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The advent of "big" data
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Large-scale supervised learning

Large-scale supervised learning
Let (x1,91),---, (Xn,¥n) € R? x Y be a set of i.i.d. labelled training data

n

1
Minimi AQW) + =S L(y;, WTx; 1
Ainimize (W) + - ; (vi, X;) (1)

m Multi-output regression : J) = R*
m Multi-class classification : J = {0, 1}*

Problem : minimizing such objectives in the large-scale setting

min(d, k) > 1 (2)
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Motivation

Image classification with large number of classes

m Embedding assumption : classes may embedded in a low-dimensional
subspace of the feature space.
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m Computational efficiency : training time and test time efficiency
require sparse matrix regularizers
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Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty

Let (x1,%1),-., (Xn,yn) € R? x Y be a set of i.i.d. labelled training data;
e.g. Y = {0,1}* for multi-class classification

n

1
Minimize AQ(W) + = > L (y;, W'x; P1
finimize MAW)+ 20 L Wix) (P
Important case : Trace-norm penalty
Qtrace(W) = [[o(W)]|; (3)

where 0(W) = {01(W), ..., Omin(a,k) (W)} singular spectrum
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Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty

Let (X1,91),- -+, (Xn,yn) € R? x ) be a set of i.i.d. labelled training data;
e.g. YV = {0,1}* for multi-class classification

L 1<
Minimize  AQ(W) + - Z L (y;, WT'x;) (P1)

WeRdxk .
non—smooth =1 ~
smooth
Important case : Trace-norm penalty
Qtrace(W) = HU(W)Hl (4)

where 0(W) = {01(W), ..., 0min(a,k) (W)} singular spectrum
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Trace-norm penalty

Properties of trace-norm penalty

m Non-differentiable penalty, just as the vector £1-norm
m Convex relaxation of the rank(W) penalty

m Enforces a low-rank structure on W

Possible approaches

m “Blind" approach : subgradient, e-subgradient, bundle method — slow
convergence rate

m Alternating minimization — not-convex

m Composite minimization : (accelerated) proximal gradient — good
convergence rate in O(1/t)
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Composite minimization algorithms

Strengths of composite minimization algorithms

m Attractive algorithms when proximal operator is cheap, as e.g. for
vector £1-norm

m Highly accurate with finite-time accuracy guarantees

Weaknesses of composite minimization algorithms

m Inappropriate when proximal operator is expensive to compute

m Heavily sensitive to design matrix conditioning

Situation with trace-norm

m proximal operator corresponds to singular value thresholding, requiring
an SVD running in O(kd?) in time — impractical for large-scale
problems
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Proposed approach : coordinate descent

We want an algorithm with no SVD...
Let's get inspiration from {7 case...

Coordinate descent algorithms

m efficient and scalable algorithms

m competitive with composite minimization algorithms

m more robust to ill-conditioned design matrices

Open problem for trace-norm

m unclear how to devise one in the matrix case : what are the
“coordinates” ?

m good coordinates are the ones along the (unknown) singular vectors
basis of the minimizer...life is unfair
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Our solution : Lifting to an infinite-dimensional space

Reformulation of trace-norm
The trace-norm is the smallest £1-norm of the weight vector associated

with an atomic decomposition onto rank-one subspaces

i=1

N
lo(W)|, = i%f{||9||1 | 3N, 0; > 0,M; € M with W = Z@Mi}

where the generating family is

M={uw’ [ueR, veR” |ul,=|v|,=1}
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Lifting to an infinite-dimensional space

The trace-norm is the smallest £1-norm of the weight vector associated
with an atomic decomposition onto rank-one subspaces

p (] ——
Vv 'Lv1 Kvt

w = |U = 6, +o4 0 +
bul k\ut

N
lo(W)l, = int {||9||1 | AN, 0; > 0,M; € M with W = ZeiM,-}
i=1

M = {uv" [ueR% veRY, |ul,=|v|, =1}
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Landing back

Assumptions

m M is a compact subset of R¥*, 0 lies in the interior of B = conv M.

m For any y € Y, the loss function L(y,-) is convex, bounded below, and
has Lipchitz-continuous derivative

Notations
m Denote 7 the index set spanning the set of rank-one matrices in M,
O := {6 € R? | supp @ is finite}
m Denote 1
W) = \Q(W) + — > L (y;, W'x;
OA(W) 1= MAW) + L (i, W)

i=1
Equivalence

We prove the equivalence of the infinite-dimensional formulation.
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Landing back

Theorem
the function 5 (-) is convex and differentiable, where
=A Z 0 + — ZL yl7W0Xl
jEsupp O
for all 6 € ©F, (W) < 1A (0)

the two problems are equivalent, i.e.

6 € Argmin(0) if and only if W, € Argmin ¢)(W).
6cot WeRdxk
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Landing back

Theorem

the function 5 (-) is convex and differentiable, where

Ji=A ) 0+ ZL yi, Whx;)

j€Esupp O

for all 8 € ©F, $1(We) < )A(0)
the two problems are equivalent, i.e.

\ool?
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Coordinate descent

Coordinate descent algorithm

Fix e >0andset 8y =0
Loop on t

1) Use oracle to get j; = Argmin,c; (Viir(0;), M)
2) Set e; = ej, and g¢ = 0;,¥A(0:)
3) [case 1] If gt < —e, 0441 = 64 + ey with suitable ¢
4) [case 2] Else g; > —¢, 6441 = mingpsuppo, ¥ (0:)
5) Terminate if 6,11 = 60,

End

ZH (INRIA) Fast coordinate descent Dec. 6th 2011 15 / 33



—
Coordinate descent

Coordinate descent algorithm

Fix e >0andset 8y =0
Loop on t

1) Use oracle to get j; = Argmin,c; (Vix(0:), M)
2) Set e; = ej, and g¢ = 0;,¥A(0:)
3) [case 1] If gt < —e, 0441 = 64 + ey with suitable ¢
4) [case 2] Else g; > —¢, 6441 = mingpsuppo, ¥ (0:)
5) Terminate if 6,11 = 60,

End

ZH (INRIA) Fast coordinate descent Dec. 6th 2011 16 / 33



—
Oracle for coordinate descent

The notion of oracle

m Exact oracle : “machine” that ouputs the steepest descent rank-one

matrix “direction” M; = uiviT
Arg min 9;1,(0) = Argmax (M;, —V¢(8))

ieT ieT

= Argmax u] (-V¢(W))v;
i€l
1 n
¢(We) := — > L (yi, W) (5)

=1

where

m c-approximate oracle : “machine” that ouputs a descent rank-one
matrix “direction” M; = uiviT

(M;, —~V6(6)) < max (M, ~V(6)) + ¢ ©)
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Oracle for coordinate descent

Oracle for the trace-norm

m Exact oracle : top singular vectors u; and vy of —V¢(0)

m c-approximate oracle :
approximate singular vectors u; and v; of —V¢(0)

< obtained by early-stopped power or Lanczos iterations
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Coordinate descent
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Fast coordinate descent

Acceleration with second-order subspace optimization

m Smooth minimization with box constraints (Step 4)

— “Projected” Newton/Quasi-Newton

Running time

m Time-complexity of the oracle : O(dk) up to log-factors
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Related ideas

Column-matrix generation and boosting

m Oracle call is similar to a “matrix generation” step

m Similarities with LP-view and subsequent coordinate descent
algorithms of boosting

Franke-Wolfe and friends

m Greedy updates are similar to algorithms for solving SDPs with
low-rank constraints; see also (Jaggi & Sulovsky, 2010)

ZH (INRIA) Fast coordinate descent Dec. 6th 2011 21 /33



Experimental results

Benchmark
m Inspired by the benchmark of optimization algorithms for
sparsity-inducing vector penalties of (Bach et al., 2011)

m Varying scales n = 100, 500, varying strength of penalty A, varying
conditioning of design matrix (low-correlation and high-correlation of
features)

Optimization accuracy comparison

m Relative accuracy |(f — f*)/f*| against CPU running time

m Competitors : our algorithn (FCD) and accelerated proximal gradient
algorithm (Prox++, FISTA-like implementation)
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Experimental results

For small-scale, light regularization, and ill-conditioned design.

log(relative distance to optimum)

— FCD
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CPU time

Fast coordinate descent
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Experimental results

For large-scale, light regularization, and ill-conditioned design.

log(relative distance to optimum)
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Experimental results

For large-scale, heavy regularization, and ill-conditioned design.

log(relative distance to optimum)
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Experimental results

Results for a subset of classes from ImageNet
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Experimental results

Benchmark

m Real-world dataset : subset of classes from ImageNet “Vehicles”,
“Fungus”, and “Ungulate”

Some orders of magnitude

m Number of images : n = 250,000
m Feature size : d = 65,000 (Fisher vectors
m Number of classes : k = 200
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Experimental results

Classification accuracy comparison
m Classification accuracy : top-k accuracy, i.e.

# images whose correct label lies in top-k scores

Accuracy,,, . = -
Yiop—k Total number of images

m Competitors : our approach (TR-Multiclass) and & independently
trained one-vs-rest classifiers (OVR)
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Experimental results
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A posteriori low-dimensional embedding

ZH (INRIA) Fast coordinate descent Dec. 6th 2011 30 /33



Conclusion and perspectives

Take-home messages

m the trace-norm is an £1-norm in some higher-dimensional space

m this fact can be leveraged to design new algorithms
Extensions

m extension to other sparse matrix regularizers : gauge regularizers

m risk bounds for learning algorithms with gauge regularization penalties
Conclusion

m efficient alternative of proximal techniques suitable for large-scale
problems

m yes, we can build coordinate descent algorithms even for sparse matrix
regularizers
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The rise of statistical machine learning
as an academic discipline

Roots and interactions of statistical machine learning

m Roots : artificial intelligence, statistics, optimization, theoretical
computer science, signal processing

m Interactions : computer vision, audio, text, bioinformatics, and many
others

Statistical machine learning

m statistical machine learning is a (growing) academic discipline,
emancipated from its roots, with its own theory, methodology, and

applications.
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Interesting open issues

Open scientific issues

m Towards “vegan learning” : close the gap to “raw” data for learning
algorithms

m Towards true COLT : more theoretical computational learning and
more computational learning theory
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