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Behavioural and Cognitive

Development in Human Infants

PHYSICAL
DEVELOPMENT
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An innate cerebral and morphological
equipment ...

Innate motivational system that fosters spontaneous BUT
organized exploration (intrinsic motivation/curiosity-driven
exploration)

Motor primitives that constrain the space of motor commands
and gestures: e.g. muscles are not controlled individually and
independently, oscillators, ...

Sensori detectors and trackers that allow the baby to
bootstrap its attentional and emotional systems: e.g.
movement, high pitch, faces, ...

Sensorimotor reflexes: e.g. eye tracking of moving objects,
closing hands when objects touched, ...

Morphological properties that facilitate the control of the
body, ...



... built within a maturational program ...

e.g. myelination/myelinogenesis progressively building brain regions, connecting them
together and to muscles, increasing progressively resolution of senses and motor control,



.. in a structured physical and social
environment
=» then continuously extended thanks to a




Functional
Inspiration Developmental
Psychology and Social

Biology Study how to build Robotics
developmental machines

Functional
Modelling Developmental

Psychol .
Developmental Bisyc 010y — and Social

ology Understand human Robotics
development better

Developmental

(Weng et al., 2001, Science)
(Lungarella et al., 2006, Conn. Sc.)
(Oudeyer, 2011, Encycl. Lear. Sc.)

Object of study: The Architecture of Sensorimotor and Social Development

=» Learning algorithms are only a component




Learning models for
robot motor skill acquisition

——

Models of the selflbody  F====s

Movements <-> Effects



Learning models for
robot motor skill acquisition

Models of physical interctin with objects

~




Learning models for
robot motor skill acquisition

Models of tool use

Movements <-> Effects



Learning models for High-dimensions
robot motor skill acquisition  Fiisais

Stochasticity

Redundancy

Forward Model

——) Reachable
— Space of
Inverse Model Effect

Task Space = Space of




Motor synergies/primitives

Humans: muscular synergies

O I SR
S

GER R D

DMP Formalism
J Recurrent Neural Nets
CPGs « GMR
(lispeert et al., (Rossignol, 1996) « Splines + vector fields
2005)




Exploring and Learning multiple models
and skills in a developmental robot

Bashing param. primitive
Biting param. primitive
Head turn param. primitive
H Vocalizing param. primitive
9

|
k: Visual patt. sensori. primitive

Mouth touch sensori. primitive

Yl Mov. sensori. primitive

“

Leg touch sensori. primitive

The Playground Experiment Sound pitch sensori. primitive
IEEE Trans. Ev. Comp. (Oudeyer et al., 2007)



Innate equipment

/ + (Social) learning \

Multiple Families
of Motor Primitives

@ Multiple Families
of Sensori Primitives

+ Operators for projecting/

Multiple Task
@ @paces
combining motor primitives

(include dimensionality Ij
reduction or increase) + Mechanisms for self-generation of
problems = models do be learnt

2 H M5 H M8 H  Explore and
learn
s@=0 v @@= ™

Multiple Controller
Spaces

+ Operators for projecting/
combining sensori primitives




Active Exploration and Learning

vs @ =0
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vy =0
vs (=03
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What models to generate, explore and learn and in what order,
given:

« High inhomogeneities in the mathematical properties of the
mappings

» Diversity of complexity/dimensionality/volume, learnability,
and level of noise

e« Some are trivial, some other unlearnable

« Some may be non-stationary

« Life-time severely limited: the set of learnable models cannot
be learnt entirely during lifetime

= The goal is that learnt models can be reused to solve
efficiently (predictive or control) problems unknown to the
learner initially and taken for e.g. uniformly in a space of
problems relevant in the environment in which the robot exists




vs (=0
M6w
vy =0
vs (=03

Mi

Technical challenges

=» Problem generation: Fixed or adaptive set of problems? Adaptive

boundaries boundaries for a given problem? How to control of the

growth of complexity (inside and across problems)?

=» Problem selection: What problems to focus on ? How to build a
useful learning curriculum?
=» \Which measure of interestingness?

Standard approaches to active learning will fail (most often do worse
than random), i.e. approaches based on sampling where uncertainty is
high, density approaches or approaches based on analytic hypothesis

about the learning algorithm or the data (e.q. like when using GPs)
(Whitehead, 1991; Linden and Weber, 1993; Thrun, 1995; Sutton, 1990; Cohn et al., 1996;
Brafman and M. Tennenholtz, 2002; Strehl et Littman, 2006; Szita and Lorincz, 2008)

=» In particular, very difficult to evaluate analytically the information
gain, rather need to evaluate it empirically, but then how?

=» |f interaction between self-generated problems, then need for
sequential decision optimization = Intrinsically Motivated
Reinforcement Learning (IMRL, Barto et al. 04, Schmidhuber, 1991).




The search for intermediate complexity

Child development: intrinsic motivation and

mechanisms of spontaneous exploration

Developmental Neurosciences
psychology

«
[
o

9
o]

i
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Models IAC, RIAC, SAGG-RIAC, McSAGG
(Oudeyer et al., 2005; Oudeyer et al., 2007,

Dayan and Belleine (2002),

White (1959), Berlyne (1960), Kakade and Dayan (2002), Baranes and Kaplan, 2009; Baranes and
Csikszentmihalyi (1996) Horvitz (2000) Kaplan 2010a b)
=» Activities of intermediate
complexity, as evaluated empirically, Algorithmic aspects and qualitative
are intrinsically rewarding modelling of sensorimotor development
=» Mechanisms for regulating the
growth of complexity: the importance Intermediate complexity <> Maximal

of starting small learning progress as evaluated empirically



IAC (2007) R-IAC (2009) SAGG-RIAC (2010) N Interestingness
= Empirical measure of learning progress

IE|
Parameterized space of problems/models = ell) — Z'_E_'|E| e(i)
3 =

Stochastic
Choice of
Problem
according to a
probability
proportional to
Learning
Progress

Recursive splitting or problem space optimizing difference in learning progress




Active regulation of the growth of
complexity in exploration

Optimizing learning_progress,
|e the decrease Of pred|Ct|On predicted consequence ¥

errors (derivative) R G
: M
The IAC/R-IAC (Intelligent

Adaptive Curiosity) arror feedback

actual coniequence y

architecture(s) Metapredictor metaM

[ N N expected
Makes no assumption on T Ve v
the regression algorithm /NS >

SENSOriMOotor context

used as “Predictor” (e.g.
can be SVE, GP, or non-
parametric)

IAC: Oudeyer P-Y, Kaplan , F. and Hafner, V. (2007), R-IAC: Baranes and Oudeyer (2009)
Related Work: Schmidhuber (1991, 2006)



http://playground.csl.sony.fr

(Oudeyer, Kaplan, Hafner, 2007, IEEE Trans. Evol. Comp.)
Here a classic non-parametric regressor is used (Schaal and Atkeson, 1994)
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Measure 1 (number of peaks?) 9.67
Measure 2 (complete scenano? Yes: 34 %, No:! 66 %o
Measure 3 (near complete sceénano?) Yes: 53 2. No. 47%
Measure 4 (non-aftordant bite before atfordant bite?) Yes: 93 %, No: 7 ¢
Measure 5 (non-affordant bash before affordant bash?) Yes: 57 %o, No: 43
Measure 6 (penod of systematic successtul bite?) Yes: 100 %. No: 0 ®
Measure 7 (penod of svstematic successful bash?) Yes: 78 %. No: 11 %
Measure § (bite before bash?) Yes: 92 % No: § %
Measure 9 (successful bite before successful bash?) Yes: 77 %o, No: 2

:



Active learning of single
high-dimensional models

Forward Model

Inverse Model

Reachable
Space of
Effect

Task Space = Space of

(C, (81,01, eeey Spy Gy ), ) € R




Teleogical exploration in human
infants




SAGG-RIAC
(Self-Adaptive Goal Generation RIAC)

SAGG

Algorithm 2 Global Pseudo-Code of SAGG
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(Baranes and Oudeyer, IROS 2010; IEEE ICDL/Epirob 2011)
Competence-based models Oudeyer and Kaplan, Frontiers in Neurorobotics, 2008)



Example: Developmental learning of
locomotion

j(t) =m+ a.sin(w.t+ ¢

8 joints * 3 parameters

Motor primitive M
with 24 dimensions

The motor primitive: a CPG



Explore the consequence of one’s
movements

The sensori-primitive:

Reached Position

Translation + '
Rotation
of COM



Learnt skills

The robot can re-use
its curiosity-driven
learnt forward and
inverse models to
reach any particular
location in its field of
view

Note: Here the
forward and inverse
model are learnt
actively using a local
learning algorithm
(Local Gaussian
Mixture Regression,
ILO-GMR, Cederborg
et al., 2010)




Faster learning and better
performances in generalization

Reaching Error ACTUATOR RANDOM __

SAGG-RIAC ==

SAGG-Random ===
ACTUATOR-RIAC
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Number of Actions (time steps)



Maturational constraints

Humans: maturation of the sensorimotor

Robots:
system =

Cephalo-caudal and t) + A.interest(S’) if interest(S’) > 0
proximo-distal law t) otherwise

(pmaa: - pmz’n)
wma:c

=
¢(t) ¥ pmam)

Y(t).k;

Where k; represents an intrinsic value determining the differ-
ence of evolution velocities between each joint. Here we fix:
k1 > ko > ... > ky, where k; is the first proximal joint.

——

. Baranes, A., Oudeyer, P-Y., 2011, IEEE ICDL 2011
(Eyre, 2003; Berthier et al., 1999)




McSAGG-RIAC: Experimental

Results
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Importance of the bi-directional
coupling between maturation and
active learning
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Social guidance

Humans: Social guidance in the Zone of
rfiumans: Social guidance in the £one ot g Robots:
Proximal Development

Learning by demonstration

. and imitation

(Schaal et al., Billard et al.,
Asfour and Dillman, Lopes et
’:‘.. al., Demiris et al., ...)

-
-
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- »
~_®sqeenetr" _

Vygotski, ZPD

e

——

=» Coupling of social guidance and intrinsically
motivated learning

Mirror neurons Vi’
(Gallese et al., 1996 ) k&



SGIM: Experimental Results

— X o
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\




SGIM: Experimental Results

Random
SAGG-RIAC
Imitation
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SAGG-RIAC

(Nguyen et al., IEEE ICDL/Epirob 2011)



How can a robot learn novel visually
grounded words from a human?

Problem: How to teach a robot to recognize new visual objects associated
to new words ?



Just a matter of making efficient
statistics over multimodal
observations?

No ! Also a matter of collecting data that is good enough through
adequate human-robot interaction



The crucial role of joint attention

Humans use heavily social
cues to coordinate social
interaction, realize « joint
attention », and thus allow
the child learner to collect
good training data




Shall we mimick human-human natural mechanisms for
ensuring human-robot joint attention (e.g. use of pointing,
gaze direction, « waving », ...) ?



Maybe not ... as hinted by the Wizard of Oz

Even with human intelligence, the sensorimotor apparatus of a robot is so different

from the one of humans that it is very difficult to use social cues such as pointing or
waving (for example, big different in the field of view that makes it very difficult for a
non-engineer human teacher to understand what the robot is seeing).



Introducing mediator interfaces

@’; év"“
SRR %

&

Allowing organisms
that do not share the
same tools for
perception and action
to still manage to
communicate




Developing novel human-robot
interfaces based on mediator objects




Mediator interfaces

(Rouanet et al., SIGGRAPH 2010)
(Rouanet, Danieau and Oudeyer,2011, HRI 2011)
(Rouanet et al., 2009, Humanoids 2009)



Cap Sciences, Bordeaux

107 participants : 77
hommes, 30 femmes

Age: 10 4 76 (M = 26.3)

O

= Using well-designed interfaces/ \‘

interaction schemes allows the
robot to collect much better
training data and to improve its
learning dramatically (the increase
is much higher than the different
between a naive and a
sophisticated statistical learning
approach for a given dataset)




Families of developmental constraints allowing for
versatile sensorimotor development

Humans

Intrinsically motivated exploration

Muscular synergies

Eco-adapted morpholoqy

Myelination

Cogqgnitive bias for inference and

abstraction

Socially quided exploration

nanans

Robots

Active learning alq.

Function basis for
constraining movement

Bio-inspired morphology

Models of maturational
constraints

Alq. for inference and
abstraction building

Techniques for learning
through social interaction




Thank you!
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Contraintes morphologiques

 Modélisation et
exp. du tronc;

(Ceccato et Cazalets,
2009)

Institu’t de .Neuroscie.nc_es Cognitives(l_y et Oudeyer, SIGGRAPH 2010, emerging technologies)
et Intégratives d’Aquitaine



Contraintes morphologiques sur ['apprentissage de la marche:
le role de |la souplesse et de la colonne vertébrale

* Acroban (Olivier Ly), 32 DOFs

* Structure souple qui peut absorber et
stocker de I’énergie (tendons élastiques
ressorts, moteurs)

* Torse semi-passif avec colonne
vertébrale multi-articulée

* Primitive motrice d’équilibrage
générique

* La marche comme une auto-
perturbation

* Une interface homme-robot « auto-
organisée », permettant de guider
intuitivement le robot en le prenant par
la main

Ly, O., Oudeyer, P-Y. (2010) Acroban the humanoid: Playful and compliant physical child robot interaction, SIGGRAPH’2010
Emergent Technologies. Videos on
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Collaborations interdisciplinaires

psvychologie développementale

Neurosciences cognitives
et intégratives

IMClever European project on Intrinsically
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Dimension sociétale et économique

« As | look at the trends that are now starting to converge, | can

envision a future in which robotic devices will become a nearly s

ubiquitous part of our day-to-day lives »
Bill Gates, Scientific American, january 2007

Welfare

* Assistance a la =~ i Défi: Interaction et interfaces
personne , - 48 /B (utilisabilité et acceptation sociale) et
* Société 0 ' _ adaptation (apprentissage)
vieillissante ) '

* Education,
confort et jeu



Plateformes expérimentales

)
A%
' I fooooaims Jiie
Simulateurs:
Icub (avec I'ISIR, Open Nao
Call Robocub en 2007) Acroban \V/\:{eEbPOtS et

=» TOUS programmés dans le framework middleware URBI



Un exemple simple du
fonctionnement de R-1AC

Espace percgu

-

DOF 2

DOF 1 /

Evolution du focus
d’exploration avec le
temps: le bruit est évité,
et les régions “simples”
sont explorées avant les
régions
compliquéesregions




