Large-scale classification with sparse matrix regularization

Zaid Harchaoui

LEAR project-team, INRIA

Joint work with Miro Dudik (Yahoo!) and Jerome Malick (CNRS, LJK)

December 6th, 2011

The advent of "big" data

ZH (INRIA)

Fast coordinate descent

Large-scale supervised learning

Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d imes \mathcal{Y}$ be a set of i.i.d. labelled training data

$$\underset{\mathbf{W}\in\mathbb{R}^{d\times k}}{\text{Minimize}} \quad \lambda \,\Omega(\mathbf{W}) + \frac{1}{n} \sum_{i=1}^{n} L(y_i, \mathbf{W}^T \mathbf{x}_i) \tag{1}$$

- Multi-output regression : $\mathcal{Y} = \mathbb{R}^k$
- Multi-class classification : $\mathcal{Y} = \{0, 1\}^k$

Problem : minimizing such objectives in the large-scale setting

$$\min(d,k) \gg 1 \tag{2}$$

Motivation

Image classification with large number of classes

Embedding assumption : classes may embedded in a low-dimensional subspace of the feature space.

Example :

 Computational efficiency : training time and test time efficiency require sparse matrix regularizers

ZH (INRIA)

Fast coordinate descent

Supervised learning with trace-norm regularization penalty

Let $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \mathcal{Y}$ be a set of i.i.d. labelled training data; e.g. $\mathcal{Y} = \{0, 1\}^k$ for multi-class classification

$$\underset{\mathbf{W}\in\mathbb{R}^{d\times k}}{\operatorname{Minimize}} \quad \lambda\Omega(\mathbf{W}) + \frac{1}{n}\sum_{i=1}^{n}L\left(y_{i}, \mathbf{W}^{T}\mathbf{x}_{i}\right) \qquad (\mathsf{P1})$$

Important case : Trace-norm penalty

$$\Omega_{\mathsf{trace}}(\mathbf{W}) = \left\| \sigma(\mathbf{W}) \right\|_1 \tag{3}$$

where $\sigma(\mathbf{W}) = \{\sigma_1(\mathbf{W}), \dots, \sigma_{\min(d,k)}(\mathbf{W})\}$ singular spectrum

Supervised learning with trace-norm regularization penalty

Let $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \mathcal{Y}$ be a set of i.i.d. labelled training data; e.g. $\mathcal{Y} = \{0, 1\}^k$ for multi-class classification

$$\underset{\mathbf{W}\in\mathbb{R}^{d\times k}}{\operatorname{Minimize}} \quad \underbrace{\lambda\Omega(\mathbf{W})}_{non-smooth} + \underbrace{\frac{1}{n}\sum_{i=1}^{n}L\left(y_{i},\mathbf{W}^{T}\mathbf{x}_{i}\right)}_{smooth} \quad (\mathsf{P1})$$

Important case : Trace-norm penalty

$$\Omega_{\text{trace}}(\mathbf{W}) = \|\sigma(\mathbf{W})\|_1 \tag{4}$$

where $\sigma(\mathbf{W}) = \{\sigma_1(\mathbf{W}), \dots, \sigma_{\min(d,k)}(\mathbf{W})\}$ singular spectrum

Trace-norm penalty

Properties of trace-norm penalty

- Non-differentiable penalty, just as the vector ℓ_1 -norm
- \blacksquare Convex relaxation of the rank($\mathbf{W})$ penalty
- Enforces a low-rank structure on W

Possible approaches

- \blacksquare "Blind" approach : subgradient, $\varepsilon\text{-subgradient},$ bundle method \rightarrow slow convergence rate
- Alternating minimization \rightarrow not-convex
- \blacksquare Composite minimization : (accelerated) proximal gradient \rightarrow good convergence rate in O(1/t)

Composite minimization algorithms

Strengths of composite minimization algorithms

- Attractive algorithms when proximal operator is cheap, as e.g. for vector $\ell_1\text{-norm}$
- Highly accurate with finite-time accuracy guarantees

Weaknesses of composite minimization algorithms

- Inappropriate when proximal operator is expensive to compute
- Heavily sensitive to design matrix conditioning

Situation with trace-norm

• proximal operator corresponds to singular value thresholding, requiring an SVD running in $O(kd^2)$ in time \rightarrow impractical for large-scale problems

Proposed approach : coordinate descent

We want an algorithm with no SVD... Let's get inspiration from ℓ_1 case...

Coordinate descent algorithms

- efficient and scalable algorithms
- competitive with composite minimization algorithms
- more robust to ill-conditioned design matrices

Open problem for trace-norm

- unclear how to devise one in the matrix case : what are the "coordinates" ?
- good coordinates are the ones along the (unknown) singular vectors basis of the minimizer...life is unfair

Reformulation of trace-norm

The trace-norm is the smallest ℓ_1 -norm of the weight vector associated with an atomic decomposition onto rank-one subspaces

$$\left\|\sigma(\mathbf{W})\right\|_{1} = \inf_{\theta} \left\{ \left\|\theta\right\|_{1} \mid \exists N, \theta_{i} > 0, \mathbf{M}_{i} \in \mathcal{M} \text{ with } \mathbf{W} = \sum_{i=1}^{N} \theta_{i} \mathbf{M}_{i} \right\}$$

where the generating family is

$$\mathcal{M} = \{ \mathbf{u}\mathbf{v}^T \mid \mathbf{u} \in \mathbb{R}^d, \, \mathbf{v} \in \mathbb{R}^{\mathcal{Y}}, \, \|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1 \}$$

Lifting to an infinite-dimensional space

The trace-norm is the smallest ℓ_1 -norm of the weight vector associated with an atomic decomposition onto rank-one subspaces

$$\begin{split} \|\sigma(\mathbf{W})\|_{1} &= \inf_{\theta} \left\{ \|\theta\|_{1} \mid \exists N, \theta_{i} > 0, \mathbf{M}_{i} \in \mathcal{M} \text{ with } \mathbf{W} = \sum_{i=1}^{N} \theta_{i} \mathbf{M}_{i} \right\} \\ \mathcal{M} &= \left\{ \mathbf{u} \mathbf{v}^{T} \mid \mathbf{u} \in \mathbb{R}^{d}, \, \mathbf{v} \in \mathbb{R}^{\mathcal{Y}}, \, \|\mathbf{u}\|_{2} = \|\mathbf{v}\|_{2} = 1 \right\} \end{split}$$

Landing back

Assumptions

- \mathcal{M} is a compact subset of $\mathbb{R}^{d \times k}$, 0 lies in the interior of $\mathcal{B} = \operatorname{conv} \mathcal{M}$.
- For any $y \in \mathcal{Y}$, the loss function $L(y, \cdot)$ is convex, bounded below, and has Lipchitz-continuous derivative

Notations

■ Denote \mathcal{I} the index set spanning the set of rank-one matrices in \mathcal{M} , $\Theta := \{ \boldsymbol{\theta} \in \mathbb{R}^{\mathcal{I}} \mid \operatorname{supp} \boldsymbol{\theta} \text{ is finite} \}$

Denote
$$\phi_{\lambda}(\mathbf{W}) := \lambda \Omega(\mathbf{W}) + \frac{1}{n} \sum_{i=1}^{n} L\left(y_i, \mathbf{W}^T \mathbf{x}_i\right)$$

Equivalence

We prove the equivalence of the infinite-dimensional formulation.

ZH (INRIA)

Fast coordinate descent

Landing back

Theorem

1 the function $\psi_{\lambda}(\cdot)$ is convex and differentiable, where

$$\psi_{\lambda}(\boldsymbol{\theta}) := \lambda \sum_{j \in \text{supp } \boldsymbol{\theta}} \theta_j + \frac{1}{n} \sum_{i=1}^n L\left(y_i, \mathbf{W}_{\boldsymbol{\theta}}^T \mathbf{x}_i\right) \ .$$

2 for all $\theta \in \Theta^+$, $\phi_{\lambda}(\mathbf{W}_{\theta}) \leq \psi_{\lambda}(\theta)$

3 the two problems are equivalent, i.e.

 $\hat{\boldsymbol{\theta}} \in \operatorname*{Arg\,min}_{\boldsymbol{\theta} \in \Theta^+} \psi_{\lambda}(\boldsymbol{\theta}) \quad \text{ if and only if } \quad \mathbf{W}_{\hat{\boldsymbol{\theta}}} \in \operatorname*{Arg\,min}_{\mathbf{W} \in \mathbb{R}^{d \times k}} \phi_{\lambda}(\mathbf{W}).$

Landing back

ZH (INRIA)

Theorem

1 the function $\psi_{\lambda}(\cdot)$ is convex and differentiable, where

$$\psi_{\lambda}(\boldsymbol{\theta}) := \lambda \sum_{j \in \operatorname{supp} \boldsymbol{\theta}} \theta_j + \frac{1}{n} \sum_{i=1}^n L\left(y_i, \mathbf{W}_{\boldsymbol{\theta}}^T \mathbf{x}_i\right) \;.$$

2 for all
$$\theta \in \Theta^+$$
, $\phi_{\lambda}(\mathbf{W}_{\theta}) \leq \psi_{\lambda}(\theta)$

3 the two problems are equivalent, i.e.

Coordinate descent algorithm

Fix $\varepsilon>0$ and set $\pmb{\theta}_0=0$

 $\mathsf{Loop} \text{ on } t$

Coordinate descent algorithm

Fix $\varepsilon>0$ and set $\pmb{\theta}_0=0$

Loop on t

Use oracle to get j_t = Arg min_{j∈I} ⟨∇ψ_λ(θ_t), M_j⟩
 Set e_t = e_{jt} and g_t = ∂_{jt}ψ_λ(θ_t)
 [case 1] If g_t ≤ -ε, θ_{t+1} = θ_t + δe_t with suitable δ
 [case 2] Else g_t > -ε, θ_{t+1} = min_{θ∈ℝ^{supp θt}} ψ_λ(θ_t)
 Terminate if θ_{t+1} = θ_t

Oracle for coordinate descent

The notion of oracle

• Exact oracle : "machine" that ouputs the steepest descent rank-one matrix "direction" $\mathbf{M}_i = \mathbf{u}_i \mathbf{v}_i^T$

$$\begin{aligned} \operatorname*{Arg\,min}_{i\in\mathcal{I}}\partial_{i}\psi_{\lambda}(\boldsymbol{\theta}) &= \operatorname*{Arg\,max}_{i\in\mathcal{I}}\left\langle \mathbf{M}_{i}, -\nabla\phi(\boldsymbol{\theta})\right\rangle \\ &= \operatorname*{Arg\,max}_{i\in\mathcal{I}} \ \mathbf{u}_{i}^{T} \big(-\nabla\phi(\mathbf{W}) \big) \mathbf{v}_{i} \end{aligned}$$

where

$$\phi(\mathbf{W}_{\theta}) := \frac{1}{n} \sum_{i=1}^{n} L\left(y_i, \mathbf{W}_{\theta}^T \mathbf{x}_i\right)$$
(5)

• ε -approximate oracle : "machine" that ouputs a descent rank-one matrix "direction" $\mathbf{M}_i = \mathbf{u}_i \mathbf{v}_i^T$

$$\langle \mathbf{M}_i, -\nabla \phi(\boldsymbol{\theta}) \rangle \le \max_{i \in \mathcal{I}} \langle \mathbf{M}_i, -\nabla \phi(\boldsymbol{\theta}) \rangle + \varepsilon$$
 (6)

ZH (INRIA)

Fast coordinate descent

Oracle for the trace-norm

- Exact oracle : top singular vectors \mathbf{u}_1 and \mathbf{v}_1 of $abla \phi(oldsymbol{ heta})$
- ε -approximate oracle :

approximate singular vectors \mathbf{u}_1 and \mathbf{v}_1 of $-\nabla \phi(\boldsymbol{\theta})$

 \hookrightarrow obtained by early-stopped power or Lanczos iterations

Coordinate descent algorithm

Fix $\varepsilon>0$ and set $\pmb{\theta}_0=0$

 $\mathsf{Loop} \text{ on } t$

Acceleration with second-order subspace optimization

- Smooth minimization with box constraints (Step 4)
 - $\hookrightarrow ``\mathsf{Projected''} \ \mathsf{Newton}/\mathsf{Quasi-Newton}$

Running time

 \blacksquare Time-complexity of the oracle : O(dk) up to log-factors

Column-matrix generation and boosting

- Oracle call is similar to a "matrix generation" step
- Similarities with LP-view and subsequent coordinate descent algorithms of boosting

Franke-Wolfe and friends

 Greedy updates are similar to algorithms for solving SDPs with low-rank constraints; see also (Jaggi & Sulovsky, 2010)

Experimental results

Benchmark

- Inspired by the benchmark of optimization algorithms for sparsity-inducing vector penalties of (Bach et al., 2011)
- Varying scales n = 100, 500, varying strength of penalty λ , varying conditioning of design matrix (low-correlation and high-correlation of features)

Optimization accuracy comparison

- \blacksquare Relative accuracy $|(f-f^{\star})/f^{\star}|$ against CPU running time
- Competitors : our algorithn (FCD) and accelerated proximal gradient algorithm (Prox++, FISTA-like implementation)

For small-scale, light regularization, and ill-conditioned design.

For large-scale, light regularization, and ill-conditioned design.

For large-scale, heavy regularization, and ill-conditioned design.

Results for a subset of classes from ImageNet

Benchmark

 Real-world dataset : subset of classes from ImageNet "Vehicles", "Fungus", and "Ungulate"

Some orders of magnitude

- Number of images : n = 250,000
- Feature size : d = 65,000 (Fisher vectors
- Number of classes : k = 200

Classification accuracy comparison

■ Classification accuracy : top-k accuracy, i.e.

Accuracy_{top-k} = $\frac{\text{\# images whose correct label lies in top-k scores}}{\text{Total number of images}}$

 Competitors : our approach (TR-Multiclass) and k independently trained one-vs-rest classifiers (OVR)

Experimental results

A posteriori low-dimensional embedding

Dec. 6th 2011 30 / 33

ZH (INRIA)

Conclusion and perspectives

Take-home messages

- the trace-norm is an ℓ_1 -norm in some higher-dimensional space
- this fact can be leveraged to design new algorithms

Extensions

- extension to other sparse matrix regularizers : gauge regularizers
- risk bounds for learning algorithms with gauge regularization penalties

Conclusion

- efficient alternative of proximal techniques suitable for large-scale problems
- yes, we can build coordinate descent algorithms even for sparse matrix regularizers

The rise of statistical machine learning as an academic discipline

Roots and interactions of statistical machine learning

- Roots : artificial intelligence, statistics, optimization, theoretical computer science, signal processing
- Interactions : computer vision, audio, text, bioinformatics, and many others

Statistical machine learning

statistical machine learning is a (growing) academic discipline, emancipated from its roots, with its own theory, methodology, and applications.

Open scientific issues

- Towards "vegan learning" : close the gap to "raw" data for learning algorithms
- Towards true COLT : more theoretical computational learning and more computational learning theory