The inversion Σ̂ is necessary.
- In the particular case of piecewise constant basis functions

 $s_j(.) = \mathbb{I}\{. \in S_j\}, \ j = 1, \dots, h,$

it can be shown that $M^t W^{-1} M = \hat{\Gamma}$ and thus \hat{b} is the eigenvector associated to the largest eigenvalue of $\hat{\Sigma}^{-1}\hat{\Gamma}$. \implies SIR method.

Regularized SIR

- Introduction of a Gaussian prior $\mathcal{N}(0,\Omega)$ on the unknown vector b. Ω describes which directions in \mathbb{R}^p are more likely to contain b.
- If W and $\Omega \hat{\Sigma} + I_p$ are regular, then \hat{b} is the eigenvector associated to the largest eigenvalue of $(\Omega \hat{\Sigma} + I_p)^{-1} \Omega M^t W^{-1} M.$
- In the particular case where the basis functions are piecewise constant, \hat{b} is the eigenvector associated to the largest eigenvalue of $(\Omega \hat{\Sigma} + I_p)^{-1} \Omega \hat{\Gamma}$.

 $\begin{array}{l} \Longrightarrow \mbox{The inversion of } \hat{\Sigma} \mbox{ is replaced by the inversion of } \Omega \hat{\Sigma} + I_p. \\ \Longrightarrow \mbox{For a well-chosen } a \mbox{ priori matrix } \Omega, \mbox{ numerical problems} \\ \mbox{disappear.} \end{array}$

Links with existing methods

- Ridge [Zhong et al, 2005] : $\Omega = \tau^{-1}I_p$. No privileged direction for b in \mathbb{R}^p . $\tau > 0$ is a regularization parameter.
- PCA+SIR [Chiaromonte et al, 2002] :

$$\Omega = \sum_{j=1}^d \frac{1}{\hat{\delta}_j} \hat{q}_j \hat{q}_j^t,$$

where $d \in \{1, \ldots, p\}$ is fixed, $\hat{\delta}_1 \geq \cdots \geq \hat{\delta}_d$ are the d largest eigenvalues of $\hat{\Sigma}$ and $\hat{q}_1, \ldots, \hat{q}_d$ are the associated eigenvectors.

Three new methods

• PCA+ridge :

$$\Omega = \frac{1}{\tau} \sum_{j=1}^d \hat{q}_j \hat{q}_j^t.$$

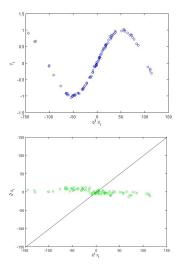
In the eigenspace of dimension d, all the directions are *a* priori equivalent.

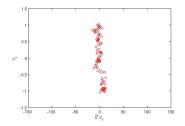
- Tikhonov : $\Omega = \tau^{-1}\hat{\Sigma}$. The directions with large variance are the most likely to contain b.
- PCA+Tikhonov :

$$\Omega = \frac{1}{\tau} \sum_{j=1}^d \hat{\delta}_j \hat{q}_j \hat{q}_j^t.$$

In the eigenspace of dimension d, the directions with large variance are the most likely to contain b.

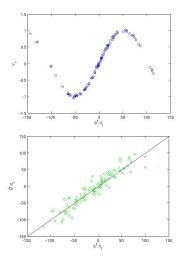
Recall of SIR results with $\theta = 2$ and p = 50

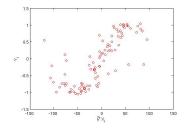




Blue : Projections $b^t X_i$ on the true direction b versus Y_i , Red : Projections $\hat{b}^t X_i$ on the estimated direction \hat{b} versus Y_i , Green : $b^t X_i$ versus $\hat{b}^t X_i$.

Regularized SIR results (PCA+Ridge)





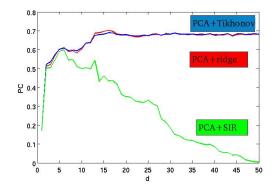
Blue : Projections $b^t X_i$ on the true direction b versus Y_i , Red : Projections $\hat{b}^t X_i$ on the estimated direction \hat{b} versus Y_i , Green : $b^t X_i$ versus $\hat{b}^t X_i$. Proximity criterion between the true direction b and the estimated ones $\hat{b}^{(r)}$ on N=100 replications :

$$\mathsf{PC} = \frac{1}{N} \sum_{r=1}^{N} \cos^2(b, \hat{b}^{(r)})$$

- $0 \leq \mathsf{PC} \leq 1$,
- a value close to 0 implies a low proximity : The $\hat{b}^{(r)}$ are nearly orthogonal to b,
- a value close to 1 implies a high proximity : The $\hat{b}^{(r)}$ are approximately collinear with b.

Sensitivity with respect to the "cut-off" dimension

d versus PC. The condition number is fixed ($\theta = 2$) The optimal regularization parameter is used for each value of d.



- PCA+SIR : very sensitive to d.
- PCA+ridge and PCA+Tikhonov : stable as d increases.

1 Sliced Inverse Regression (SIR)

2 Regularization of SIR

3 SIR for data streams

Context

- We consider data arriving sequentially by blocks in a stream.
- Each data block j = 1, ..., J is an i.i.d. sample (X_i, Y_i) , i = 1, ..., n from the regression model (2).
- **Goal** : Update the estimation of the direction *b* at each arrival of a new block of observations.

Method

- Compute the individual directions \hat{b}_j on each block $j = 1, \ldots, J$ using regularized SIR.
- Compute a common direction as

$$\hat{b} = \operatorname*{argmax}_{||b||=1} \sum_{j=1}^{J} \cos^2(\hat{b}_j, b) \cos^2(\hat{b}_j, \hat{b}_J).$$

Idea : If \hat{b}_j is close to \hat{b}_J then \hat{b} should be close to \hat{b}_j . *Explicit solution* : \hat{b} is the eigenvector associated to the largest eigenvalue of

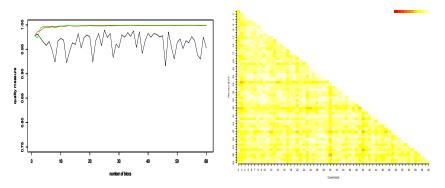
$$M_J = \sum_{j=1}^{J} \hat{b}_j \hat{b}_j^t \cos^2(\hat{b}_j, \hat{b}_J).$$

- Computational complexity O(Jnp²) v.s. O(J²np²) for the brute-force method which would consist in applying regularized SIR on the union of the j first blocks for j = 1,..., J.
- Data storage O(np) v.s. O(Jnp) for the brute-force method.

(under the assumption $n >> \max(J, p)$).

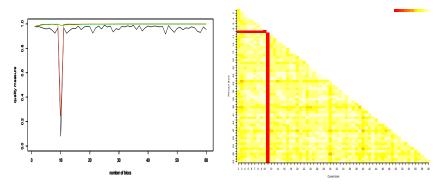
• Interpretation of the weights $\cos^2(\hat{b}_j, \hat{b}_J)$.

Scenario 1 : A common direction in all the 60 blocks.



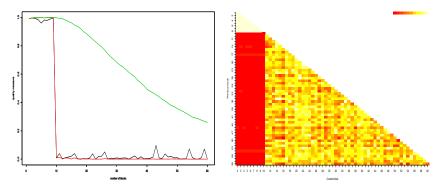
Left : $\cos^2(\hat{b}, b)$ for SIRdatastream, SIR brute-force and SIR estimators at each time t. Right : $\cos^2(\hat{b}_j, \hat{b}_J)$. The lighter (yellow) is the color, the larger is the weight. Red color stands for very small squared cosines.

Scenario 2 : The 10th block is an outlier.



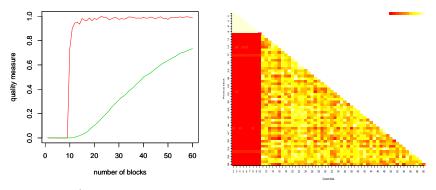
Left : $\cos^2(\hat{b}, b)$ for SIRdatastream, SIR brute-force and SIR estimators at each time t. Right : $\cos^2(\hat{b}_j, \hat{b}_J)$. The lighter (yellow) is the color, the larger is the weight. Red color stands for very small squared cosines.

Scenario 3 : A drift occurs from the 10th block (b to b')



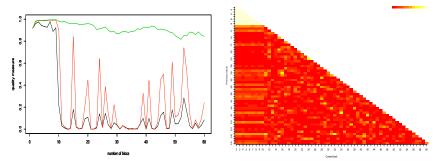
Left : $\cos^2(\hat{b}, b)$ for SIRdatastream, SIR brute-force and SIR estimators at each time t. Right : $\cos^2(\hat{b}_j, \hat{b}_J)$. The lighter (yellow) is the color, the larger is the weight. Red color stands for very small squared cosines.

Scenario 3 (cont'd) : A drift occurs from the 10th block (b to b')



Left : $\cos^2(\hat{b},b')$ for SIRdatastream and SIR brute-force. Right : $\cos^2(\hat{b},b')$

Scenario 4 : From the 10th block to the last one, there is no common direction.



Left : $\cos^2(\hat{b}, b)$ for SIRdatastream, SIR brute-force and SIR estimators at each time t. Right : $\cos^2(\hat{b}_j, \hat{b}_J)$. The lighter (yellow) is the color, the larger is the weight. Red color stands for very small squared cosines.

1 Sliced Inverse Regression (SIR)

2 Regularization of SIR

3 SIR for data streams

Estimation of Mars surface physical properties from hyperspectral images

Context :

- Observation of the south pole of Mars at the end of summer, collected during orbit 61 by the French imaging spectrometer OMEGA on board Mars Express Mission.
- 3D image : On each pixel, a spectra containing p = 184 wavelengths is recorded.

• This portion of Mars mainly contains water ice, CO_2 and dust. **Goal** : For each spectra $X \in \mathbb{R}^p$, estimate the corresponding physical parameter $Y \in \mathbb{R}$ (grain size of CO_2).

An inverse problem

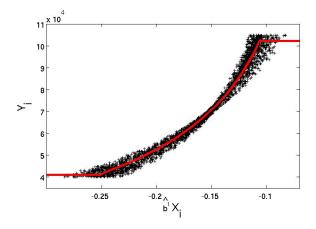
Forward problem.

- Physical modeling of individual spectra with a surface reflectance model.
- Starting from a physical parameter Y, simulate X = F(Y).
- Generation of n = 12,000 synthetic spectra with the corresponding parameters.
- \implies Learning database.

Inverse problem.

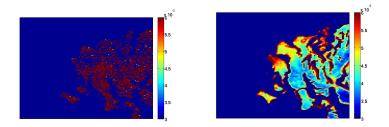
- Estimate the functional relationship Y = G(X).
- Dimension reduction assumption $G(X) = g(b^t X)$.
- *b* is estimated by (regularized) SIR, *g* is estimated by a nonparametric one-dimensional regression.

Estimated function g



Estimated function g between the projected spectra $\hat{b}^t X$ on the first axis of regularized SIR (PCA+ridge) and Y, the grain size of CO₂.

Estimated CO_2 maps



Grain size of CO_2 estimated with SIR (left) and regularized SIR (right) on a hyperspectral image of Mars.

Dimension reduction

In this talk : dimension reduction for regression. In the team Mistis :

- Unsupervised dimension reduction (nonlinear PCA),
- Dimension reduction for classification and clustering.

References on this work

- Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L. et Girard, S. (2009). Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression. *Journal of Geophysical Research - Planets*, 114, E06005
- Bernard-Michel, C., Gardes, L. et Girard, S. (2009). Gaussian Regularized Sliced Inverse Regression, *Statistics and Computing*, **19**, 85–98.
- Bernard-Michel, C., Gardes, L. et Girard, S. (2008). A Note on Sliced Inverse Regression with Regularizations, *Biometrics*, 64, 982–986.

References on SIR

- [Li, 1991] Li, K.C. (1991). Sliced inverse regression for dimension reduction. *Journal of the American Statistical Association*, 86, 316–327.
- [Cook, 2007]. Cook, R.D. (2007). Fisher lecture : Dimension reduction in regression. *Statistical Science*, **22**(1), 1–26.
- [Zhong et al, 2005] : Zhong, W., Zeng, P., Ma, P., Liu, J.S. and Zhu, Y. (2005). RSIR : Regularized Sliced Inverse Regression for motif discovery. *Bioinformatics*, 21(22), 4169–4175.
- [Chiaromonte et al, 2002] : Chiaromonte, F. and Martinelli, J. (2002). Dimension reduction strategies for analyzing global gene expression data with a response. *Mathematical Biosciences*, **176**, 123–144.