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The advent of “big” data
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Large-scale supervised learning

Large-scale supervised learning
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data

Minimize
W∈Rd×k

λΩ(W) +
1

n

n∑
i=1

L
(
yi,W

Txi
)

(1)

Multi-output regression : Y = Rk

Multi-class classification : Y = {0, 1}k

Problem : minimizing such objectives in the large-scale setting

min(d, k)� 1 (2)
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Motivation

Image classification with large number of classes

Embedding assumption : classes may embedded in a low-dimensional
subspace of the feature space.

Example :
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Computational efficiency : training time and test time efficiency
require sparse matrix regularizers
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Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data ;
e.g. Y = {0, 1}k for multi-class classification

Minimize
W∈Rd×k

λΩ(W) +
1

n

n∑
i=1

L
(
yi,W

Txi
)

(P1)

Important case : Trace-norm penalty

Ωtrace(W) = ‖σ(W)‖1 (3)

where σ(W) = {σ1(W), . . . , σmin(d,k)(W)} singular spectrum
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Learning with trace-norm penalty

Supervised learning with trace-norm regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data ;
e.g. Y = {0, 1}k for multi-class classification

Minimize
W∈Rd×k

λΩ(W)︸ ︷︷ ︸
non−smooth

+
1

n

n∑
i=1

L
(
yi,W

Txi
)

︸ ︷︷ ︸
smooth

(P1)

Important case : Trace-norm penalty

Ωtrace(W) = ‖σ(W)‖1 (4)

where σ(W) = {σ1(W), . . . , σmin(d,k)(W)} singular spectrum
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Trace-norm penalty

Properties of trace-norm penalty

Non-differentiable penalty, just as the vector `1-norm
Convex relaxation of the rank(W) penalty
Enforces a low-rank structure on W

Possible approaches

“Blind” approach : subgradient, ε-subgradient, bundle method → slow
convergence rate
Alternating minimization → not-convex
Composite minimization : (accelerated) proximal gradient → good
convergence rate in O(1/t)
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Composite minimization algorithms

Strengths of composite minimization algorithms

Attractive algorithms when proximal operator is cheap, as e.g. for
vector `1-norm
Highly accurate with finite-time accuracy guarantees

Weaknesses of composite minimization algorithms

Inappropriate when proximal operator is expensive to compute
Heavily sensitive to design matrix conditioning

Situation with trace-norm

proximal operator corresponds to singular value thresholding, requiring
an SVD running in O(kd2) in time → impractical for large-scale
problems
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Proposed approach : coordinate descent

We want an algorithm with no SVD...
Let’s get inspiration from `1 case...

Coordinate descent algorithms

efficient and scalable algorithms
competitive with composite minimization algorithms
more robust to ill-conditioned design matrices

Open problem for trace-norm

unclear how to devise one in the matrix case : what are the
“coordinates” ?
good coordinates are the ones along the (unknown) singular vectors
basis of the minimizer...life is unfair
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Our solution : Lifting to an infinite-dimensional space

Reformulation of trace-norm
The trace-norm is the smallest `1-norm of the weight vector associated
with an atomic decomposition onto rank-one subspaces

‖σ(W)‖1 = inf
θ

{
‖θ‖1 | ∃N, θi > 0,Mi ∈M with W =

N∑
i=1

θiMi

}

where the generating family is

M = {uvT | u ∈ Rd, v ∈ RY , ‖u‖2 = ‖v‖2 = 1}
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Lifting to an infinite-dimensional space

The trace-norm is the smallest `1-norm of the weight vector associated
with an atomic decomposition onto rank-one subspaces

‖σ(W)‖1 = inf
θ

{
‖θ‖1 | ∃N, θi > 0,Mi ∈M with W =

N∑
i=1

θiMi

}
M = {uvT | u ∈ Rd, v ∈ RY , ‖u‖2 = ‖v‖2 = 1}
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Landing back

Assumptions

M is a compact subset of Rd×k, 0 lies in the interior of B = convM.
For any y ∈ Y, the loss function L(y, ·) is convex, bounded below, and
has Lipchitz-continuous derivative

Notations

Denote I the index set spanning the set of rank-one matrices inM,
Θ := {θ ∈ RI | suppθ is finite}
Denote

φλ(W) := λΩ(W) +
1

n

n∑
i=1

L
(
yi,W

Txi
)

Equivalence
We prove the equivalence of the infinite-dimensional formulation.
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Landing back

Theorem

1 the function ψλ(·) is convex and differentiable, where

ψλ(θ) := λ
∑

j∈suppθ

θj +
1

n

n∑
i=1

L
(
yi,W

T
θ xi
)
.

2 for all θ ∈ Θ+, φλ(Wθ) ≤ ψλ(θ)

3 the two problems are equivalent, i.e.

θ̂ ∈ Arg min
θ∈Θ+

ψλ(θ) if and only if Wθ̂ ∈ Arg min
W∈Rd×k

φλ(W).
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Theorem
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(
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T
θ xi
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3 the two problems are equivalent, i.e.
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Coordinate descent

Coordinate descent algorithm
Fix ε > 0 and set θ0 = 0
Loop on t
1) Use oracle to get jt = Arg minj∈I 〈∇ψλ(θt),Mj〉
2) Set et = ejt and gt = ∂jtψλ(θt)

3) [case 1] If gt ≤ −ε, θt+1 = θt + δet with suitable δ
4) [case 2] Else gt > −ε, θt+1 = minθ∈Rsupp θt ψλ(θt)

5) Terminate if θt+1 = θt

End
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Oracle for coordinate descent

The notion of oracle

Exact oracle : “machine” that ouputs the steepest descent rank-one
matrix “direction” Mi = uiv

T
i

Arg min
i∈I

∂iψλ(θ) = Arg max
i∈I

〈Mi,−∇φ(θ)〉

= Arg max
i∈I

uTi
(
−∇φ(W)

)
vi

where
φ(Wθ) :=

1

n

n∑
i=1

L
(
yi,W

T
θ xi
)

(5)

ε-approximate oracle : “machine” that ouputs a descent rank-one
matrix “direction” Mi = uiv

T
i

〈Mi,−∇φ(θ)〉 ≤ max
i∈I
〈Mi,−∇φ(θ)〉+ ε (6)
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Oracle for coordinate descent

Oracle for the trace-norm

Exact oracle : top singular vectors u1 and v1 of −∇φ(θ)

ε-approximate oracle :

approximate singular vectors u1 and v1 of −∇φ(θ)

↪→ obtained by early-stopped power or Lanczos iterations
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Coordinate descent

Coordinate descent algorithm
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Fast coordinate descent

Acceleration with second-order subspace optimization

Smooth minimization with box constraints (Step 4)

↪→ “Projected” Newton/Quasi-Newton

Running time

Time-complexity of the oracle : O(dk) up to log-factors
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Related ideas

Column-matrix generation and boosting

Oracle call is similar to a “matrix generation” step
Similarities with LP-view and subsequent coordinate descent
algorithms of boosting

Franke-Wolfe and friends

Greedy updates are similar to algorithms for solving SDPs with
low-rank constraints ; see also (Jaggi & Sulovsky, 2010)
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Experimental results

Benchmark

Inspired by the benchmark of optimization algorithms for
sparsity-inducing vector penalties of (Bach et al., 2011)
Varying scales n = 100, 500, varying strength of penalty λ, varying
conditioning of design matrix (low-correlation and high-correlation of
features)

Optimization accuracy comparison

Relative accuracy |(f − f?)/f?| against CPU running time
Competitors : our algorithn (FCD) and accelerated proximal gradient
algorithm (Prox++, FISTA-like implementation)
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Experimental results

For small-scale, light regularization, and ill-conditioned design.
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Experimental results

For large-scale, light regularization, and ill-conditioned design.
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Experimental results

For large-scale, heavy regularization, and ill-conditioned design.
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Experimental results

Results for a subset of classes from ImageNet
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Experimental results

Benchmark

Real-world dataset : subset of classes from ImageNet “Vehicles”,
“Fungus”, and “Ungulate”

Some orders of magnitude

Number of images : n = 250, 000

Feature size : d = 65, 000 (Fisher vectors
Number of classes : k = 200
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Experimental results

Classification accuracy comparison

Classification accuracy : top-k accuracy, i.e.

Accuracytop−k =
# images whose correct label lies in top-k scores

Total number of images

Competitors : our approach (TR-Multiclass) and k independently
trained one-vs-rest classifiers (OVR)
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Experimental results
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A posteriori low-dimensional embedding
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Conclusion and perspectives

Take-home messages

the trace-norm is an `1-norm in some higher-dimensional space
this fact can be leveraged to design new algorithms

Extensions

extension to other sparse matrix regularizers : gauge regularizers
risk bounds for learning algorithms with gauge regularization penalties

Conclusion

efficient alternative of proximal techniques suitable for large-scale
problems
yes, we can build coordinate descent algorithms even for sparse matrix
regularizers
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The rise of statistical machine learning
as an academic discipline

Roots and interactions of statistical machine learning

Roots : artificial intelligence, statistics, optimization, theoretical
computer science, signal processing
Interactions : computer vision, audio, text, bioinformatics, and many
others

Statistical machine learning

statistical machine learning is a (growing) academic discipline,
emancipated from its roots, with its own theory, methodology, and
applications.
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Interesting open issues

Open scientific issues

Towards “vegan learning” : close the gap to “raw” data for learning
algorithms
Towards true COLT : more theoretical computational learning and
more computational learning theory
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