

A Tour of Machine Learning

Michèle Sebag

TAO

Dec. 5th, 2011

- Cheques
- Spam
- Robot
- Helicopter
- Netflix
- Playing Go
- Google

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

http://ai.stanford.edu/~ang/courses.html

Reading cheques

MNIST: The drosophila of ML

21797/2845

Fig. 4. Size-normalized examples from the MNIST database.

Classification

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Spam – Phishing – Scam

Best Buy Viagra Generic Online

Viagra 100mg x 100 Pills \$125. Free Pills & Reorder Discount, We accept VSA & E-Check Payments, 90000+ Satisfied Customers!

Top Selling 100% Quality & Satisfaction guaranteed!

Classification, Outlier detection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The 2005 Darpa Challenge

Thrun, Burgard and Fox 2005

・ロト ・四ト ・ヨト ・ヨト 三日

Autonomous vehicle Stanley - Terrains

Kolter, Abbeel, Ng 08; Saxena, Driemeyer, Ng 09

Reinforcement learning

Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Toussaint et al. 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

(a) Factor graph modelling the variable interactions

(b) Behaviour of the 39-DOF Humanoid: Reaching goal under Balance and Collision constraints

Bayesian Inference for Motion Control and Planning

Go as AI Challenge

Gelly Wang 07; Teytaud et al. 2008-2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reinforcement Learning, Monte-Carlo Tree Search

Netflix Challenge 2007-2008

Collaborative Filtering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The power of big data

- Now-casting
- Public relations >> Advertizing

outbreak of flu

э

Sparrow, Science 11

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

In view of Dartmouth 1956 agenda

We propose a study of artificial intelligence [..]. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.

You are here

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

Example

- row : example/ case
- column : feature/variables/attribute
- attribute : class/label

Instance space \mathcal{X}

- Propositionnal : $\mathcal{X} \equiv \mathbb{R}^d$
- Structured : sequential, spatio-temporal, relational.

age	employme	education	edun	marital	job	relation	race	gender	hour	country	wealth
39	State gov	Bachelors	13	Never mar	 Adm clerid	Not in fan	White	Male	40	United Sta	poor
51	Self_emp_	Bachelors	13	Married	Exec_man	Husband	White	Male	13	United_Sta	poor
39	Private	HS_grad	9	Divorced	Handlers_	Not_in_fan	White	Male	40	United_Sta	poor
54	Private	11th	7	Married	Handlers_	Husband	Black	Male	40	United_Sta	poor
28	Private	Bachelors	13	Married	Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married	Exec_man	Wife	White	Female	40	United_Sta	poor
50	Private	9th	5	Married_sp	Other_serv	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married	Exec_man	Husband	White	Male	45	United_Sta	rich
31	Private	Masters	14	Never_mar	Prof_speci	Not_in_fan	White	Female	50	United_Sta	rich
42	Private	Bachelors	13	Married	Exec_man	Husband	White	Male	40	United_Sta	rich
37	Private	Some_coll	10	Married	Exec_man	Husband	Black	Male	80	United_Sta	rich
30	State_gov	Bachelors	13	Married	Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar	Adm_clerid	Own_child	White	Female	30	United_Sta	poor
33	Private	Assoc_ac	12	Never_mar	Sales	Not_in_fan	Black	Male	50	United_Sta	poor
41	Private	Assoc_voo	11	Married	Craft_repai	Husband	Asian	Male	40	*MissingV	rich
34	Private	7th_8th	4	Married	Transport_	Husband	Amer_India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar	Farming_fi	Own_child	White	Male	35	United_Sta	poor
33	Private	HS_grad	9	Never_mar	Machine_c	Unmarried	White	Male	40	United_Sta	poor
38	Private	11th	7	Married	Sales	Husband	White	Male	50	United_Sta	poor
44	Self_emp_	Masters	14	Divorced	Exec_man	Unmarried	White	Female	45	United_Sta	rich
41	Private	Doctorate	16	Married	Prof_speci	Husband	White	Male	60	United_Sta	rich

aminoacid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Types of Machine Learning problems

$\mathsf{WORLD}-\mathsf{DATA}-\mathsf{USER}$

Observations	+ Target	+ Rewards	
Understand	Predict	Decide	
Code	Classification/Regression	Policy	
Unsupervised	Supervised	Reinforcement	
LEARNING	LEARNING	LEARNING	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Unsupervised Learning

Example: a bag of songs

<ロト <回ト < 注ト < 注ト

Find categories/characterization Find names for sets of things

From observations to codes

What's known

- Indexing
- Compression

What's new

Accessible to humans

Find codes with meanings

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣…

Unsupervised Learning

Position of the problem

Given Data, structure (distance, model space) Find Code and its performance

MINIMUM DESCRIPTION LENGTH

Minimize (Adequacy (Data, Code) + Complexity (Code))

What is difficult

Impossibility thm

scale-invariance, richness, consistency are incompatible

Distances are elusive

curse of dimensionality

Unsupervised Learning

- Crunching data
- Finding correlations
- "Telling stories"
- Assessing causality

Causation and Prediction Challenge, Guyon et al. 10

Ultimately

- Make predictions
- Build cases
- Take decisions

good enough

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Maps of cancer in Spain

http://www.elpais.com/articulo/sociedad/contaminacion/industrial/multiplica/tumores/Cataluna/Huelva/Asturias/elpepusoc/20070831elpepisoc_2/Tes

・ロト ・ 四ト ・ ヨト ・ ヨト

ъ

Types of Machine Learning problems

$\mathsf{WORLD}-\mathsf{DATA}-\mathsf{USER}$

Observations	+ Target	+ Rewards	
Understand	Predict	Decide	
Code	Classification/Regression	Policy	
Unsupervised	Supervised	Reinforcement	
LEARNING	LEARNING	LEARNING	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Supervised Learning

Context

 $\begin{array}{c} & \text{Oracle} \\ \text{World} \rightarrow \text{instance } \mathbf{x}_i \rightarrow & \downarrow \\ & y_i \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Input:Training set $\mathcal{E} = \{(\mathbf{x}_i, y_i), i = 1 \dots n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$ Output:Hypothesis $h : \mathcal{X} \mapsto \mathcal{Y}$ Criterion:few mistakes (details later)

Supervised Learning

First task

- Propose a criterion $\mathcal L$
 - Consistency

When number *n* of examples goes to ∞ and the target concept h^* is in \mathcal{H} Algorithm finds \hat{h}_n , with

 $\lim_{n\to\infty}h_n=h^*$

Convergence speed

 $||h^* - h_n|| = \mathcal{O}(1/\ln n), \mathcal{O}(1/\sqrt{n}), \mathcal{O}(1/n), ... \mathcal{O}(2^{-n})$

・ロット (雪) (日) (日) (日)

Supervised Learning

Second task

- ▶ Optimize *L*
 - $+ \$ Convex optimization: guarantees, reproducibility
 - $(\ldots)~\mbox{ML}$ has suffered from an acute convexivitis epidemy

Le Cun et al. 07

H. Simon, 58:

In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction, retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.

(日)、(四)、(E)、(E)、(E)

The point is not to be perfect on the training set

The point is not to be perfect on the training set

The villain: overfitting

Complexity of Hypotheses

What is the point ?

Prediction good on future instances

Necessary condition:

Future instances must be similar to training instances "identically distributed"

Minimize (cost of) errors not all mistakes are equal. $\ell(y,h(x))\geq 0$

- 日本 - 1 日本 - 日本 - 日本

Vapnik 92, 95

(日)、(四)、(E)、(E)、(E)

Minimize expectation of error cost

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

Error: Find upper bounds

Vapnik 92, 95

Minimize expectation of error cost

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

Principle

Si h "is well-behaved " on \mathcal{E} , and h is "sufficiently regular" h will be well-behaved in expectation.

$$E[F] \leq \frac{\sum_{i=1}^{n} F(x_i)}{n} + c(F, n)$$

(日) (同) (日) (日)

Minimize upper bounds

lf x_i iid Then

 $\label{eq:Generalization} \mbox{Generalization error} < \mbox{Empirical error} + \mbox{Penalty term}$

Find

$$h^* = \operatorname{argmin}_h Fit(h, Data) + Penalty(h)$$

Minimize upper bounds

If x_i iid Then

 $\label{eq:Generalization} \mbox{Generalization error} < \mbox{Empirical error} + \mbox{Penalty term}$

Find

$$h^* = \operatorname{argmin}_h Fit(h, Data) + Penalty(h)$$

・ロット (雪) (日) (日) (日)

Designing penalty/regularization term

- Some guarantees
- Incorporate priors
- A tractable optimization problem

Supervised ML as Methodology

Phases

1.	Collect data	expert, DB
2.	Clean data	stat, expert
3.	Select data	stat, expert
4.	Data Mining / Machine Learning	
	 Description 	what is in data ?
	 Prediction 	Decide for one example
	 Agregate 	Take a global decision
5.	Visualisation	chm
6.	Evaluation	stat, chm
7.	Collect new data	expert, stat

Extend scopes

- Active Learning:
- Transfert/Multi-task learning:

Prior knowledge

- In the feature space
- In the regularization term

Big data

- Who does control the data ?
- When does brute force win ?

collect useful data relax iid assumption

structured spaces Kernels

Types of Machine Learning problems

$\mathsf{WORLD}-\mathsf{DATA}-\mathsf{USER}$

Observations	+ Target	+ Rewards	
Understand	Predict	Decide	
Code	Classification/Regression	Policy	
Unsupervised	Supervised	Reinforcement	
LEARNING	LEARNING	LEARNING	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reinforcement Learning

・ロト ・四ト ・ヨト ・ヨト 三日

Context

- Agent temporally (and spatially) situated
- Learns and plans
- ► To act on the (stochastic, uncertain) environment
- To maximize cumulative reward

Reinforcement Learning

Sutton Barto 98; Singh 05

・ロット (雪) (日) (日) (日)

Init

World is unknown *Model of the world* Some actions, in some states, yield rewards, possibly delayed, with some probability.

Output

$$Policy = strategy = (State \rightarrow Action)$$

Goal: Find policy π^* maximizing in expectation

Sum of (discounted) rewards collected using π starting in s_0

Reinforcement Learning

- 4 rooms
- 4 hallways

4 unreliable primitive actions

8 multi-step options (to each room's 2 hallways)

Given goal location, quickly plan shortest route

All rewards zero $\gamma = .9$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Reinforcement learning

Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal will – others things being equal – be more firmly connected with the situation, so that when it recurs, they will more likely to recur; those which are accompanied or closely followed by discomfort to the animal will – others things being equal – have their connection with the situation weakened, so that when it recurs, they will less likely to recur;

the greater the satisfaction or discomfort, the greater the strengthening or weakening of the link. Thorndike, 1911.

Given

- State space \mathcal{S}
- Action space A
- Transition function $p(s, a, s') \mapsto [0, 1]$
- Reward r(s)

Find $\pi: \mathcal{S} \mapsto \mathcal{A}$

Maximize
$$E[\pi] = \sum_{s_{t+1} \sim p(s_t, \pi(s_t))} \gamma^{t+1} r(s_{t+1})$$

(日)、(四)、(E)、(E)、(E)

Three interdependent goals

- Learn a world model (p, r)
- Through experimenting
- Exploration vs exploitation dilemma

Issues

- Sparing trials; Inverse Optimal Control
- Sparing observations: Learning descriptions
- Load balancing

Classical applications

- 1. Games
- 2. Control, Robotics
- 3. Planning, scheduling

OR

- 日本 - 1 日本 - 日本 - 日本

New applications

- Whenever several interdependent classifications are needed
- Lifelong learning: self-* systems Autonomic Computing

ML: A new programming language

- Design programs with learning primitives
- Reduction of ML problems
- Verification ?

ML: between data acquisition and HPC

- giga, tera, peta, exa, yottabites
- ► GPU

Schmidhuber et al. 10

Langford et al. 08