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@ Sliced Inverse Regression (SIR)



Multivariate regression

Let Y € R and X € RP. The goal is to estimate G : R? — R such
that

Y = G(X) + & where £ is independent of X.

e Unrealistic when p is large (curse of dimensionality).

@ Dimension reduction : Replace X by its projection on a
subspace of lower dimension without loss of information on
the distribution of Y given X.

@ Central subspace : smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.



Dimension reduction

@ Assume (for the sake of simplicity) that dim(S) =1 i.e.
S =span(b), with b € R? —> Single index model :
Y =g(b'X) +¢
where £ is independent of X.
@ The estimation of the p-variate function G is replaced by the
estimation of the univariate function g and of the direction b.

e Goal of SIR [Li, 1991] : Estimate a basis of the central
subspace. (i.e. b in this particular case.)



SIR

Idea :
@ Find the direction b such that b'X best explains Y.
e Conversely, when Y is fixed, b*X should not vary.
e Find the direction b minimizing the variations of b'X given Y.
In practice :
@ The support of Y is divided into h slices Sj.
@ Minimization of the within-slice variance of b'X under the
constraint var(b!X) = 1.
@ Equivalent to maximizing the between-slice variance under the
same constraint.
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Estimation procedure

Given a sample {(X1,Y1),..., (X, Yn)}, the direction b is
estimated by

b = argmax b'T'b such that b'Sb = 1. (1)
b

where X is the empirical covariance matrix and I is the
between-slice covariance matrix defined by

where n; is the number of observations in the slice S;.
The optimization problem (1) has a closed-form solution : b is the
eigenvector of X 7!T" associated to the largest eigenvalue.



[llustration

Simulated data.

e Sample {(X1,Y1),...,(Xy,Yy)} of size n = 100 with
X;eRPand V; €eR, t=1,...,n.

o X; ~ N, (0,3) where ¥ = QAQ" with
o A =diag(p?,...,29,19),
e O controls the decreasing rate of the eigenvalue screeplot,
e (Q is an orientation matrix drawn from the uniform distribution

on the set of orthogonal matrices.

o V; = g(b'X;) + & where
o g is the link function g(t) = sin(wt/2),
e bis the true direction b = 571/2Q(1,1,1,1,1,0,...,0)",
o £~ Ni(0,9.107%)



Results with 6 = 2, dimension p = 10

Blue : Y; versus the projec-

. . tions b'X; on the true direc-
. tion b,

& il Red : Y; versus the projections

j: 3 b'X; on the estimated direc-
17 tion b,

B R TR Green : thz Versus thZ



Results with 6 = 2, dimension p = 50
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Explanation

Problem : 3 may be singular or at least ill-conditioned in several
situations.

@ Since rank(f]) < min(n — 1,p), if n < p then S is singular.

@ Even if n and p are of the same order, ¥ is ill-conditioned,
and its inversion yields numerical problems in the estimation
of the central subspace.

@ The same phenomenon occurs if the coordinates of X are
strongly correlated.

In the previous example, the condition number of ¥ was p?.



© Regularization of SIR



Inverse regression model

Model introduced in [Cook, 2007].
X=p+c(Y)Vb+e, (2)

where
@ 1 and b are vectors of RP,
e ¢ ~ N,(0,V), independent of Y,
@ ¢: R — R the coordinate function.

Consequence : The expectation of X — i given Y is collinear to
the direction Vb.



Maximum likelihood estimation (1/3)

@ ¢(.) is expanded as a linear combination of h basis functions

sj(-),
h
c() =D _¢si() =5"()e,
j=1
where ¢ = (c1,...,cp)t is unknown and

s() = (51(),- -, sn ().

e Model (2) can be rewritten as

X=p+s(Y)Vb+e, e~Ny(0,V),



Maximum likelihood estimation (2/3)

Notations

e W : The h x h empirical covariance matrix of s(Y) defined by

n

Z(s(Yl) —5)(s(Y;) —5)" with 5=

i=1 =1

1
W ==
n

@ M : the h x p matrix defined by



Maximum likelihood estimation (3/3)

o If W and 3 are regular, then the maximum likelihood
estimator of b is b the eigenvector associated to the largest
eigenvalue of S MW 1M
— The inversion 3 is necessary.

@ In the particular case of piecewise constant basis functions
si()=I{.€S;}, j=1,...,h,

it can be shown that M'W 1M =1 and thus b is the
eigenvector associated to the largest eigenvalue of X 7'T".
— SIR method.



Regularized SIR

e Introduction of a Gaussian prior A/(0,2) on the unknown
vector b. {2 describes which directions in RP are more likely to
contain b.

o If W and O3 + I, are regular, then b is the eigenvector
associated to the largest eigenvalue of
QX + L) tQM WM.

@ In the particular case where the basis functions are piecewise

constant, b is the eigenvector associated to the largest
eigenvalue of (O3 + 1)~ 1O

— The inversion of 3 is replaced by the inversion of 3 + I,
= For a well-chosen a priori matrix €2, numerical problems
disappear.



Links with existing methods

e Ridge [Zhong et al, 2005] : = 7711,,. No privileged direction
for b in RP. 7 > 0 is a regularization parameter.
@ PCA+SIR [Chiaromonte et al, 2002] :

where d € {1,...,p} is fixed, 61 > .-+ > b4 are the d largest
eigenvalues of ¥ and ¢y, ..., {q are the associated
eigenvectors.



Three new methods

o PCA+ridge :

In the eigenspace of dimension d, all the directions are a
priori equivalent.

o Tikhonov : Q = 713, The directions with large variance are
the most likely to contain b.

e PCA+Tikhonov :
1

d
*Z 74545

In the eigenspace of dimension d, the directions with large
variance are the most likely to contain b.

\]



Recall of SIR results with § = 2 and p = 50
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Regularized SIR results (PCA+Ridge)
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Validation on simulations

Proximity criterion between the true direction b and the
estimated ones b(") on N = 100 replications :

1N o
o 2 2 (r
PC = N ngl cos“(b,b\")

e 0 < PCL,

@ a value close to 0 implies a low proximity : The b(") are nearly
orthogonal to b,

@ a value close to 1 implies a high proximity : The b(") are
approximately collinear with b.



Sensitivity with respect to the “cut-off” dimension

d versus PC. The condition number is fixed (6 = 2) The optimal
regularization parameter is used for each value of d.
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o PCA-+SIR : very sensitive to d.
@ PCA+ridge and PCA+Tikhonov : stable as d increases.



© SIR for data streams



@ We consider data arriving sequentially by blocks in a stream.

e Each data block j =1,...,J is an i.i.d. sample (X;,Y}),
i=1,...,n from the regression model (2).

@ Goal : Update the estimation of the direction b at each arrival
of a new block of observations.



@ Compute the individual directions Ej on each block
j=1,...,J using regularized SIR.

@ Compute a common direction as

J
b = argmax Z cos?(bj, b) cos®(bj, by).
lloll=1 " j=1

Idea : If l;j is close to l;J then b should be close to Ej.
Explicit solution : b is the eigenvector associated to the largest
eigenvalue of



Advantages of SIRdatastream

e Computational complexity O(Jnp?) v.s. O(J?np?) for the
brute-force method which would consist in applying regularized
SIR on the union of the j first blocks for j =1,...,J.

e Data storage O(np) v.s. O(Jnp) for the brute-force method.

(under the assumption n >> max(J, p)).
o Interpretation of the weights cosQ(Bj, BJ).



[llustration on simulations

Scenario 1 : A common direction in all the 60 blocks.

Gt

Left : cos?(b, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cosQ(Bj, bs). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



[llustration on simulations

Scenario 2 : The 10th block is an outlier.

‘number of bocs
Gt

Left : cos?(b, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cosQ(Bj, bs). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



[llustration on simulations

Scenario 3 : A drift occurs from the 10th block (b to )

Left : cos?(b, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos(bj, by). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



[llustration on simulations

Scenario 3 (cont’d) :A drift occurs from the 10th block (b to b')

quality measure

number of blocks

Left : cos(b,b') for SIRdatastream and SIR brute-force. Right :
cos? (b, b')



[llustration on simulations

Scenario 4 : From the 10th block to the last one, there is no
common direction.

auality measure.
04 o6

number ofbocs.

[

Left : cos?(b,b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos?(b;,bs). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



@ Application to real data



Estimation of Mars surface physical properties from

hyperspectral images

Context :

@ Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.

@ 3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.

@ This portion of Mars mainly contains water ice, COs and dust.

Goal : For each spectra X € RP, estimate the corresponding
physical parameter Y € R (grain size of CO3).



An inverse problem

Forward problem.

@ Physical modeling of individual spectra with a surface
reflectance model.

e Starting from a physical parameter Y, simulate X = F'(Y).

@ Generation of n = 12,000 synthetic spectra with the
corresponding parameters.

— Learning database.

Inverse problem.
o Estimate the functional relationship Y = G(X).
e Dimension reduction assumption G(X) = g(b'X).

@ b is estimated by (regularized) SIR, g is estimated by a
nonparametric one-dimensional regression.



Estimated function ¢

Estimated function g between the projected spectra b'X on the
first axis of regularized SIR (PCA+ridge) and Y, the grain size of
COs.



Estimated CO5 maps

%10
5.5
5
14.5
la
35
3

Grain size of COy estimated with SIR (left) and regularized SIR
(right) on a hyperspectral image of Mars.




Dimension reduction

In this talk : dimension reduction for regression.
In the team Mistis :

@ Unsupervised dimension reduction (nonlinear PCA),

@ Dimension reduction for classification and clustering.



References on this work

@ Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L. et
Girard, S. (2009). Retrieval of Mars surface physical properties
from OMEGA hyperspectral images using Regularized Sliced
Inverse Regression. Journal of Geophysical Research - Planets,
114, E06005

@ Bernard-Michel, C., Gardes, L. et Girard, S. (2009). Gaussian
Regularized Sliced Inverse Regression, Statistics and
Computing, 19, 85-98.

e Bernard-Michel, C., Gardes, L. et Girard, S. (2008). A Note
on Sliced Inverse Regression with Regularizations, Biometrics,
64, 982-986.



References on SIR

° Li, K.C. (1991). Sliced inverse regression for
dimension reduction. Journal of the American Statistical
Association, 86, 316-327.

° . Cook, R.D. (2007). Fisher lecture : Dimension
reduction in regression. Statistical Science, 22(1), 1-26.
° : Zhong, W., Zeng, P., Ma, P., Liu, J.S.

and Zhu, Y. (2005). RSIR : Regularized Sliced Inverse
Regression for motif discovery. Bioinformatics, 21(22),
4169-4175.

° : Chiaromonte, F. and Martinelli, J.
(2002). Dimension reduction strategies for analyzing global
gene expression data with a response. Mathematical
Biosciences, 176, 123-144.



	Outline
	Sliced Inverse Regression (SIR)
	Regularization of SIR
	SIR for data streams
	Application to real data

