Decoding the informative content of brain activation maps: state of the art, challenges and future directions

Bertrand Thirion, INRIA Saclay-Île-de-France, Parietal team http://parietal.saclay.inria.fr bertrand.thirion@inria.fr

Outline

- Machine Learning in Neuroimaging
 - Overview
 - Common technical challenges
- Some learning problems in neuroimaging:
 - Medical diagnosis/study of between subject-variability
 - Brain reading
 - Brain connectivity mapping

NeuroImaging: modalities and aims

- 'Functional'

 (time resolved)
 modalities:
 fMRI, EEG,
 MEG
- vs 'anatomical' (spatially resolved) modalities: T1-MRI, DW-MRI

Neuroimaging modalities: T1 MRI

- T1 (1mm)³ MRI yields
- Various measurements of brain structure
 - density of grey matter
 - Cortical thickness
 - Gyrification ratio
- Landmarks-based statistics
 - Sulcus shape/orientation
- 10² to 10⁶ variables

Neuroimaging modalities: DW-MRI

- Diffusion MRI: measurement of water diffusion in all directions in the white matter
- Resolution: (2mm)³, 30-60 directions
- Yields the local direction of fiber bundles that connect brain regions
- fibers/bundles can be reconstructed through tractography algorithms
- Statistical measurement on bundles (counting, fractional anisotropy, direction)

NeuroImaging modalities: fMRI

- BOLD signal: measures blood oxygenation in regions where synaptic activity occurs
 - Used to detect functionally specialized regions
 - But indirect measurement
 - Not a true quantitative measurement
- Can also be used to characterize network structure from brain signals
- 10² to 10⁶ observations
- Resolution (2-3mm)³, TR = 2-3s
 December 6th, 2011 INRIA Machine Learning Workshop

NeuroImaging: modalities and aims

- Provide some biomarkers for diagnosis/prognosis, study of risk factors for various brain diseases
 - Psychiatric diseases
 - Neuro-degenerative diseases,
 - Brain lesions (strokes...)
- Understand brain organization and related factors: brain mapping, connectivity, architecture, development, aging, relation to behavior, relation to genetics
- Study chronometry of brain processes (EEG, MEG)
- Build brain computer interfaces (EEG)

Technical challenges in MLNI

- Low SNR in the data
 - Only a fraction of the data is modeled (BOLD)
 - Presence of structured noise (noise is not i.i.d. Gaussian !) + non-stationarity in time and space
 - Few salient structures (resting-state fMRI...)
- Size of the data
 - 10⁴ to 10⁶ voxels in most settings
 - Compared to 10 to 10² samples available
- Related to the particular learning problems

Technical challenges in MLNI

- *Diagnosis/classification* problems
 - Needs accuracy mostly (+ robustness)
 - Suffers from curse of dimensionality, but this is well addressed in the literature: generic approaches perform well
 - But: not the main aim of most neuroimaging studies

Need a large set of tools to be compared against each other
Need to take into account some priors on the data/true model (smoothness, sparsity)

NuSVC with linear kernel

LinearSVC (linear kernel)

Technical challenges in MLNI

- Recovery: retrieve the true model that accounts for the data
 - This is the main topic of all neuroimaging / brain mapping / decoding literature.
 - Suffers much more from feature dimensionality and correlation
 - Virtually in-addressed/unseen so far

 learn EN model for pain perception rating using first 120 TRs for training and next 120 TRs for testing.
 Find 'best-predicting' 1000 voxels using EN, delete them, find next 1000 best-predicting, etc.
 Does the predictive accuracy degrade sharply?
 Surprisingly, the answer is 'NO'

Outline

- Machine Learning in Neuroimaging
 - Overview
 - Common technical challenges
- Some learning problems in neuroimaging:
 - Medical diagnosis/study of between subject-variability
 - Brain reading
 - Brain connectivity mapping

Study of between-subject variability

- Between-subject variability is a prominent effect in neuroimaging:
 - hard to characterize as such
 - how much of it can be explained using other data ?
- Brain diseases are extreme case of *normal variability*
- Data easier to acquire on *normal* populations
 - Confrontation to behavioral data
 - Confrontation to genetic data
- Perspective of individualized treatments

Study of between-subject variability

- Sometimes handled as unsupervised problems: describe the density of the data based on observations (manifold learning, mixture modeling)
- The major challenge here is to discover statistical associations between complex, high-dimensional variables (regression)

Imaging as an **intermediate (endo)phenotype**

December 6th, 2011

"Brain reading"

- Definition: Use of functional neuroimaging data to infer the subject's behaviour – typically the brain response related to a certain stimulus
- Similar to BCI -to some extent-
 - without time constraints
 - More emphasis on model correctness
- Popular due to its sensitivity to detect smallamplitude but distributed brain responses
- Rationale: population coding

Brain reading / Reverse inference

Aims at predicting a cognitive variable \rightarrow decoding brain activity [Dehaene et al. 1998, Cox et al. 2003]

December 6th, 2011

Brain reading: population coding

Different spatial models of the functional organization of neural networks

Sparse

coding

Clustered coding

Population

coding

Distributed coding

• Not a unique kind of pattern for the spatial organization of the neural code.

• This is further confounded by between-subject variability

December 6th, 2011

Inter-subject variability

Inter-subject prediction \rightarrow find stable predictive regions across subjects. Inter-subject variability \rightarrow lack of voxel-to-voxel correspondence

Intersection of the predictive regions

Union of the predictive regions

[Tucholka 2010]

Prediction function

 $y \in \mathbb{R}^{n}$ is the behavioral variable. $X \in \mathbb{R}^{n \times p}$ is the data matrix, i.e. the activations maps. (w, b) are the parameters to be estimated. **n** activation maps (samples), **p** voxels (features).

> p≫n Curse of dimensionality Risk of overfit

Dealing with the curse of dimensionality in fMRI

- **Feature selection** (e.g. Anova, RFE) :
 - Regions of interest \rightarrow requires strong prior knowledge.
 - Univariate methods \rightarrow selected features can be redundant.
 - Multivariate methods → combinatorial explosion, computational cost.

[Mitchell et al. 2004], [De Martino et al. 2008]

- **Regularization** (e.g. Lasso, Elastic net) :
 - performs jointly feature selection and parameter estimation
 - \rightarrow majority of the features have zero loading.

[Yamashita et al. 2004], [Carroll et al. 2010]

- Feature agglomeration :
 - agglomeration : construction of intermediate structures

 → based on the local redundancy of information.
 [Filzmoser et al. 1999], [Flandin et al. 2003]

Evaluation of the decoding

Prediction accuracy

Explained variance ζ :

 \rightarrow assess the quantity of information shared by the pattern of voxels.

Structure of the resulting maps of weights: reflect our hypothesis on the spatial layout of the neural coding ? **Common hypothesis :**

- → **sparse** : few relevant voxels/regions implied in the cognitive task.
- → **compact structure** : relevant features grouped into connected clusters.

Total Variation (TV) regularization

Penalization J(w) based on the **l**₁ **norm of the gradient of the image**

$$J(\mathbf{w}) = TV(\mathbf{w}) = \int_{\omega \in \Omega} \|
abla \mathbf{w}\| d\omega$$

[L. Rudin, S. Osher, and E. Fatemi - 1992], [A. Chambolle - 2004]

gives an estimate of w with a **sparse block structure**

 \rightarrow take into account the spatial structure of the data.

extracts regions with piecewise constant weights

 \rightarrow well suited for brain mapping.

requires computation of the gradient and divergence over a mask of the brain with correct border conditions.

TV-based prediction

First use of TV for prediction task.

Minimization problem

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w},b} \ \ell(\mathbf{y}, \mathbf{Xw}) + \lambda TV(\mathbf{w}) \ , \ \lambda \geq 0$$

Regression \rightarrow least-squares loss :

$$\ell(\mathbf{y}, \mathbf{X}\mathbf{w}) = rac{1}{2n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Classification \rightarrow logistic loss :

$$\ell(\mathbf{y}, \mathbf{X}\mathbf{w}) = \frac{\sum_{i=1}^{n} \log \left(1 + \exp^{-y_i(\mathbf{x}_i^T \mathbf{w})}\right)}{n}$$

TV(w) not differentiable but convex

 \rightarrow optimization by iterative procedures (ISTA, FISTA).

[I. Daubechies, M. Defrise and C. De Mol - 2004], [A. Beck and M. Teboulle - 2009]

Convex optimization for TV-based decoding

First order iterative procedures:

- FISTA procedure
 - \rightarrow TV (ROF problem).
- ISTA procedure
 - \rightarrow main minimization problem
- Natural stopping criterion:

duality gap.

Require: Set maximum number of iterations K (ISTA), and the threshold ϵ on the dual gap (FISTA). **Require:** Initialize $\mathbf{z} \in \mathbb{R}(\Omega^3)$ with zeros. ### ISTA loop ### for k = 1. K do $\mathbf{u} = \mathbf{w} - \frac{1}{l} \nabla \mathcal{L}(\mathbf{w})$ ### FISTA loop ### Initialize $\mathbf{z}_{aux} = \mathbf{z}, t = 1$ while $\delta_{gap}(\mathbf{u} + \lambda \operatorname{div}(\mathbf{z})) > \epsilon$ do $\mathbf{z}_{old} = \mathbf{z}$ z = $\boldsymbol{\Pi}_{\boldsymbol{\mathsf{K}}}\left(\boldsymbol{\mathsf{z}}_{\textit{\mathsf{aux}}} - \tfrac{1}{\lambda\tilde{\boldsymbol{\mathsf{L}}}}\mathrm{grad}(\boldsymbol{\mathsf{Lu}} + \lambda\mathrm{div}(\boldsymbol{\mathsf{z}}_{\textit{\mathsf{aux}}}))\right)$ $t_{old} = t$ $t = (t + \sqrt{1 + 4t^2})/2$ $\mathbf{z}_{aux} = \mathbf{z} + \frac{t_{old}-1}{t} (\mathbf{z} - \mathbf{z}_{old})$ end while $\mathbf{w} = \mathbf{u} + \lambda \operatorname{div}(\mathbf{z})$ end for return w

Intuition on simulated data

 \rightarrow extract weights with a sparse block structure.

Real fMRI dataset on representation of objects

4 different objects.

3 different sizes.

10 subjects, 6 sessions, 12 images/session. 70000 voxels. **Inter-subject experiment** : 1 image/subject/condition \rightarrow 120 images. [Eger et al. - 2008]

Prediction accuracy on inter-subject analyzes

Regression analysis

Methods	mean ζ	std ζ	max ζ	min ζ	p-value to TV
SVR	0.77	0.11	0.97	0.58	0.0277 **
Elastic net	0.78	0.1	0.97	0.65	0.0405 **
TV $\lambda = 0.05$	0.84	0.07	0.97	0.72	-

Classification analysis

Methods	mean κ	std κ	max κ	min κ	p-value to SVC
SVC	48.33	15.72	75.0	25.0	-
SMLR	42.5	9.46	58.33	33.33	0.2419
TV $\lambda = 0.05$	45.83	14.55	66.67	25.0	0.7128

$TV \rightarrow maps$ for brain mapping

SVR

Influence of the regularization parameter λ

 \rightarrow results are extremely stable with respect to λ .

Influence of the regularization parameter λ

λ	=	0.01
ζ	=	0.83

 $\lambda = 0.05$ $\zeta = 0.84$

TV $\lambda = 0.01$

 $\begin{array}{l} \lambda = 0.1 \\ \zeta = 0.84 \end{array}$

TV for fMRI-based decoding

Inter-subject regression analysis.

TV $\lambda = 0.05$

Inter-subject classification analysis.

 \rightarrow derive maps similar to classical inference, within the inverse inference framework.

Conclusion on TV regularization

First use of TV for prediction problem (classification/regression).
TV approach allows to take into account the spatial structure of the data in the regularization.

- \rightarrow yields better prediction accuracy than reference methods.
- TV deals with inter-subject variability.
 - \rightarrow well suited for inter-subjects analysis.
- TV creates cluster-like activation maps.
- \rightarrow provides interpretable maps for brain mapping.

 V. Michel, A. Gramfort, G. Varoquaux and B. Thirion. *Total Variation regularization enhances regression-based brain activity prediction*. In 1st ICPR Workshop on Brain Decoding. 2010.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger and B. Thirion. *Total variation regularization for fMRI-based prediction of behaviour*. IEEE Transactions on Medical Imaging, 2011, 30 (7), pp. 1328 – 1340.

Structured sparsity for fMRI data

- Structure:
- Hierarchical clustering of the brain volume
- Variance minimization (Ward's clustering)
- With connectivity constraints
- Nested/multi-scale

• Sparsity: group lasso on the clusters of the tree

$$\Omega(\mathbf{w}) = \sum_{g \in \mathcal{G}} \|\mathbf{w}_g\|_2 = \sum_{g \in \mathcal{G}} \left[\sum_{j \in g} \mathbf{w}_j^2\right]^{1/2}$$

- Acts as the l_1 -norm on the vector $(\|\mathbf{w}_g\|_2)_{g \in \mathcal{G}}$
- If one node is set to 0, its descendants are also set to 0
- Consider large parcels before small parcels → robustness to spatial variability

[Michel et al. Pattern Recognition 2011] [Jenatton et al PRNI 2011, subm to SIAM imaging]

Dealing with the recovery issue

- **Recovery:** retrieve the true model that accounts for the data
 - Use of stability selection (randomized lasso on bootstrapped data)
 - adaptive brain parcellations (Ward's algorithm)
 - yields high accuracy and good recovery on simulations

Gramfort et al., MLINI 2011

Brain reading / open issues

Do we want this....

Return the corresponding mean prediction accuracy
classification_accuracy = np.sum(cv_scores) / float(n_samples)

... or that ?

December 6th, 2011

Brain reading: Transfer learning

- a classifier trained to discriminate left versus right saccades can also *decode* mental arithmetics:
- subtraction \Leftrightarrow left saccade
- addition \Leftrightarrow right saccade
- This generalization occurs only when based on two regions of the parietal cortex
- This shows that the same neural populations are involved in ocular saccades and arithmetics

December 6th, 2011

Outline

- Machine Learning in Neuroimaging
 - Overview
 - Common technical challenges
- Some learning problems in neuroimaging:
 - Medical diagnosis/study of between subject-variability
 - Brain reading
 - Brain connectivity mapping

Functional connectivity mapping

- Definition: consists in deriving a quantitative measure of brain networks integration based on functional neuroimaging correlations
- Rationale
 - Popularity of resting-state fMRI.
 - Model-driven approach (SEM, DCM) do not scale well
- Learning problems
 - Segment regions based on observed correlations (common to many neuroimaging problems)
 - Inference of graphical models

Learning in FCM (1)

- Learn a spatial model (atlas) from the resting state data
 - ICA, clustering provide little guarantees on the result
 - Dictionary learning (SSPCA) can be used instead

[Varoquaux et al. IPMI 2011] $V_{y=-20}$ $V_{x=5}$ $V_{x=5}$ $V_{x=10}$ $V_{y=10}$

The population-level model adapts to individual configurations

$$(\mathbf{U}^{s}, \mathbf{V}^{s})_{s \in \{1...S\},}, \mathbf{V} = \underset{\mathbf{U}^{s}, \mathbf{V}^{s}, \mathbf{V}}{\operatorname{argmin}} \mathcal{E}(\mathbf{U}^{s}, \mathbf{V}^{s}, \mathbf{V}), \quad \text{s.t.} \|\mathbf{u}_{l}^{s}\|_{2}^{2} \leq 1$$

with $\mathcal{E}(\mathbf{U}^{s}, \mathbf{V}^{s}, \mathbf{V}) = \sum_{s=1}^{S} \frac{1}{2} \left(\|\mathbf{Y}^{s} - \mathbf{U}^{s} \mathbf{V}^{sT}\|_{\operatorname{Fro}}^{2} + \mu \|\mathbf{V}^{s} - \mathbf{V}\|_{\operatorname{Fro}}^{2} \right) + \lambda \Omega(\mathbf{V}),$

December 6th, 2011

Toward large-scale brain atlases

- More generally learn brain functional atlases from the data...
 - requires lots of data
 - Could be the first serious attempt to map brain space to brain function
 - Requires learning methods that scale with huge datasets
 - online dictionary learning
 - Model selection is tricky

December 6th, 2011

Learning in FCM (2)

• Next: Given a set of regions, quantify properly their interactions/integration of the underlying networks

- Learn covariance model between the set of regions (partial correlations)
- Group- sparse- penalty

December 6th, 2011

Learning in FCM (3)

- Do statistical inference on these objects:localize the differences in the graph structure between two populations
- Example: stroke patients
- Problem: covariance matrices live on a manifold; computing statistics (mean, variance) is challenging
- Our solution so far: linearize the variability model, assuming small differences

$$egin{aligned} \mathbf{\Sigma}^s &= \phi_{\mathbf{\Sigma}^\star}^{-1}(\mathbf{d}\mathbf{\Sigma}^s) = \ \mathbf{\Sigma}^{\star rac{1}{2}} \exp(\mathbf{d}\mathbf{\Sigma}^s) \, \mathbf{\Sigma}^{\star rac{1}{2}} \ \mathbf{\Sigma}^s &\simeq \ \mathbf{\Sigma}^{\star rac{1}{2}} \left(\mathbf{I}_n + \mathbf{d}\mathbf{\Sigma}^s\right) \mathbf{\Sigma}^{\star rac{1}{2}} \end{aligned}$$

41

Z score

Conclusion

- Machine learning in Neuroimaging
 - standard challenges (but lack of data)
 - Need guarantees on the result (e.g. support recovery)
 - Neuroimaging people also need guidelines
- At INRIA
 - Fruitful & long-term collaborations with Select and Sierra
 - Other ongoing projects (MEG, BCI) \rightarrow more impact
- Implementation matters:
 - the success of many methods is related to their availability (libsvm !)

Computation time is important in practice

machine learning in Python

December 6th, 2011

scikits

Acknowledgements

- Many thanks to my co-workers: V. Michel, G.
 Varoquaux, A. Gramfort, F. Pedregosa, P. Fillard,
 J.B. Poline, V.Fritsch, V. Siless, S.Medina, R. Bricquet
- To INRIA colleagues: G.Celeux, C. Keribin, F. Bach, R. Jenatton, G. Obozinski
- To CEA/Neurospin & INSERM U562 colleagues: E.Eger, A. Kleinschmidt, S.Dehaene, J.F. Mangin

Thank you for your attention

http://parietal.saclay.inria.fr