Large-scale classification with sparse matrix regularization

Zaid Harchaoui

LEAR project-team, INRIA

Joint work with Miro Dudik (Yahoo!) and Jerome Malick (CNRS, LJK)

December 6th, 2011

The advent of "big" data

Large-scale supervised learning

Large-scale supervised learning
Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathcal{Y}$ be a set of i.i.d. labelled training data

$$
\begin{equation*}
\underset{\mathbf{W} \in \mathbb{R}^{d \times k}}{\operatorname{Minimize}} \quad \lambda \Omega(\mathbf{W})+\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}^{T} \mathbf{x}_{i}\right) \tag{1}
\end{equation*}
$$

- Multi-output regression: $\mathcal{Y}=\mathbb{R}^{k}$
- Multi-class classification: $\mathcal{Y}=\{0,1\}^{k}$

Problem : minimizing such objectives in the large-scale setting

$$
\begin{equation*}
\min (d, k) \gg 1 \tag{2}
\end{equation*}
$$

Motivation

Image classification with large number of classes
■ Embedding assumption : classes may embedded in a low-dimensional subspace of the feature space.

Example :

■ Computational efficiency : training time and test time efficiency require sparse matrix regularizers

Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty
Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathcal{Y}$ be a set of i.i.d. labelled training data; e.g. $\mathcal{Y}=\{0,1\}^{k}$ for multi-class classification

$$
\begin{equation*}
\underset{\mathbf{W} \in \mathbb{R}^{d \times k}}{\operatorname{Minimize}} \quad \lambda \Omega(\mathbf{W})+\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}^{T} \mathbf{x}_{i}\right) \tag{P1}
\end{equation*}
$$

Important case : Trace-norm penalty

$$
\begin{equation*}
\Omega_{\text {trace }}(\mathbf{W})=\|\sigma(\mathbf{W})\|_{1} \tag{3}
\end{equation*}
$$

where $\sigma(\mathbf{W})=\left\{\sigma_{1}(\mathbf{W}), \ldots, \sigma_{\min (d, k)}(\mathbf{W})\right\}$ singular spectrum

Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty
Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathcal{Y}$ be a set of i.i.d. labelled training data; e.g. $\mathcal{Y}=\{0,1\}^{k}$ for multi-class classification

Important case : Trace-norm penalty

$$
\begin{equation*}
\Omega_{\text {trace }}(\mathbf{W})=\|\sigma(\mathbf{W})\|_{1} \tag{4}
\end{equation*}
$$

where $\sigma(\mathbf{W})=\left\{\sigma_{1}(\mathbf{W}), \ldots, \sigma_{\min (d, k)}(\mathbf{W})\right\}$ singular spectrum

Trace-norm penalty

Properties of trace-norm penalty
■ Non-differentiable penalty, just as the vector ℓ_{1}-norm

- Convex relaxation of the $\operatorname{rank}(\mathbf{W})$ penalty

■ Enforces a low-rank structure on W

Possible approaches
■ "Blind" approach : subgradient, ε-subgradient, bundle method \rightarrow slow convergence rate

- Alternating minimization \rightarrow not-convex
- Composite minimization : (accelerated) proximal gradient \rightarrow good convergence rate in $O(1 / t)$

Composite minimization algorithms

Strengths of composite minimization algorithms
■ Attractive algorithms when proximal operator is cheap, as e.g. for vector ℓ_{1}-norm
■ Highly accurate with finite-time accuracy guarantees

Weaknesses of composite minimization algorithms

- Inappropriate when proximal operator is expensive to compute

■ Heavily sensitive to design matrix conditioning

Situation with trace-norm

- proximal operator corresponds to singular value thresholding, requiring an SVD running in $O\left(k d^{2}\right)$ in time \rightarrow impractical for large-scale problems

Proposed approach : coordinate descent

We want an algorithm with no SVD...
Let's get inspiration from ℓ_{1} case...

Coordinate descent algorithms

- efficient and scalable algorithms
- competitive with composite minimization algorithms

■ more robust to ill-conditioned design matrices

Open problem for trace-norm

- unclear how to devise one in the matrix case : what are the "coordinates"?
- good coordinates are the ones along the (unknown) singular vectors basis of the minimizer...life is unfair

Our solution: Lifting to an infinite-dimensional space

Reformulation of trace-norm
The trace-norm is the smallest ℓ_{1}-norm of the weight vector associated with an atomic decomposition onto rank-one subspaces

$$
\|\sigma(\mathbf{W})\|_{1}=\inf _{\theta}\left\{\|\theta\|_{1} \mid \exists N, \theta_{i}>0, \mathbf{M}_{i} \in \mathcal{M} \text { with } \mathbf{W}=\sum_{i=1}^{N} \theta_{i} \mathbf{M}_{i}\right\}
$$

where the generating family is

$$
\mathcal{M}=\left\{\mathbf{u} \mathbf{v}^{T} \mid \mathbf{u} \in \mathbb{R}^{d}, \mathbf{v} \in \mathbb{R}^{\mathcal{Y}},\|\mathbf{u}\|_{2}=\|\mathbf{v}\|_{2}=1\right\}
$$

Lifting to an infinite-dimensional space

The trace-norm is the smallest ℓ_{1}-norm of the weight vector associated with an atomic decomposition onto rank-one subspaces

$$
\begin{aligned}
\|\sigma(\mathbf{W})\|_{1} & =\inf _{\theta}\left\{\|\theta\|_{1} \mid \exists N, \theta_{i}>0, \mathbf{M}_{i} \in \mathcal{M} \text { with } \mathbf{W}=\sum_{i=1}^{N} \theta_{i} \mathbf{M}_{i}\right\} \\
\mathcal{M} & =\left\{\mathbf{u v}^{T} \mid \mathbf{u} \in \mathbb{R}^{d}, \mathbf{v} \in \mathbb{R}^{\mathcal{Y}},\|\mathbf{u}\|_{2}=\|\mathbf{v}\|_{2}=1\right\}
\end{aligned}
$$

Landing back

Assumptions

- \mathcal{M} is a compact subset of $\mathbb{R}^{d \times k}, 0$ lies in the interior of $\mathcal{B}=\operatorname{conv} \mathcal{M}$.

■ For any $y \in \mathcal{Y}$, the loss function $L(y, \cdot)$ is convex, bounded below, and has Lipchitz-continuous derivative

Notations

■ Denote \mathcal{I} the index set spanning the set of rank-one matrices in \mathcal{M}, $\Theta:=\left\{\boldsymbol{\theta} \in \mathbb{R}^{\mathcal{I}} \mid \operatorname{supp} \boldsymbol{\theta}\right.$ is finite $\}$

- Denote

$$
\phi_{\lambda}(\mathbf{W}):=\lambda \Omega(\mathbf{W})+\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}^{T} \mathbf{x}_{i}\right)
$$

Equivalence
We prove the equivalence of the infinite-dimensional formulation.

Landing back

Theorem

1 the function $\psi_{\lambda}(\cdot)$ is convex and differentiable, where

$$
\psi_{\lambda}(\boldsymbol{\theta}):=\lambda \sum_{j \in \operatorname{supp} \boldsymbol{\theta}} \theta_{j}+\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}_{\boldsymbol{\theta}}^{T} \mathbf{x}_{i}\right)
$$

2 for all $\boldsymbol{\theta} \in \Theta^{+}, \phi_{\lambda}\left(\mathbf{W}_{\boldsymbol{\theta}}\right) \leq \psi_{\lambda}(\boldsymbol{\theta})$
3 the two problems are equivalent, i.e.
$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \Theta^{+}}{\operatorname{Arg} \min } \psi_{\lambda}(\boldsymbol{\theta}) \quad$ if and only if $\quad \mathbf{W}_{\hat{\boldsymbol{\theta}}} \in \underset{\mathbf{W} \in \mathbb{R}^{d \times k}}{\operatorname{Arg} \min } \phi_{\lambda}(\mathbf{W})$.

Landing back

Theorem

1 the function $\psi_{\lambda}(\cdot)$ is convex and differentiable, where

$$
\psi_{\lambda}(\boldsymbol{\theta}):=\lambda \sum_{j \in \operatorname{supp} \boldsymbol{\theta}} \theta_{j}+\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}_{\boldsymbol{\theta}}^{T} \mathbf{x}_{i}\right)
$$

2 for all $\boldsymbol{\theta} \in \Theta^{+}, \phi_{\lambda}\left(\mathbf{W}_{\boldsymbol{\theta}}\right) \leq \psi_{\lambda}(\boldsymbol{\theta})$
3 the two problems are equivalent, i.e.

Coordinate descent

Coordinate descent algorithm
Fix $\varepsilon>0$ and set $\boldsymbol{\theta}_{0}=0$
Loop on t

1) Use oracle to get $j_{t}=\operatorname{Arg} \min _{j \in I}\left\langle\nabla \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right), \mathbf{M}_{j}\right\rangle$
2) Set $e_{t}=e_{j_{t}}$ and $g_{t}=\partial_{j_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
3) [case 1] If $g_{t} \leq-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\delta e_{t}$ with suitable δ
4) [case 2] Else $g_{t}>-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\min _{\boldsymbol{\theta} \in \mathbb{R}^{\text {supp }} \theta_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
5) Terminate if $\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}$

End

Coordinate descent

Coordinate descent algorithm
Fix $\varepsilon>0$ and set $\boldsymbol{\theta}_{0}=0$
Loop on t

1) Use oracle to get $j_{t}=\operatorname{Arg} \min _{j \in I}\left\langle\nabla \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right), \mathbf{M}_{j}\right\rangle$
2) Set $e_{t}=e_{j_{t}}$ and $g_{t}=\partial_{j_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
3) [case 1] If $g_{t} \leq-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\delta e_{t}$ with suitable δ
4) [case 2] Else $g_{t}>-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\min _{\boldsymbol{\theta} \in \mathbb{R}^{\text {supp }} \theta_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
5) Terminate if $\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}$

End

Oracle for coordinate descent

The notion of oracle

- Exact oracle : "machine" that ouputs the steepest descent rank-one matrix "direction" $\mathbf{M}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T}$

$$
\begin{aligned}
\underset{i \in \mathcal{I}}{\operatorname{Arg} \min } \partial_{i} \psi_{\lambda}(\boldsymbol{\theta}) & =\underset{i \in \mathcal{I}}{\operatorname{Arg} \max }\left\langle\mathbf{M}_{i},-\nabla \phi(\boldsymbol{\theta})\right\rangle \\
& =\underset{i \in \mathcal{I}}{\operatorname{Arg} \max } \mathbf{u}_{i}^{T}(-\nabla \phi(\mathbf{W})) \mathbf{v}_{i}
\end{aligned}
$$

where

$$
\begin{equation*}
\phi\left(\mathbf{W}_{\boldsymbol{\theta}}\right):=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \mathbf{W}_{\boldsymbol{\theta}}^{T} \mathbf{x}_{i}\right) \tag{5}
\end{equation*}
$$

■ ε-approximate oracle : "machine" that ouputs a descent rank-one matrix "direction" $\mathbf{M}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T}$

$$
\begin{equation*}
\left\langle\mathbf{M}_{i},-\nabla \phi(\boldsymbol{\theta})\right\rangle \leq \max _{i \in \mathcal{I}}\left\langle\mathbf{M}_{i},-\nabla \phi(\boldsymbol{\theta})\right\rangle+\varepsilon \tag{6}
\end{equation*}
$$

Oracle for coordinate descent

Oracle for the trace-norm
■ Exact oracle : top singular vectors \mathbf{u}_{1} and \mathbf{v}_{1} of $-\nabla \phi(\boldsymbol{\theta})$

- ε-approximate oracle : approximate singular vectors \mathbf{u}_{1} and \mathbf{v}_{1} of $-\nabla \phi(\boldsymbol{\theta})$
\hookrightarrow obtained by early-stopped power or Lanczos iterations

Coordinate descent

Coordinate descent algorithm
Fix $\varepsilon>0$ and set $\boldsymbol{\theta}_{0}=0$
Loop on t

1) Use oracle to get $j_{t}=\operatorname{Arg} \min _{j \in I}\left\langle\nabla \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right), \mathbf{M}_{j}\right\rangle$
2) Set $e_{t}=e_{j_{t}}$ and $g_{t}=\partial_{j_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
3) [case 1] If $g_{t} \leq-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\delta e_{t}$ with suitable δ
4) [case 2] Else $g_{t}>-\varepsilon, \quad \boldsymbol{\theta}_{t+1}=\min _{\boldsymbol{\theta} \in \mathbb{R}^{\text {supp }} \theta_{t}} \psi_{\lambda}\left(\boldsymbol{\theta}_{t}\right)$
5) Terminate if $\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}$

End

Fast coordinate descent

Acceleration with second-order subspace optimization

- Smooth minimization with box constraints (Step 4) \hookrightarrow "Projected" Newton/Quasi-Newton

Running time
■ Time-complexity of the oracle : $O(d k)$ up to log-factors

Related ideas

Column-matrix generation and boosting

- Oracle call is similar to a "matrix generation" step
- Similarities with LP-view and subsequent coordinate descent algorithms of boosting

Franke-Wolfe and friends
■ Greedy updates are similar to algorithms for solving SDPs with low-rank constraints ; see also (Jaggi \& Sulovsky, 2010)

Experimental results

Benchmark

■ Inspired by the benchmark of optimization algorithms for sparsity-inducing vector penalties of (Bach et al., 2011)
■ Varying scales $n=100,500$, varying strength of penalty λ, varying conditioning of design matrix (low-correlation and high-correlation of features)

Optimization accuracy comparison
■ Relative accuracy $\left|\left(f-f^{\star}\right) / f^{\star}\right|$ against CPU running time
■ Competitors : our algorithn (FCD) and accelerated proximal gradient algorithm (Prox++, FISTA-like implementation)

Experimental results

For small-scale, light regularization, and ill-conditioned design.

Experimental results

For large-scale, light regularization, and ill-conditioned design.

Experimental results

For large-scale, heavy regularization, and ill-conditioned design.

Experimental results

Results for a subset of classes from ImageNet

Experimental results

Benchmark
■ Real-world dataset : subset of classes from ImageNet "Vehicles", "Fungus", and "Ungulate"

Some orders of magnitude
■ Number of images : $n=250,000$
■ Feature size : $d=65,000$ (Fisher vectors

- Number of classes : $k=200$

Experimental results

Classification accuracy comparison

- Classification accuracy : top- k accuracy, i.e.

$$
\text { Accuracy }_{\text {top }-k}=\frac{\# \text { images whose correct label lies in top- } \mathrm{k} \text { scores }}{\text { Total number of images }}
$$

- Competitors : our approach (TR-Multiclass) and k independently trained one-vs-rest classifiers (OVR)

Experimental results

Fungus

Ungulate

Vehicle

A posteriori low-dimensional embedding

Conclusion and perspectives

Take-home messages

- the trace-norm is an ℓ_{1}-norm in some higher-dimensional space
- this fact can be leveraged to design new algorithms

Extensions

■ extension to other sparse matrix regularizers : gauge regularizers

- risk bounds for learning algorithms with gauge regularization penalties

Conclusion
■ efficient alternative of proximal techniques suitable for large-scale problems

- yes, we can build coordinate descent algorithms even for sparse matrix regularizers

The rise of statistical machine learning as an academic discipline

Roots and interactions of statistical machine learning
■ Roots : artificial intelligence, statistics, optimization, theoretical computer science, signal processing

- Interactions : computer vision, audio, text, bioinformatics, and many others

Statistical machine learning

- statistical machine learning is a (growing) academic discipline, emancipated from its roots, with its own theory, methodology, and applications.

Interesting open issues

Open scientific issues
■ Towards "vegan learning" : close the gap to "raw" data for learning algorithms
■ Towards true COLT : more theoretical computational learning and more computational learning theory

